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Abstract

Scientists rely on high-throughput screening tools to identify promising small-molecule 

compounds for the development of biochemical probes and drugs. This study focuses on the 

identification of promiscuous bioactive compounds, which are compounds that appear active in 

many high-throughput screening experiments against diverse targets but are often false-positives 

which may not be easily developed into successful probes. These compounds can exhibit 

bioactivity due to nonspecific, intractable mechanisms of action and/or by interference with 

specific assay technology readouts. Such “frequent hitters” are now commonly identified using 

substructure filters, including pan assay interference compounds (PAINS). Herein, we show 

that mechanistic modeling of small-molecule reactivity using deep learning can improve upon 

PAINS filters when modeling promiscuous bioactivity in PubChem assays. Without training on 

high-throughput screening data, a deep learning model of small-molecule reactivity achieves 

a sensitivity and specificity of 18.5% and 95.5%, respectively, in identifying promiscuous 

bioactive compounds. This performance is similar to PAINS filters, which achieve a sensitivity 

of 20.3% at the same specificity. Importantly, such reactivity modeling is complementary to 

PAINS filters. When PAINS filters and reactivity models are combined, the resulting model 

outperforms either method alone, achieving a sensitivity of 24% at the same specificity. However, 

as a probabilistic model, the sensitivity and specificity of the deep learning model can be 

tuned by adjusting the threshold. Moreover, for a subset of PAINS filters, this reactivity model 

can help discriminate between promiscuous and nonpromiscuous bioactive compounds even 

among compounds matching those filters. Critically, the reactivity model provides mechanistic 

hypotheses for assay interference by predicting the precise atoms involved in compound 
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reactivity. Overall, our analysis suggests that deep learning approaches to modeling promiscuous 

compound bioactivity may provide a complementary approach to current methods for identifying 

promiscuous compounds.

Graphical Abstract

INTRODUCTION

Identifying high-quality, small-molecule probes with specific bioactivity combined with 

useful mechanisms of action has become a critical component of both basic science 

research and early drug discovery efforts.1 To this end, many high-throughput screening 

(HTS) technologies have been developed to rapidly screen libraries of tens of thousands 

of compounds for modulation of specific biomolecules or production of certain cellular 

phenotypes. Light-based readouts, including absorbance, fluorescence, luminescence, and 

resonance energy transfer (e.g., FRET), are commonly used to enable higher throughputs.2 

These assays and other technologies are susceptible to technology-related and generalized 

sources of compound-mediated assay interference.3,4 We and others have noted the 

importance of this distinction.5,6 Technology-related interferences occur when compounds 

interfere with some aspect of signal transmission related to a given assay technology and 

do not represent actual target modulation. Common mechanisms of technology-related 

interference include light-based interferences (auto-fluorescence, quenching, inner-filter 

effects, light scattering),7 capture reagent disruption,8,9 luciferase reporter modulation,10 and 

singlet oxygen quenching and scavenging.11 Generalized interference represents on-target 

but often poorly tractable mechanisms of bioactivity. Compounds causing generalized 

interference modulate the target protein as desired, but also exhibit other undesirable 

properties such as promiscuous activity against off-target proteins, an inconsistent dose–

response relationship, or activity that is highly variable with assay conditions. Common 

mechanisms of generalized interference can include aggregation,12 nonspecific reactivity,13 

redox activity,14 chelation,15 membrane perturbation,16 and metal contaminants.17 We note 

that there can be overlap between these two categories in those cases where the interference 

source acts upon biological targets and the assay technology, such as when nonspecific 

compound reactivity may modulate a biological target but also a key reagent.18 Given the 

implications of each interference category, it is critical to consider these distinctions as well 

as overlaps when analyzing assay interference and bioassay promiscuity.
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The increasing use of HTS to identify small-molecule probes and drugs, combined with 

a lack of thorough control and validation studies, has led to a proliferation of low-quality 

probes in the literature that exhibit nonspecific activity against a variety of targets upon 

further testing.1,19–21 The popularity of virtual HTS techniques has compounded this 

problem by allowing scientists without experimental chemistry or biological assay expertise 

to perform screening experiments in silico.22 While many problematic compounds can be 

recognized by an experienced medicinal chemist and pharmacologists, it can be difficult for 

nonexperts to recognize potentially undesirable properties. In addition, some interference 

com-pounds can be difficult to identify a priori based on their chemical structures without 

performing appropriate follow-up experiments. Clearly, both scientists and publishers need 

effective tools to flag potentially problematic compounds to guide appropriate orthogonal 

assays, counter-screens, and controls.

There are several types of interference counter-screens considered the gold-standard for 

derisking compound-mediated assay interference. For nonspecific thiol reactivity, an often 

significant source of assay interference and nonspecific bioactivity, such assays can include 

incubating compounds with thiol-based probes such as glutathione (GSH), with compound-

thiol adducts detected by fluorometry or mass spectrometry (MS).23 Advanced techniques 

for identifying thiol-reactivity include ALARM NMR and protein MS.24 However, some of 

these methods can require substantial expertise and instrumentation and may be difficult to 

implement in certain academic settings.

One current in silico approach to this problem uses filters to match chemical substructures 

known to be problematic. One commonly used filter set, known as Pan Assay Interference 

Compounds (PAINS) filters, was designed by analyzing a set of six AlphaScreenassays, 

a luminescence-based assay technology. While it is thought nonspecific reactivity is 

the main contribution to assay interference in this study, PAINS filters may capture 

multiple assay interference mechanisms. Since these filters were created in a data-driven 

(observational) process, some of these filters flag substructures that do not have a clear 

interference mechanism. In addition, not all compounds matching a PAINS filter are 

promiscuously active and PAINS filters cannot discriminate these compounds. Indeed, it 

has been previously noted that PAINS filters match FDA approved drugs.25,26 Some of 

these drugs are cytotoxic agents, used for treating serious diseases such as cancers and 

infectious disease.26 Importantly, promiscuous activity alone does not necessarily prevent a 

drug from being effective.27 The specific mechanism of a compound’s bioactivity, whether 

promiscuous or not, more directly determines its viability as a drug.

We note that the general applicability of PAINS filters has been called into question for a 

number of reasons.6,25 It is important to consider that these filters were developed using 

data from a single screening methodology (AlphaScreen) and may or may not reflect 

promiscuity in other assay technologies. Furthermore, these assays were carried out at a 

single compound concentration between 10 and 30 μM, which may not necessarily reflect 

interference or bioassay promiscuity at alternative compound concentrations. Finally, it has 

been noted that the primary data and some of the study targets are not publicly available, 

which can limit independent studies.6 One study reported that PAINS filters generalize 

poorly to other assay technologies used in screening data deposited in the PubChem 
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database, and many PAINS filters match so-called “dark chemical matter”,28 which are 

compounds that appear inert in most bioassays.25 An analysis by Jasial and colleagues 

revealed similar observations.29 Besides overly strict filters, these observations could also be 

caused by varying compound screening concentrations, library curation practices, definitions 

of bioactivity, and capture reagents. While this may be true of certain chemotypes that may 

interfere with singlet oxygen transmission (e.g., quenching, scavenging), capture reagent 

disruption, or light transmission, one hypothesis is that such compounds should have 

interfered in many of the original PAINS screens independent of the six targets.30 Notably, 

these screens were run using different compound concentrations, and the magnitude (“end 

effect”) of singlet oxygen interference on the final readout in any of these original assays 

may also depend on compound concentration and other experimental conditions such as 

buffer composition, background intensity, signal intensity, and assay time. Therefore, further 

studies may be useful to better characterize the consequences of compound concentration 

on singlet oxygen interference in AlphaScreenassays. When applying PAINS filters, it is 

equally important to consider both the PAINS structure and the chemical context in which it 

appears and implement appropriate follow-up experiments when indicated, points that have 

been expressed repeatedly since the original PAINS publication.31–33

In this work, we investigate how a deep learning model of small-molecule, covalent 

reactivity with scavenger probes (cyanide and GSH) and biological macromolecules (DNA 

and protein) can be used to identify promiscuously active small-molecules.34,35 While 

this model only captures a single mode of assay interference, it can provide mechanistic 

predictions that suggest why a particular molecule may be reactive, thereby enabling 

those involved in HTS triage to make more informed decisions to mitigate nonspecific 

reactive behaviors. Data-driven modeling of compound interference mechanisms should 

provide three key benefits: such models should enable (1) better selection of compounds 

for screening libraries, (2) nonexperts to better identify problematic compounds, and (3) 

publishers to flag potentially questionable chemical matter for closer scrutiny.

Toward this goal, we studied the utility of reactivity modeling in enhancing prediction 

and mechanistic understanding of compound-mediated assay interference and bioassay 

promiscuity. PAINS filters were benchmarked for their ability to identify promiscuous 

bioactive compounds tested in large PubChem screening assays, followed by a similar 

analysis using our reactivity model. Next, we studied whether our reactivity model could 

distinguish promiscuous and nonpromiscuous compounds that match the same PAINS filter, 

and investigated how this reactivity model could be used to identify chemical mechanisms of 

reactivity among PAINS filter matches. We then developed a simplified scoring model which 

combines reactivity scores from our model into a single promiscuity prediction, followed 

by a combined model incorporating reactivity scores with PAINS filters to flag promiscuous 

bioactive compounds.

DATA AND METHODS

PubChem BioAssay.

The complete PubChem BioAssay database was downloaded via the NCBI FTP service 

(data accessed April seventh, 2016).36 We focused on HTS assays in PubChem and excluded 
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assays imported from ChEMBL, another bioassay database. To focus on applicability to 

HTS, analyses were restricted to bioassays testing at least 1000 compounds, and those 

compounds tested in at least 100 discrete bioassays, resulting in a data set of 384 328 

unique compounds (Figure 1A). Compounds were defined as active if the value of the 

PUBCHEM_ACTIVITY_OUTCOME field was set as “Active” and were defined as inactive 

otherwise. We note these activity outcomes are based on the activity selection criteria of 

individual assay authors and are not uniform. Both cell-based and target-based assays were 

included in the data set.

An initial analysis demonstrated both the number of compounds tested in PubChem and the 

activity rates of compounds follow an approximate power law distribution, with the majority 

of compounds having been tested in fewer than 100 assays and active in fewer than ten 

assays (Figure S1). These data appear similar to a recent PubChem analysis of bioassay 

promiscuity.29 We defined promiscuous compounds as those compounds exhibiting activity 

above a fixed percentage of assays. Because the classification methods used in this study 

are binary classifiers, this definition of promiscuous compounds enables a straightforward, 

systematic comparison between promiscuous actives, PAINS filters and our reactivity 

models. While this facilitates our analyses, we note that binary classifiers and other data 

binning have some potential shortfalls, such as the potential to inflate correlations.37 To 

address this, we chose these cutoffs prior to running our classifiers, and we show data 

from multiple cutoffs for some of our experiments to demonstrate that the data have similar 

interpretation regardless of the choice of cutoff. We initially experimented with cutoffs of 

5%, 10%, 15% and 20% (Figure 1B). A cutoff of 5% marked only 3.4% of compounds as 

promiscuously active, with exponentially fewer compounds exhibiting pan-assay activity at 

higher cutoffs. A complete list of compounds and their promiscuity labels can be found in 

the supplementary files.

A relationship between lipophilicity and promiscuous activity of drugs has been previously 

noted in the literature.38 Specifically, drugs with logP greater than three were observed to 

have substantially higher rates of promiscuity. We additionally analyzed the relationship 

between solubility (octanol/water partition coefficient, logP), molecular weight, and 

bioassay activity rates among those compounds meeting our filtering criteria (Figure S2). 

The majority of compounds (90%) conform to a variant of the Lipinski rule of five criteria39 

for these metrics: molecular weight between 180 and 500 Da and logP between −0.4 and 

5.6. In this data set, no apparent relationship was observed between logP and bioactivity or 

molecular weight and bioactivity.

DrugBank.

The complete DrugBank database in XML format was downloaded from www.drugbank.ca 

(accessed April 20th, 2016). FDA-approved, small-molecule drugs were identified by 

entries annotated with the “small molecule” type and the “approved” group. Corresponding 

PubChem Compound IDs (CIDs) for each DrugBank small-molecule were identified from 

the DrugBank XML records, and any drugs not having an associated CID in our filtered 

PubChem data set were not considered for further analyses.
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PAINS Filters.

PAINS filters were acquired in SMARTS format from the RDKit GitHub repository (Table 

S7, accessed May 25th, 2016). These filters were compiled from work translating the 

original SLN format40 PAINS filters to SMARTS format, which was published by the 

original authors of the PAINS filters.41 The following RDKit pipeline was implemented for 

applying pains filters: (1) PAINS filters were loaded using RDKit SMARTS parser with 

the mergeHs flag set, (2) input test molecules were read in SDF format with the sanitize 

flag set, (3) existing hydrogen atoms were removed and then explicit hydrogen atoms added 

to the molecule, (4) detection algorithms were invoked for aromaticity, conjugation, and 

hybridization, and (5) pains filter matches were identified using the RDKit substructure 

matching algorithm. This procedure was performed in accordance with the RDKit author’s 

guidelines for applying PAINS filters.

SMARTS substructure queries are known to behave differently on different software 

platforms. Besides using RDKit, we also experimented with applying the PAINS filters 

using CDK, a java-based cheminformatics toolkit. Interesting, we found that a substantial 

number of compounds matched PAINS filters using the RDKit implementation but did 

not match when using the CDK implementation and vice versa (Figure S3). However, we 

found that this discrepancy did not affect the overall sensitivity and specificity of PAINS 

filters on our data set (Figures S4C and F), and subsequent analyses utilized the RDKit 

implementation.

For enrichment calculations and predictive analysis, PAINS filters were grouped by the 

common functional groups they targeted, as indicated by their text names. For example, 

there are four filters targeting the quinone functional group: quinone_A(370), quinone_B(5), 

quinone_C(2), and quinone_D(2), which were all included in the filter group “quinone”.

A complete list of filters used in this study, along with the groups to which they were 

assigned, are provided as Supporting Information (Table S7). In addition, a complete list of 

compounds and their matched PAINS filters is provided as a supplementary file.

Lilly MedChem Filters.

Lilly MedChem filtering software42 was acquired from that project’s github page (https://

github.com/IanAWatson/Lilly-Medchem-Rules). The filtering software was run with default 

options, with the flags -expert and -B to write molecules flagged by filtering to a 

separate file. Any molecule flagged by the filtering software was classified as a potential 

promiscuous bioactive and those not flagged were classified as nonpromiscuous bioactives.

Small Molecule Reactivity Model.

Compounds were analyzed using a previously developed model of small-molecule reactivity 

with trapping agents GSH and cyanide as well as biological macromolecules DNA and 

protein.34,35 Briefly, a convolutional neural network model was trained using literature-

derived data extracted from the Accelrys Metabolite Database and other sources. The 

model was trained on a set of 2803 molecules encompassing nonreactive molecules, as 

well as molecules reactive with each of the modeled substrates: cyanide, GSH, DNA and 
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protein. The model was constructed and trained in two stages (Figure 2A). First, atoms 

and molecules in the training data were described numerically. Topology-based descriptors 

were computed for each atom in the training set, including 154 valence, ring membership, 

aromaticity, and the number of nearby heteroatoms (Table S9). These vectors formed the 

input to an atom-level neural network, which was then trained to predict sites (discrete 

atoms) at which nucleophilic attack by GSH, cyanide, DNA and/or protein may occur. 

Next, for each molecule (including those without a known site of reactivity), the top five 

reactive-site predictions obtained from the site-level neural network were combined with 15 

molecule-level descriptors including molecular weight, span, total polar surface area to form 

a set of 20 molecule level descriptors (Table S8). The resulting vector formed the input to 

a second neural network that was trained to predict which molecules underwent conjugation 

reactions with GSH, cyanide, DNA, and/or protein.

Compounds were also analyzed by two additional models of bioassay promiscuity. In the 

first model, four reactivity scores for a molecule (from GSH, cyanide, DNA, protein scores) 

were combined into a single promiscuity score via a single hidden-layer neural network with 

four hidden nodes (Combined Score, Figure 2B). In the second model, the four reactivity 

scores were combined with 480 binary indicator variables that identified whether a match 

to a particular PAINS filter was present in the molecule. These inputs were combined by 

a single hidden layer neural network with ten hidden nodes to produce a single bioactivity 

promiscuity score (React +PAINS Score). Reactivity scores for all compounds and all six 

models used in this study are available as a supplementary file.

RESULTS AND DISCUSSION

Substructure Filters Identify Promiscuous Actives.

PAINS filters proved to be effective at screening promiscuously active compounds in 

PubChem. Using the RDKit chemistry toolkit, we applied PAINS filters to the promiscuity 

annotated PubChem data set. At the 5% cutoff, 13% of PAINS filter matches were marked 

as promiscuous compounds, which represents an enrichment of 3.85-fold (Figure 3A). The 

sensitivity of PAINS filters for promiscuous compounds at the 5% cutoff was 20.3% and 

specificity was 95.5% (Figure 3B and C). This balance of specificity and sensitivity is 

acceptable for a screening test. The sensitivity and specificity of PAINS filters was not 

substantially affected by the choice of promiscuity cutoff (Figures S4A and D).

In addition to PAINS filters, we also applied the Lilly MedChem filters to the PubChem 

data set.42 Lilly MedChem is designed to identify not only compounds that interfere 

with biological assays but also those compounds that are unlikely to become drugs due 

to bioavailability or toxicity issues. Lilly MedChem achieved a sensitivity of 64% and 

a specificity of 67.5% at the 5% promiscuity cutoff (Figure 3B and C). These filters 

identify problematic structures not necessarily associated with HTS interference, which 

may contribute to their low specificity and make the Lilly MedChem filters less useful in 

this context. However, the MedChem filters do gain substantial sensitivity with increasing 

promiscuity cutoffs, which suggests that this filter set is optimized for identifying some 

highly problematic compounds (Figures S4B and E).
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Analysis of PAINS Filters and Predicted Compound Reactivity.

While PAINS filters were designed with principles of medicinal chemistry in mind, many 

of these filters have unclear and/or unconfirmed chemical mechanisms of assay interference, 

and compounds flagged by PAINS filters can demonstrate a spectrum of promiscuity 

profiles.25,29 Compound-mediated assay interference can be a complex phenomenon, and 

minor chemical changes may significantly affect interference. Additional confounding 

factors include random errors (e.g., false-positives, false-negatives), assay precision, library 

biases, compound stability, definitions of bioactivity, and experimental protocols, to name a 

few.

With these limitations in mind, we hypothesized that improvements in flagging interference 

compounds can be made by directly modeling assay interference mechanisms in a data-

driven manner. We therefore compared the performance of the conventional PAINS filters 

to a small-molecule reactivity model previously developed in our lab.34,35 We initially 

focused on modeling compound reactivity because (1) it represents a significant source 

of nonspecific bioactivity versus many biological targets and (2) it likely represents a 

significant source of interference in the original PAINS training set, given detergent and 

decoy proteins were included in assay buffer to mitigate aggregation. The reactivity model 

provides mechanistic predictions of reactivity, often pinpointing the precise atom at which 

a covalent bond with a biological nucleophile is formed. Furthermore, this model can 

predict reactivity with diverse biological molecules including GSH, cyanide, DNA, and 

proteins. Importantly, the model distinguishes between reactive and nonreactive molecules 

containing the same chemotypes, such as epoxides35 and sulfur oxides.43 This is a key 

advantage which separates deep-learning approaches from substructure-based methods. Our 

model was constructed using deep convolutional neural networks to compute both site 

(atom)-level reactivity scores and molecule-level reactivity scores. These scores are scaled 

between zero and one and are well-calibrated probabilities.44 A well-calibrated probabilistic 

model outputs scores which are proportional to the ratio of positives to negatives among all 

examples in the training set assigned the same score. For example, among training examples 

assigned scores close to 0.3, 30% are positive examples.

Many of the PAINS chemotypes are hypothesized to interfere via nonspecific reactivity. 

Accordingly, PAINS matches in PubChem were assigned higher GSH reactivity scores than 

non-PAINS by our model (p = 2.06 × 10−7, Mann–Whitney U-test, Figure 4A). In contrast, 

FDA approved drugs, whether PAINS matches or not, were assigned low GSH reactivity 

scores, similar to non-PAINS in PubChem. Compounds active in more than 5% of tested 

assays had substantially higher reactivity scores than nonpromiscuous compounds (Figure 

4B). In addition, compounds matching multiple PAINS filters exhibited higher rates of 

bioassay promiscuity and were assigned higher reactivity scores than compounds matching 

fewer filters (Figure S13).

PAINS matches in DrugBank are predictive of promiscuous activity in PubChem assays 

but are not associated with increased predicted reactivity. Out of 926 FDA-approved small-

molecule drugs in DrugBank that have assay data in PubChem, 65 were found to be PAINS 

filter matches. We found that 235 drugs were promiscuous at the 5% cutoff, with many 

drugs exhibiting higher degrees of promiscuity (e.g, 100 drugs were active in at least 

Matlock et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10% of tested assays, and the antineoplastic agent bortezomib was active in 50% of tested 

assays, most of which were annotated by bioassay ontology45 as cell-based assays). Among 

DrugBank PAINS matches, 41 of the 65 were also promiscuous actives, which represents a 

2.48-fold enrichment for promiscuous activity (Figure S6A). However, reactivity modeling 

of these drugs showed that there is only a small 13% difference in average reactivity 

scores between PAINS matches and nonmatches (p = 0.0012, Mann–Whitney U-test). 

Furthermore, there is only a small 8.2% difference in average reactivity score between 

drugs which display promiscuous activity and those that do not (p = 0.0043, Mann–Whitney 

U-test, Figure S6B). In the in vivo context, reactive compounds may give rise to a host 

of undesirable off-target effects including toxicity, and as such, reactive compounds are 

traditionally less common among FDA-approved drugs. We note drugs, including certain 

reactive compounds, may be enriched in bioassays by virtue of their known bioactivity and 

that drugs may be assayed at concentrations that are not physiologically or therapeutically 

relevant. These factors may confound interpretation of this data.

Our analyses identified 45 PAINS filter groups that exhibited a statistically significant 

enrichment for promiscuous actives (p < 0.05, Bonferroni-corrected χ2 test). Several of the 

most enriched PAINS filters were also associated with increased reactivity (Tables 1 and 

S1). Among these filters, quinones,46 rhodanines,47 Mannich bases,48 and styrenes49,50 are 

all associated with covalent reactivity.

Some known reactive motifs are still useful pharmacophores. For example, quinones are 

used in numerous drugs51 and are present in electron transport cofactor molecules for 

photosynthesis and cellular respiration.52 They are most likely identified by PAINS filters 

because of their tendency to form reactive oxygen species in situ (redox active)46,53 

and exhibit strong, nonspecific reactivity with a variety of biological nucleophiles.46 

Unsurprisingly, quinones are strongly enriched for promiscuous activity, and our reactivity 

model predicts an increase in reactivity with both GSH and protein.

Some reactive motifs have been reported extensively in the literature yet have never been 

incorporated into a successful drug. Our analyses identified reactive rhodanine-containing 

compounds such as those matched by the ene_rhod filter group. Certain rhodanines and 

related compounds such as thiazolidinediones can react with thiols (e.g., those that contain 

an exocyclic unsaturated bond), but that even some rhodanines and related compounds with 

unsaturated exocyclic bonds do not show gross reactivity in certain experimental conditions 

or bioassay promiscuity.54 The ultimate utility of these com-pounds is part of an ongoing 

discussion in the medicinal chemistry community.47,54,55 Our reactivity model assigns high 

scores for reactivity of this class with all the modeled substrates, and based on current 

evidence and an abundance of caution, we would recommend flagging these compounds for 

additional interference characterization such as protein reactivity.

In addition to filters with known reactive liabilities, we also identified several enriched 

PAINS filters which were not associated with increases in predicted reactivity. For example, 

the PAINS filter group most strongly enriched for promiscuous actives is the anil_OH_alk 

filter group. These compounds are not predicted to be reactive by our model. However, these 
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compounds contain anilines, which can interfere with certain assay technologies such as 

AlphaScreendue to potential physical or chemical quenching of singlet oxygen species.11,56

Furthermore, catechols are also enriched for promiscuous bioactivity. However, our 

reactivity model does not suggest substantial increases in reactivity for these chemical 

species. In addition to being prone to nonspecific reactivity,24 catechols can be redox active 

or chelate metals.57 These alternative assay interference mechanisms may better account for 

the observed enrichment for promiscuous behavior.

These studies show that our reactivity model assigns higher reactivity scores to compounds 

which match PAINS filters and are also promiscuous bioactives in PubChem. Numerous 

PAINS filters enriched for promiscuous bioactives in PubChem also receive higher reactivity 

scores. Reactivity models provide additional confirmation of a reactive interference 

mechanism for some filters, and identify some filters with potential nonreactive interference 

mechanisms. Furthermore, our reactivity model does not assign higher scores to FDA-

approved drugs matching PAINS filters, leading us to hypothesize that it may be able to 

discriminate promiscuous bioactives among compounds matching the same PAINS filter. We 

further investigate this hypothesis in the following sections.

Reactivity Scores Predict Promiscuity.

Despite only modeling one of many potential assay interference mechanisms, our reactivity 

model identifies many promiscuous bioactives. To further evaluate the utility of our model 

as a screening tool, we performed receiver operator characteristic curve analysis.59 At 

the 5% bioactivity cutoff, promiscuous actives are identified with area under the receiver 

operator curve (AUC) of 64%, 62%, 62%, and 56% for our GSH, protein, DNA, and cyanide 

molecule reactivity scores, respectively (Figure 5). Our GSH reactivity score approaches 

16% sensitivity at the same specificity as PAINS filters, which have a sensitivity of 20.3%. 

This is notable, considering that PAINS filters identify compounds that are not specifically 

reactive.

GSH reactivity scores can predict promiscuous bioactivity among PAINS filter matches, and 

also among compounds not matching any PAINS filters. Since PAINS filters match chemical 

substructures associated with reactivity, it is important to ask whether PAINS filters capture 

all potentially reactive compounds, and whether they may indiscriminately flag compounds 

as reactive that may ultimately be tractable, less-promiscuous compounds.

Toward this end, we collected compounds flagged by at least one PAINS filter. This 

filtered data set consisted of 2967 promiscuous compounds and 19 928 nonpromiscuous 

com-pounds using the 5% bioactivity cutoff in PubChem. GSH reactivity scores predict 

promiscuous actives among these compounds at the 5% cutoff with an AUC of 64%, 

comparable to the AUC for the whole data set (Figure S7 A). Early recall, the left 

portion of the curve corresponding to bioactives with high reactivity scores, is diminished, 

suggesting that PAINS filters already capture some of the most highly reactive chemical 

groups. Conversely, we analyzed those compounds that did not match any PAINS 

filter. This filtered data set contained 11 682 promiscuous compounds and 364 444 

nonpromiscuous compounds. GSH reactivity score predicted promiscuous bioactivity among 
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these compounds at the 5% bioactivity cutoff with an AUC of 60% (Figure S7B). This 

notable residual predictive power suggests that PAINS filters do not capture all possibly 

reactive compounds and that our model can provide additional predictive power independent 

of PAINS filters. One explanation for this observation may be that multiple notoriously 

reactive chemotypes were purposefully excluded from the screening library from which the 

PAINS were derived and would therefore not be included in the PAINS training set.

We then hypothesized that combining reactivity scores into a single comprehensive reactive 

promiscuity score can improve predictions of promiscuous behavior. Each reactivity score 

provides some predictive power to identify promiscuously bioactive compounds, and each 

score predicts the reactivity of compounds with different biological nucleophiles. For 

example, compounds reactive with cyanide and DNA tend to be reactive with other 

“hard” nucleophiles, while those reacting with GSH tend to be reactive with other “soft” 

nucleophiles.60–65 This information represents independent predictive power for bioassay 

promiscuity due to nonspecific compound reactivity. To maximize the sensitivity of our 

model, we combined the four reactivity scores into a single comprehensive score using a 

simple neural network classifier (Figure 2B). The neural network takes as input the output 

score of each of the four reactivity scores. The network was trained to predict whether a 

molecule demonstrated bioassay promiscuity at the 5% bioassay activity cutoff. The network 

has only 25 trainable parameters. We then tested our model in 100-fold cross validated 

experiments on the PubChem data set and computed a receiver operator curve for the 

collected predictions from each fold (Figure 5). This combined model achieves an AUC 

of 69.1%, with only a 1.8% decrease in sensitivity compared to PAINS filters at the same 

specificity.

Given the comparability of our combined reactivity model with conventional PAINS 

substructure filtering, we then hypothesized that combining PAINS filters and our reactivity 

model could further improve performance compared to either method individually. We 

thereby constructed a combined neural network classifier using information from both 

methods (Figure 2C). For each test compound, this classifier took as input the four reactivity 

scores from our reactivity model and a 480-bit binary vector indicating which of the PAINS 

filters matched the molecule. This network was then trained to predict the probability that 

a given molecule was promiscuous at the 5% bioactivity cutoff. This model achieved an 

AUC of 69.5% in 100-fold cross validated experiments (Figure 5). While this AUC is 

not substantially different from the combined reactivity model (i.e., 69.1%), early recall 

is improved. As a result, the sensitivity of this model is 3.7% greater than PAINS filters 

at the same specificity. In practical terms, since large HTS primary screens can identify 

hundreds of actives, our models may identify a substantial number of additional actives as 

nonspecifically reactive. Furthermore, our models could be used to identify and eliminate 

particularly problematic compounds from large screening libraries.

Reactivity Model Improves PAINS Filters.

Many PAINS filters match chemical groups known to interfere with HTS assays by 

nonspecific covalent reactivity. However, many of these same chemical groups can also 

be found among drugs. Importantly, not all molecules with a given reactive group will 
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be necessarily reactive or interfere with assays. PAINS filters were created by identifying 

chemical moieties enriched for promiscuous behavior, without further workup of the 

underlying mechanisms of compound-mediated assay interference including chemical 

reactivity. For example, while specific sites of chemical reactivity can often be identified 

by trained scientists, the PAINS filters themselves do not indicate which part of a molecule 

forms a covalent bond with proteins in an assay solution. In addition, some PAINS filters are 

correlated to other common chemical groups, which may in turn be mechanistically linked 

to interference.

As a potential useful add-on to existing filtering techniques, our reactivity model can help 

predict reactive and nonreactive molecules within the same compound class, and can also 

predict the precise atoms that are susceptible to nucleophilic attack. Such capability could be 

useful for discriminating between compounds flagged as PAINS that may otherwise prove 

tractable. We computed AUCs and statistical significance using a Bonferroni-corrected 

Mann–Whitney U-test for each pair of reactivity score and PAINS filter group. Fifteen 

unique filter groups were identified for which reactivity scores provided statistically 

significant predictive power to discriminate promiscuous actives at the 5% bioactivity cutoff 

among compounds matching the PAINS filter group (Tables S2–S5). Promiscuity in some 

filter groups could be predicted by more than one reactivity score. For cyanide, GSH, 

DNA, and protein scores, respectively six, seven, six, and seven PAINS filter groups were 

identified. Statistically significant AUC values ranged from very strong predictive power 

(88.6% for the het_pyridinium class) to weak predictive power (57.6% for the quinone class) 

(Table 2).

Reactivity Model Provides Mechanistic Hypotheses of Interference.

PAINS filters were originally constructed by an observational process intended 

to identify chemical substructures associated with promiscuous bioactivity using 

AlphaScreentechnology and have subsequently been generalized to other HTS technologies. 

The individual filters themselves may be recognized by scientists with medicinal chemistry 

expertise as being associated with particular mechanisms of assay interference. However, 

in cases where PAINS filters are actually identifying reactive compounds, the filters cannot 

explicitly indicate the reactive atoms. In contrast, our reactivity model provides mechanistic 

predictions, and can identify both the site of covalent interaction and the probability of that 

interaction.

Critically, our reactivity model provides additional mechanistic interpretations for PAINS 

filter group matches. To demonstrate this point, we discuss (1) four cases of PAINS filters 

that have potential reactive mechanisms directly related to the matched substructure and 

supported by reactivity modeling and (2) six cases where reactivity modeling identifies 

additional potentially reactive structural elements not otherwise identified by a given PAINS 

filter group.

PAINS Filters with Proposed Reactive Mechanisms Supported by Reactivity Modeling.

Some PAINS filters are associated with covalent reactivity as identified in literature 

studies11,18 and match common reactive motifs, such as Michael-acceptors. Some have 
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undergone rather extensive studies but such studies are resource-intensive and are fewer in 

number.18 To demonstrate the utility of reactive site prediction by our model, we present 

three examples of PAINS filters that match potentially reactive substructures that are also 

predicted by our reactivity model.

The reactivity model performs best at discriminating compounds matching the 

het_pyridiniums PAINS filters. The het_pyridiniums filter group is already enriched 5.94-

fold for promiscuous actives in PubChem (p < 10−10, χ2 test, Table 1). Our cyanide 

reactivity score discriminates promiscuous compounds within this class with an AUC 

of 88.6% (p < 10−10, Mann–Whitney U-test, Table 2). Carbons adjacent to the charged 

pyridinium nitrogen present in these compounds can react with cyanide.66,67

Some PAINS filter groups directly match a known reactive motif that is also identified 

by our reactivity model. For example, azo nitrogen can react with certain biological 

macromolecules,68,69 and the azo PAINS filter group is enriched 313% for promiscuous 

activity in PubChem (p = 1.60 × 10−43, Bonferroni-corrected χ2 test, Figure S9 A). 

We extracted azo nitrogen site-level reactivity scores from PubChem compounds using a 

SMARTS query (Table S6 Pattern 7). We found that these site-level scores were sufficient 

to predict promiscuous bioactivity with an AUC of 84.5% (Figure S9B). Furthermore, this 

azo site-level ROC curve is indistinguishable from that based on the molecule-level protein 

reactivity score (p = 0.490, ROC Z-test70).

Reactivity scores can help identify distinct chemical mechanisms of reactivity-based assay 

interference and bioassay promiscuity for individual filters in a group. For example, the 

cyano_pyridone PAINS filter group consists of a core pyridone ring with one cyano 

substituent. This filter group does not substantially enrich for promiscuous bioactive 

compounds in the PubChem data set at the 5% bioactivity cutoff (p = 1.00, Bonferroni-

corrected χ2 test). Furthermore, this class of compounds is predicted to have marginally 

greater reactivity with GSH compared to other compounds in PubChem (p = 0.0226, 

Bonferroni-corrected Mann–Whitney U test), which indicates a weak association between 

this filter group and reactivity-mediated promiscuous behavior (Figure S10). Nevertheless, 

GSH reactivity scores predict promiscuity of this compound class with an AUC of 85.6% 

(p = 8.13 × 10−3, Bonferroni-corrected Mann–Whitney U-test). On further inspection, 

two distinct classes of promiscuous bioactive compounds matching this filter group were 

observed. The first group contained a Michael-acceptor motif and was predicted to have 

appreciable reactivity, while the second group did not contain this motif and was predicted 

to have moderate-to-low reactivity (Figure 6A, B). Interestingly, the reactive class was active 

in a larger percentage of assays, on average, compared to the nonreactive class (Figure 6C). 

Notably, in the original AlphaScreenassays used to generate these filters, the same pattern of 

activity was observed for these two classes.11

PAINS Filters with Proposed Alternative Reactive Mechanisms.

To further demonstrate the potential additional utility of incorporating reactivity site 

prediction, we analyze in-depth six PAINS filter groups in which the reactive sites are 

predicted to be separate from the chemotypes flagged by a PAINS filter group. Chemical 

mechanisms of interference were proposed for some PAINS chemotypes in the original 
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report, but follow-up investigations were not performed in that study.11 We note that some 

PAINS and related chemotypes have been more extensively studied in follow-up studies.18 

However, interference with the underlying AlphaScreentechnology remains to be explicitly 

investigated for most, if not all, of the PAINS chemotypes. Furthermore, we note some 

PAINS filters do not have obvious mechanisms that could be suggested for their biological 

activity when they were originally identified. Compound libraries are often reflective of the 

underlying synthetic and combinatorial chemistry, and this may lead to correlations between 

substructures within compounds in a library. Subsequently, in some cases PAINS filters may 

only identify a substructure correlated with promiscuous behavior, but not mechanistically 

linked to that behavior.

Some PAINS filters are associated with adjacent or overlapping reactive chemotypes, 

such as Michael-acceptors. Michael-acceptors are electrophilic motifs with α,β-unsaturated 

carbonyl groups.71 The imineone, thiophene_amino, and ene_six_het PAINS filter groups 

are all associated with a nearby or overlapping Michael-acceptor motif. In the case of 

the ene_six_het filter group, a Michael-acceptor motif is part of the filter itself, while the 

imineone and thiophene_amino filter groups are correlated with Michael-acceptor motifs 

because they include carbonyl functional groups. In the case of all three filters, reactivity 

scores at these Michael-acceptor motifs account for a substantial part of the reactivity 

model’s power to discriminate promiscuous bioactives among com-pounds matching these 

filter groups.

The imineone filter group matches molecules containing either adjacent diones or adjacent 

imine and ketone groups. This filter group is enriched 9.33-fold for bioassay promiscuity (p 
< 10−10, Bonferroni-corrected χ2 test, Table 1), and predicted GSH reactivity discriminates 

promiscuous actives in this filter group with an AUC of 72.9 (p < 10−10, Bonferroni-

corrected Mann–Whitney U-test Table 2). Many imine_one compounds also contained a 

Michael-acceptor motif adjacent to, and overlapping with, a PAINS filter motif (Figure 7A). 

We then searched for compounds containing Michael-acceptor motifs among com-pounds 

matching the imine_one filter group using a SMARTS query (Table S6, Pattern 1). This 

search identified 185 compounds, which were enriched 3.99-fold for promiscuous bioactive 

compounds compared to the imine_one filter alone (p = 9.41 × 10−22, χ2 test, Figure 

7C). In addition, compounds containing the queried Michael-acceptor motif were assigned 

74% higher GSH reactivity scores than those matching only the imine_one filter (p < 

10−10, Figure S11A). This suggests that the imine_one filter is enriched for promiscuous 

bioactivity, perhaps because it is associated with other reactive motifs. It should be noted 

that this combination of filters will also match ortho-quinones, which are likely to share 

undesirable bioactivity with paraquinones, and both moieties are also matched by the 

quinone PAINS filter group.

The thiophene_amino is another Michael-acceptor associated PAINS filter group for 

which reactivity predictions can discriminate promiscuous actives. Thiophenes are five-

membered, sulfur-containing aromatic rings that may undergo S-oxidation to form reactive 

compounds.72 The thiophene_amino filters match various substituted thiophenes. This filter 

group is enriched 2.36-fold for promiscuous actives (not significant, p = 0.075, χ2 test). 

GSH reactivity predicts promiscuity among compounds matching this filter group with 
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an AUC of 78.9% (p = 2.42 × 10−2, Bonferroni-corrected Mann–Whitney U-test). We 

observed that a number of compounds matching this filter group also contained an adjacent 

Michael-acceptor motif that shares the amide carbonyl with the PAINS filter (Figure 7B). 

We identified 28 compounds containing this Michael-acceptor motif among those matching 

the thiophene_amino filter group using a SMARTS query (Table S6, Pattern 3). These 

compounds are enriched 3.30-fold for promiscuous actives compared to those just matching 

the thiophene_amino filter group, and they are assigned much higher reactivity scores 

(Figures 7D and S11B).

In yet another example of Michael-acceptor associated PAINS filters, the ene_six_het 

PAINS filter group matches heteroatom rings containing a Michael-acceptor motif (Figure 

S8A). This filter group is enriched 2.96-fold for promiscuous actives (p < 10−10, Bonferroni-

corrected χ2 test). GSH reactivity scores predict bioassay promiscuity among com-pounds 

matching this filter group with an AUC of 79.9% (p < 10−10, Bonferroni-corrected Mann–

Whitney U-test). Since this compound also contains a Michael-acceptor, we extracted site-

level GSH reactivity prediction at the β carbon of the Michael-acceptor using a SMARTS 

query (Table S6, Pattern 4). Site-level reactivity at this position achieved an AUC of 

67.8% for predicting promiscuous bioactive compounds within this class (p < 10−10, Mann–

Whitney U-test, Figure S8B). Furthermore, the early recall portion of the ROC is perfectly 

recovered using only this information. We also identified compounds in this class with 

additional conjugated pi bonds adjacent to the Michael-acceptor motif. We extracted the 

maximum site-level reactivity score among the atoms in these systems using a SMARTS 

query (Table S6, Pattern 5). We combined this reactivity score with the former site-level 

score by choosing the maximum score between the two, and then constructed a receiver 

operator curve (Figure S8B). Incorporating this information recovers additional predictive 

power from the original model. While the ene_six_het PAINS filter group captures some 

key information about the reactive mechanism of this class of compounds, integrating 

additional information from the whole molecule may enhance the characterization of certain 

promiscuous bioactives.

Since many Michael-acceptor-like motifs contain ketone, sulfonyl, cyano, or other electron-

donating groups, the correlation of Michael-acceptors with ketones may seem obvious. 

However, correlations between reactive motifs and PAINS filters include cases without a 

clear structural overlap. The imine_one_fives filter group matches a five-membered ring 

motif containing both imine and ketone groups. This filter group is enriched 5.19-fold for 

promiscuous bioactives (p < 10−10, Bonferroni-corrected χ2 test, Table 1), and predicted 

GSH reactivity discriminates actives in this filter class with an AUC of 76.5% (p = 4.49 × 

10−2, Bonferroni-corrected Mann–Whitney U-test, Table 2). We noted that many of these 

compounds also contain a thioamide group conjugated to the aromatic ring system, but 

such compounds were not flagged by the PAINS filter group (Figure 8A). We subsequently 

searched for compounds containing this thioamide group among compounds matching the 

imine_one_fives filter group using a SMARTS query (Table S6, Pattern 2), which identified 

28 compounds. Compounds matching this thioamide group were enriched 3.31-fold for 

promiscuous bioactives compared to those matching only the imine_one_fives filter group, 

and these compounds are also assigned higher reactivity scores (Figure 8B and C). Within 

this filter group, atoms matching the filter group were commonly assigned lower reactivity 

Matlock et al. Page 15

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scores than those matching other parts of the molecule (Figure S12). This analysis suggests 

that the imine_one filter group is also enriched for promiscuous bioactivity because of its 

correlation with other reactive functional groups.

The promiscuous bioactivity of compounds flagged by certain PAINS substructures may 

not have a clear connection to the filter structure a priori. We note pyrrole-containing 

compounds were identified in the original PAINS publication, but only anecdotal evidence 

of chemical instability was provided to hypothesize a chemical mechanism of interference.11 

There has been a subsequent report of certain pyrroles decomposing to form interfering 

polymers.75 In spite of the supposed idiosyncratic effect, we found that pyrrole-containing 

compounds were still enriched 1.72-fold for promiscuous bioactive compounds in PubChem 

(p = 2.04 × 10−2, Bonferroni-corrected χ2 test). Even more surprising, reactivity modeling 

predicted pyrrole promiscuity with an AUC of 65.3% (p = 2.54 × 10−2, Bonferroni-

corrected, Mann–Whitney U-test). We observed that many promiscuous pyrrole compounds 

contained a predicted reactive double bond adjacent to the motif matched by this filter group 

(Figure 9). In 7 of 51 (14%) promiscuous compounds, this double bond was part of the 

ene_rhod PAINS filter group. However, an additional 15 promiscuous compounds with the 

double bond did not match any other PAINS filter. We then extracted the protein site-level 

reactivity score at this bond using a SMARTS query (Table S6, Pattern 6). Compounds not 

matching the query were assigned a score of zero. The score at this double bond predicts 

promiscuous behavior of pyrroles with an AUC of 60.6%, which is a decrease of only 4.7% 

compared to the molecule-level protein reactivity score (p = 0.19, ROC Z-test70). Our model 

suggests that pyrroles may be enriched for promiscuity because they are correlated with 

other promiscuous substructures. Additional studies would be useful to clarify the nature of 

pyrrole structure-interference relationships including the determinants of potential chemical 

instability as well as reactivity.

In some cases, motifs with high predicted reactivity are not obviously reactive, and not 

associated with a PAINS filter. The het_thio_666 PAINS filter group consists of tricyclic, 

six-membered, heteroaromatic, sulfur-containing compounds. Compounds matching these 

filters are enriched 13.34-fold for promiscuous activity at the 5% cutoff (p < 10−10, χ2 

test, Table 1). Our cyanide reactivity scores are predictive of promiscuous activity among 

compounds matching these filters, with an AUC of 79.4% (p < 10−10, Bonferroni-corrected 

Mann–Whitney U-test, Table 2). However, site-level cyanide reactivity scores show that only 

atoms outside the region matched by the filter group are predicted to be reactive (Figure 

10 B). We noted that tertiary nitrogen-containing rings such as piperidines, piperazines, 

and pyrrolidines were common in the side chains of compounds matching this filter 

group (Figure 10 A). We searched for compounds containing these ring structures among 

het_thio_666 matches using SMARTS queries (Table S6, Patterns 8–10). Promiscuous 

bioactive compounds are enriched 1.94-fold among these amine ring-containing compounds 

compared to other het_thio_666 filter group matches at the 5% promiscuity cutoff (p = 

0.004, χ2 test). These compounds can be bioactivated by oxidation to iminium ions that are 

reactive with cyanide (Figure 10C).66,67

While our reactivity model generally provided more informative predictions than PAINS 

filters for known reactivity mechanisms, there were exceptions. For example, quinone 
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species are a common, electrophilic, reactive species that can covalently bind to diverse 

biological molecules.46,53 We identified 925 compounds containing the quinone moiety 

in our PubChem data set. Since covalent reactivity is common among these species, 

we expected the reactivity model to be able to distinguish between promiscuous and 

nonpromiscuous quinone species. However, we found that protein reactivity scores only 

predicted quinone bioassay promiscuity with an AUC of 57.6% (p = 7.51 × 10−3, 

Bonferroni-corrected Mann–Whitney U-test). This low AUC may be a consequence of 

an alternative mechanism of promiscuous activity among certain quinones. Some quinone 

species are capable of generating abundant reactive oxygen species by redox cycling in 

the presence of DTT or other reducing agents commonly used in HTS assays.46 Reactive 

oxygen species can cause nonspecific modulation of biological systems in biochemical 

and cell-based assays. Quinones and other electron-accepting chemical species may also 

contribute to the oxidation of key reagents and/or biological targets (e.g., oxidation of 

cysteine thiols) which may further interfere with assay readouts by disrupting certain 

assay technologies or broadly modulating biological macromolecules. These orthogonal 

mechanisms of assay interference are not addressed by our reactivity model and may be a 

confounding factor.

Case Study of Histone Acetyltransferase Inhibitors.

High-quality chemical probes can enable unique analyses of complex biological systems 

and can be complementary and even orthogonal to analogous genetic perturbations. 

Unfortunately, many probes reported in the literature actually have nonspecific activity 

due to indiscriminate reactivity.4 Recently, the majority of 23 reported inhibitors of 

histone acetyltransferases (HAT) were shown to react nonspecifically with biological 

nucleophiles such as GSH, CoA, and the human La antigen. Many of compounds displayed 

nonspecific cellular readouts indistinguishable from prototypical thiol-reactive and redox-

active compounds.19

In this context, our reactivity model may help identify nonspecific, reactive chemical matter 

among reported chemical probes. We applied conventional PAINS filters and our combined 

reactive promiscuity model to analyze 23 reported HAT inhibitors and four inactive control 

substances. We compared predictions of PAINS filters and our reactivity model to the results 

of GSH and coenzyme A (CoA) reactivity counterscreen results. PAINS had sensitivities of 

70.0% and 75.0% for the GSH and CoA thiol-reactivity counterscreens, respectively, and 

specificities of 66.7% and 63.6%, respectively. The combined reactivity model could predict 

the outcomes of both GSH and CoA thiol-reactivity counterscreens with the same sensitivity 

as PAINS filters, but perfect (100%) specificity (Figure 11A and B). Furthermore, our 

site-level GSH reactivity score provides mechanistic predictions for each potential reactive 

compound including C646, gossypol, and MB-3 (Figure 11C).77–79 Interestingly, we found 

that our model predicted sites of thiol-reactivity to be within a PAINS filter group in only 5 

of 12 thiol-reactive compounds.

Limitations of Reactivity Modeling.

The application of our reactivity model has some notable limitations. The reactivity model 

is trained on in vitro and in vivo data on covalent reactivity and conjugate formation, 
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which may be affected by cellular metabolic processes such as metabolism by cytochrome 

P450s.62 This model may be quite useful in the cell-based assay context, but may have more 

false-positives in cell-free assays that do not model such complex biological processes. An 

improved reactivity model for the cell-free assay context could be produced by removing 

examples of implicit metabolism from the training data. Regardless, the reactivity model 

has been demonstrated to identify promiscuous actives in both cell-based and target-based 

assays included in our data set. Second, the model is intended to identify promiscuous 

bioactive compounds if they are covalently reactive. Many other mechanisms of promiscuity 

exist, and by some estimates, covalent reactivity may not represent the most common 

cause of promiscuous biological activity in certain biochemical assays.4,24 Third, for some 

known reactive motifs such as quinones, we have observed that our reactivity model does 

not substantially improve promiscuity predictions compared to PAINS filters. This may 

be due to an alternate mechanism of interference for these PAINS, or our model may 

need to be improved to discriminate these highly reactive species more accurately. Fourth, 

the reactivity model assumes the chemical structure of the bioactive substance is “as 

drawn”. However, for some compounds such as azo-phenols (Figure 7A), there could be 

additional tautomers based on substituent effects and experimental conditions. Future work 

may benefit from modeling tautomers explicitly. However, many compounds may undergo 

chemical transformations in situ or in storage.33,80–82 Related, bioactivity may be due to 

contaminants, impurities, or incorrectly annotated compounds. Future work will seek to 

experimentally and prospectively validate compound reactivity, especially for chemotypes 

with unconfirmed mechanisms of interference and those chemotypes with a wide spectrum 

of bioassay promiscuity.

CONCLUSIONS

In this study, we show that a model of small-molecule reactivity with several biological 

substrates predicts promiscuous activity in HTS with similar sensitivities and specificities 

as the popular PAINS substructure filters. PAINS filters may capture many mechanisms 

of promiscuous bioactivity and/or assay interference (e.g., thiol reactivity, aggregation, light-

based interference, singlet oxygen interference). Interestingly, the aforementioned reactivity 

model achieves nearly equivalent performance (by sensitivity and specificity metrics) by 

modeling only a single mechanism: reactivity of compounds with biological nucleophiles. 

When combining PAINS substructure filters and reactivity scores into a single model, 

the hybrid model is able to achieve a sensitivity of 24% while maintaining the same 

specificity, a potentially useful improvement over PAINS filters alone in the context of HTS 

triage. Furthermore, PAINS filters differentiate between promiscuous and nonpromiscuous 

compounds matching the same PAINS filter group. In contrast, we demonstrated that 

our reactivity model could be used to differentiate these compounds for 15 PAINS filter 

groups. The model may enhance HTS triage by flagging specific reactive sites not otherwise 

specified by traditional substructure-based filters. As support of principle, we demonstrate 

that this reactivity model can flag nonspecific thiol-reactive compounds among a series of 

reported HAT inhibitors with nonspecific thiol reactivity.

While PAINS filters have useful predictive utility for flagging potentially problematic 

compounds from HTS experiments that may interfere with assay readouts and/or modulate 
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targets nonspecifically, we show that data-driven modeling of small-molecule reactivity 

using deep learning can enhance such analyses. Additional mechanistic models of 

other interference phenomena such as light-based interferences, luciferase interference, 

aggregation, redox cycling, and cytotoxicity may enable more robust identification of 

promiscuous bioactive and/or interference compounds with poor tractability.

Future studies may need to investigate the contributions of various subsets of PAINS filters, 

notably the three subsets (A, B, C). For example, the “A” subset, which is based on the most 

analogs and the most robust experimental evidence, may be essential for broadly screening 

bioassay promiscuity. By contrast, some of the “C” subset, which is derived from far fewer 

analogs, may need to be modified or culled depending on additional evidence.

Such tools should enhance drug and chemical probe discovery and development by 

derisking compounds for interference and promiscuity and flagging potentially problematic 

compounds for triage or appropriate counterscreens.
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Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The authors are grateful to the developers of the open-source cheminformatics tools Open Babel, RDKit, and 
the Chemistry Development Kit. Research reported in this publication was supported by the National Library of 
Medicine of the National Institutes of Health under Award Numbers R01LM012222 and R01LM012482, and by 
the National Institutes of Health under Award Number GM07200. The content is the sole responsibility of the 
authors and does not necessarily represent the official views of the National Institutes of Health. Computations 
were performed using the facilities of the Washington University Center for High Performance Computing, which 
were partially funded by NIH grant nos. 1S10RR022984-01A1 and 1S10OD018091-01. We also thank both the 
Department of Immunology and Pathology at the Washington University School of Medicine, the Washington 
University Center for Biological Systems Engineering, and the Washington University Medical Scientist Training 
Program for their generous support of this work.

ABBREVIATIONS

AUC area under curve

PAINS pan assay interference compounds

REFERENCES

(1). Arrowsmith CH; Audia JE; Austin C; Baell J; Bennett J; Blagg J; Bountra C; Brennan PE; 
Brown PJ; Bunnage ME; Buser-Doepner C; Campbell RM; Carter AJ; Cohen P; Copeland RA; 
Cravatt B; Dahlin JL; Dhanak D; Edwards AM; Frederiksen M; Frye SV; Gray N; Grimshaw CE; 
Hepworth D; Howe T; Huber KVM; Jin J; Knapp S; Kotz JD; Kruger RG; Lowe D; Mader MM; 
Marsden B; Mueller-Fahrnow A; Müller S; O’Hagan RC; Overington JP; Owen DR; Rosenberg 
SH; Ross R; Roth B; Schapira M; Schreiber SL; Shoichet B; Sundström M; Superti-Furga G; 
Taunton J; Toledo-Sherman L; Walpole C; Walters MA; Willson TM; Workman P; Young RN; 
Zuercher WJ The promise and peril of chemical probes. Nat. Chem. Biol 2015, 11, 536–541. 
[PubMed: 26196764] 

(2). Inglese J; Johnson RL; Simeonov A; Xia M; Zheng W; Austin CP; Auld DS High-throughput 
screening assays for the identification of chemical probes. Nat. Chem. Biol 2007, 3, 466–479. 
[PubMed: 17637779] 

Matlock et al. Page 19

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3). Shoichet BK Screening in a spirit haunted world. Drug Discovery Today 2006, 11, 607–615. 
[PubMed: 16793529] 

(4). Thorne N; Auld DS; Inglese J Apparent activity in high-throughput screening: origins of 
compound-dependent assay interference. Curr. Opin. Chem. Biol 2010, 14, 315–324. [PubMed: 
20417149] 

(5). Xie Y; Dahlin JL; Oakley AJ; Casarotto MG; Board PG; Baell JB Reviewing hit discovery 
literature for difficult targets: glutathione transferase omega-1 as an example. J. Med. Chem 
2018, DOI: 10.1021/acs.jmedchem.8b00318.

(6). Kenny PW Comment on The Ecstasy and Agony of Assay Interference Compounds. J. Chem. Inf. 
Model 2017, 57, 2640–2645. [PubMed: 29048168] 

(7). Simeonov A; Jadhav A; Thomas CJ; Wang Y; Huang R; Southall NT; Shinn P; Smith J; Austin 
CP; Auld DS; Inglese J Fluorescence Spectroscopic Profiling of Compound Libraries. J. Med. 
Chem 2008, 51, 2363–2371. [PubMed: 18363325] 

(8). Brenke JK; Salmina ES; Ringelstetter L; Dornauer S; Kuzikov M; Rothenaigner I; Schorpp 
K; Giehler F; Gopalakrishnan J; Kieser A; Gul S; Tetko IV; Hadian K Identification of Small-
Molecule Frequent Hitters of Glutathione S-Transferase–Glutathione Interaction. J. Biomol. 
Screening 2016, 21, 596–607.

(9). Falk H; Connor T; Yang H; Loft KJ; Alcindor JL; Nikolakopoulos G; Surjadi RN; Bentley JD; 
Hattarki MK; Dolezal O; Murphy JM; Monahan BJ; Peat TS; Thomas T; Baell JB; Parisot JP; 
Street IP An efficient high-throughput screening method for MYST family acetyltransferases, a 
new class of epigenetic drug targets. J. Biomol. Screening 2011, 16, 1196–1205.

(10). Auld DS; Southall NT; Jadhav A; Johnson RL; Diller DJ; Simeonov A; Austin CP; Inglese J 
Characterization of Chemical Libraries for Luciferase Inhibitory Activity. J. Med. Chem 2008, 
51, 2372–2386. [PubMed: 18363348] 

(11). Baell JB; Holloway GA New Substructure Filters for Removal of Pan Assay Interference 
Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. 
Chem 2010, 53, 2719–2740. [PubMed: 20131845] 

(12). McGovern SL; Caselli E; Grigorieff N; Shoichet BK A Common Mechanism Underlying 
Promiscuous Inhibitors from Virtual and High-Throughput Screening. J. Med. Chem 2002, 45, 
1712–1722. [PubMed: 11931626] 

(13). Rishton GM Reactive compounds and in vitro false positives in HTS. Drug Discovery Today 
1997, 2, 382–384.

(14). Johnston PA; Soares KM; Shinde SN; Foster CA; Shun TY; Takyi HK; Wipf P; Lazo JS 
Development of a 384-Well Colorimetric Assay to Quantify Hydrogen Peroxide Generated by the 
Redox Cycling of Compounds in the Presence of Reducing Agents. Assay Drug Dev. Technol 
2008, 6, 505–518. [PubMed: 18699726] 

(15). Schorpp K; Rothenaigner I; Salmina E; Reinshagen J; Low T; Brenke JK; Gopalakrishnan J; 
Tetko IV; Gul S; Hadian K Identification of small-molecule frequent hitters from AlphaScreen 
high-throughput screens. J. Biomol. Screening 2014, 19, 715–726.

(16). Ingólfsson HI; Thakur P; Herold KF; Hobart EA; Ramsey NB; Periole X; de Jong DH; Zwama 
M; Yilmaz D; Hall K; Maretzky T; Hemmings HC; Blobel C; Marrink SJ; Koçer A; Sack JT; 
Andersen OS Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function. 
ACS Chem. Biol 2014, 9, 1788–1798. [PubMed: 24901212] 

(17). Hermann JC; Chen Y; Wartchow C; Menke J; Gao L; Gleason SK; Haynes N-E; Scott N; 
Petersen A; Gabriel S; Vu B; George KM; Narayanan A; Li SH; Qian H; Beatini N; Niu L; Gan 
Q-F Metal impurities cause false positives in high-throughput screening campaigns. ACS Med. 
Chem. Lett 2013, 4, 197–200. [PubMed: 24900642] 

(18). Dahlin JL; Nissink JWM; Strasser JM; Francis S; Higgins L; Zhou H; Zhang Z; Walters MA 
PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic 
Inhibition Observed during a Sulfhydryl-Scavenging HTS. J. Med. Chem 2015, 58, 2091–2113. 
[PubMed: 25634295] 

(19). Dahlin JL; Nelson KM; Strasser JM; Barsyte-Lovejoy D; Szewczyk M; Shrimp JH; Meier JL; 
Arrowsmith CH; Brown PJ; Baell JB; Walters MA; et al. Assay interference and off-target 

Matlock et al. Page 20

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



liabilities of reported histone acetyltransferase inhibitors. Nat. Commun 2017, 8, 1527. [PubMed: 
29142305] 

(20). Nelson KM; Dahlin JL; Bisson J; Graham J; Pauli GF; Walters MA The Essential Medicinal 
Chemistry of Curcumin. J. Med. Chem 2017, 60, 1620–1637. [PubMed: 28074653] 

(21). Bisson J; McAlpine JB; Friesen JB; Chen S-N; Graham J; Pauli GF Can Invalid Bioactives 
Undermine Natural Product-Based Drug Discovery? J. Med. Chem 2016, 59, 1671–1690. 
[PubMed: 26505758] 

(22). Dahlin JL; Walters MA The essential roles of chemistry in high-throughput screening triage. 
Future Med. Chem 2014, 6, 1265–1290. [PubMed: 25163000] 

(23). Dahlin JL; Baell J; Walters MA Assay interference by chemical reactivity; Eli Lilly & Company 
and the National Center for Advancing Translational Sciences, 2015.

(24). Huth JR; Mendoza R; Olejniczak ET; Johnson RW; Cothron DA; Liu Y; Lerner CG; Chen J; 
Hajduk PJ ALARM NMR: A Rapid and Robust Experimental Method To Detect Reactive False 
Positives in Biochemical Screens. J. Am. Chem. Soc 2005, 127, 217–224. [PubMed: 15631471] 

(25). Capuzzi SJ; Muratov EN; Tropsha A Phantom PAINS: Problems with the Utility of Alerts 
for Pan-Assay INterference CompoundS. J. Chem. Inf. Model 2017, 57, 417–427. [PubMed: 
28165734] 

(26). Senger MR; Fraga CA; Dantas RF; Silva FP Filtering promiscuous compounds in early drug 
discovery: is it a good idea? Drug Discovery Today 2016, 21, 868–872. [PubMed: 26880580] 

(27). Anighoro A; Bajorath J; Rastelli G Polypharmacology: Challenges and Opportunities in Drug 
Discovery. J. Med. Chem 2014, 57, 7874–7887. [PubMed: 24946140] 

(28). Wassermann AM; Lounkine E; Hoepfner D; Le Goff G; King FJ; Studer C; Peltier JM; Grippo 
ML; Prindle V; Tao J; Schuffenhauer A; Wallace IM; Chen S; Krastel P; Cobos-Correa A; Parker 
CN; Davies JW; Glick M Dark chemical matter as a promising starting point for drug lead 
discovery. Nat. Chem. Biol 2015, 11, 958–966. [PubMed: 26479441] 

(29). Jasial S; Hu Y; Bajorath J How Frequently Are Pan-Assay Interference Compounds Active? 
Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit 
Frequency, and Many Consistently Inactive Compounds. J. Med. Chem 2017, 60, 3879–3886. 
[PubMed: 28421750] 

(30). Baell JB; Nissink JWM Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-
Utility and Limitations. ACS Chem. Biol 2018, 13, 36–44. [PubMed: 29202222] 

(31). Baell JB Observations on screening-based research and some concerning trends in the literature. 
Future Med. Chem 2010, 2, 1529–1546. [PubMed: 21426147] 

(32). Baell JB; Ferrins L; Falk H; Nikolakopoulos G PAINS: Relevance to tool compound discovery 
and fragment-based screening. Aust. J. Chem 2013, 66, 1483–1494.

(33). Dahlin JL; Walters MA How to Triage PAINS-Full Research. Assay Drug Dev. Technol 2016, 14, 
168–174. [PubMed: 26496388] 

(34). Hughes TB; Miller GP; Swamidass SJ Site of Reactivity Models Predict Molecular Reactivity 
of Diverse Chemicals with Glutathione. Chem. Res. Toxicol 2015, 28, 797–809. [PubMed: 
25742281] 

(35). Hughes TB; Dang NL; Miller GP; Swamidass SJ Modeling Reactivity to Biological 
Macromolecules with a Deep Multitask Network. ACS Cent. Sci 2016, 2, 529–537. [PubMed: 
27610414] 

(36). Wang Y; Xiao J; Suzek TO; Zhang J; Wang J; Zhou Z; Han L; Karapetyan K; Dracheva S; 
Shoemaker BA; Bolton E; Gindulyte A; Bryant SH PubChem’s BioAssay Database. Nucleic 
Acids Res. 2012, 40, D400–D412. [PubMed: 22140110] 

(37). Kenny PW; Montanari CA Inflation of correlation in the pursuit of drug-likeness. J. Comput.-
Aided Mol. Des 2013, 27, 1–13. [PubMed: 23306465] 

(38). Waring MJ Lipophilicity in drug discovery. Expert Opin. Drug Discovery 2010, 5, 235–248.

(39). Ghose AK; Viswanadhan VN; Wendoloski JJ A Knowledge-Based Approach in Designing 
Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and 
Quantitative Characterization of Known Drug Databases. J. Comb. Chem 1999, 1, 55–68. 
[PubMed: 10746014] 

Matlock et al. Page 21

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(40). Ash S; Cline MA; Homer RW; Hurst T; Smith GB SYBYL Line Notation (SLN): A Versatile 
Language for Chemical Structure Representation†. J. Chem. Inf. Model 1997, 37, 71–79.

(41). Saubern S; Guha R; Baell JB KNIME Workflow to Assess PAINS Filters in SMARTS Format. 
Comparison of RDKit and Indigo Cheminformatics Libraries. Mol. Inf 2011, 30, 847–850.

(42). Bruns RF; Watson IA Rules for Identifying Potentially Reactive or Promiscuous Compounds. J. 
Med. Chem 2012, 55, 9763–9772. [PubMed: 23061697] 

(43). Dang NL; Hughes TB; Miller GP; Swamidass SJ Computational Approach to Structural Alerts: 
Furans, Phenols, Nitroaromatics, and Thiophenes. Chem. Res. Toxicol 2017, 30, 1046–1059. 
[PubMed: 28256829] 

(44). Niculescu-Mizil A; Caruana R Predicting good probabilities with supervised learning. Proc. 22nd 
Int. Conf. Machine Learning 2005, 625–632.

(45). Vempati UD; Przydzial MJ; Chung C; Abeyruwan S; Mir A; Sakurai K; Visser U; Lemmon VP; 
Schürer SC Formalization, Annotation and Analysis of Diverse Drug and Probe Screening Assay 
Datasets Using the BioAssay Ontology (BAO). PLoS One 2012, 7, e49198. [PubMed: 23155465] 

(46). Graham DG; Tiffany SM; Bell WR; Gutknecht WF Autoxidation versus covalent binding of 
quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds 
toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol 1978, 14, 644–653. [PubMed: 
567274] 

(47). Tomašič T; Peterlin Mašič L Rhodanine as a scaffold in drug discovery: a critical review of its 
biological activities and mechanisms of target modulation. Expert Opin. Drug Discovery 2012, 7, 
549–560.

(48). Gardner PD; Rafsanjani HS; Rand L Reaction of phenolic Mannich base methiodides and oxides 
with various nucleophiles. J. Am. Chem. Soc 1959, 81, 3364–3367.

(49). Olaj OF; Kauffmann HF; Breitenbach JW Spectroscopic measurements on spontaneously 
polymerizing styrene, 2. The estimation of the reactivity of the two Diels-Alder-isomers towards 
polymer radicals. Makromol. Chem 1977, 178, 2707–2717.

(50). Walling C; Briggs ER; Wolfstirn KB; Mayo FR Copolymerization. X. The effect of meta-and 
para-substitution on the reactivity of the styrene double bond. J. Am. Chem. Soc 1948, 70, 
1537–1542.

(51). Bolton JL; Trush MA; Penning TM; Dryhurst G; Monks TJ Role of quinones in toxicology. 
Chem. Res. Toxicol 2000, 13, 135–160. [PubMed: 10725110] 

(52). Sun I; Sun E; Crane F; Morre D; Lindgren A; Löw H Requirement for coenzyme Q in plasma 
membrane electron transport. Proc. Natl. Acad. Sci. U. S. A 1992, 89, 11126–11130. [PubMed: 
1454789] 

(53). Bova MP; Mattson MN; Vasile S; Tam D; Holsinger L; Bremer M; Hui T; McMahon G; Rice 
A; Fukuto JM The oxidative mechanism of action of ortho-quinone inhibitors of protein-tyrosine 
phosphatase α is mediated by hydrogen peroxide. Arch. Biochem. Biophys 2004, 429, 30–41. 
[PubMed: 15288807] 

(54). Mendgen T; Steuer C; Klein CD Privileged Scaffolds or Promiscuous Binders: A Comparative 
Study on Rhodanines and Related Heterocycles in Medicinal Chemistry. J. Med. Chem 2012, 55, 
743–753. [PubMed: 22077389] 

(55). Kaminskyy D; Kryshchyshyn A; Lesyk R Recent developments with rhodanine as a scaffold for 
drug discovery. Expert Opin. Drug Discovery 2017, 12, 1233–1252.

(56). Young RH; Brewer D; Kayser R; Martin R; Feriozi D; Keller RA On the mechanism of 
quenching by amines: a new method for investigation of interactions with triplet states. Can. J. 
Chem 1974, 52, 2889–2893.

(57). Dietrich LE; Teal TK; Price-Whelan A; Newman DK Redox-active antibiotics control gene 
expression and community behavior in divergent bacteria. Science 2008, 321, 1203–1206. 
[PubMed: 18755976] 

(58). Swamidass SJ; Azencott C-A; Daily K; Baldi P A CROC stronger than ROC: measuring, 
visualizing and optimizing early retrieval. Bioinformatics 2010, 26, 1348–1356. [PubMed: 
20378557] 

(59). Beck JR; Shultz EK The use of relative operating characteristic (ROC) curves in test performance 
evaluation. Arch. Pathol. Lab. Med 1986, 110, 13–20. [PubMed: 3753562] 

Matlock et al. Page 22

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(60). Srivastava A; Maggs J; Antoine D; Williams D; Smith D; Park B Adverse Drug Reactions; 
Springer, 2010; pp 165–194.

(61). Park BK; Kitteringham NR; Maggs JL; Pirmohamed M; Williams DP The role of metabolic 
activation in drug-induced hepatotoxicity. Annu. Rev. Pharmacol. Toxicol 2005, 45, 177–202. 
[PubMed: 15822174] 

(62). Attia SM Deleterious effects of reactive metabolites. Oxid. Med. Cell. Longevity 2010, 3, 238–
253.

(63). LoPachin RM; Gavin T Molecular mechanisms of aldehyde toxicity: a chemical perspective. 
Chem. Res. Toxicol 2014, 27, 1081–1091. [PubMed: 24911545] 

(64). Gerberick GF; Vassallo JD; Bailey RE; Chaney JG; Morrall SW; Lepoittevin J-P Development 
of a peptide reactivity assay for screening contact allergens. Toxicol. Sci 2004, 81, 332–343. 
[PubMed: 15254333] 

(65). Dennehy MK; Richards KA; Wernke GR; Shyr Y; Liebler DC Cytosolic and nuclear protein 
targets of thiol-reactive electrophiles. Chem. Res. Toxicol 2006, 19, 20–29. [PubMed: 16411652] 

(66). Argoti D; Liang L; Conteh A; Chen L; Bershas D; Yu C-P; Vouros P; Yang E Cyanide Trapping 
of Iminium Ion Reactive Intermediates Followed by Detection and Structure Identification Using 
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Chem. Res. Toxicol 2005, 
18, 1537–1544. [PubMed: 16533017] 

(67). Kalgutkar A; Gardner I; Obach R; Shaffer C; Callegari E; Henne K; Mutlib A; Dalvie D; Lee J; 
Nakai Y; O’Donnell J; Boer J; Harriman S A Comprehensive Listing of Bioactivation Pathways 
of Organic Functional Groups. Curr. Drug Metab 2005, 6, 161–225. [PubMed: 15975040] 

(68). Boulègue C; Löweneck M; Renner C; Moroder L Redox Potential of Azobenzene as an Amino 
Acid Residue in Peptides. ChemBioChem 2007, 8, 591–594. [PubMed: 17361978] 

(69). Hultin T Reactions of C14-labeled carcinogenic azo dyes with rat liver proteins. Exp. Cell Res 
1957, 13, 47–59. [PubMed: 13473835] 

(70). Hanley JA; McNeil BJ The meaning and use of the area under a receiver operating characteristic 
(ROC) curve. Radiology 1982, 143, 29–36. [PubMed: 7063747] 

(71). Attia SM Deleterious Effects of Reactive Metabolites. Oxid. Med. Cell. Longevity 2010, 3, 
238–253.

(72). Dansette P; Thang DC; Mansuy HEAD Evidence for thiophene-s-oxide as a primary reactive 
metabolite of thiophene in vivo: Formation of a dihydrothiophene sulfoxide mercapturic acid. 
Biochem. Biophys. Res. Commun 1992, 186, 1624–1630. [PubMed: 1510686] 

(73). Ikehata K; Duzhak TG; Galeva NA; Ji T; Koen YM; Hanzlik RP Protein Targets of Reactive 
Metabolites of Thiobenzamide in Rat Liver in Vivo. Chem. Res. Toxicol 2008, 21, 1432–1442. 
[PubMed: 18547066] 

(74). Hihara T; Okada Y; Morita Z Photo-oxidation of pyrazolinylazo dyes and analysis of reactivity 
as azo and hydrazone tautomers using semiempirical molecular orbital PM5 method. Dyes Pigm. 
2006, 69, 151–176.

(75). Zhu W; Groh M; Haupenthal J; Hartmann RW A Detective Story in Drug Discovery: Elucidation 
of a Screening Artifact Reveals Polymeric Carboxylic Acids as Potent Inhibitors of RNA 
Polymerase. Chem. - Eur. J 2013, 19, 8397–8400. [PubMed: 23681768] 

(76). Kovacic P Mechanism of drug and toxic actions of gossypol: focus on reactive oxygen species 
and electron transfer. Curr. Med. Chem 2003, 10, 2711–2718. [PubMed: 14529461] 

(77). Bowers EM; Yan G; Mukherjee C; Orry A; Wang L; Holbert MA; Crump NT; Hazzalin CA; 
Liszczak G; Yuan H; Larocca C; Saldanha SA; Abagyan R; Sun Y; Meyers DJ; Marmorstein 
R; Mahadevan LC; Alani RM; Cole PA Virtual ligand screening of the p300/CBP histone 
acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. (Oxford, U. 
K.) 2010, 17, 471–482.

(78). Biel M; Kretsovali A; Karatzali E; Papamatheakis J; Giannis A Design, Synthesis, and Biological 
Evaluation of a Small-Molecule Inhibitor of the Histone Acetyltransferase Gcn5. Angew. Chem., 
Int. Ed 2004, 43, 3974–3976.

(79). Sorum AW; Shrimp JH; Roberts AM; Montgomery DC; Tiwari NK; Lal-Nag M; Simeonov A; 
Jadhav A; Meier JL Microfluidic mobility shift profiling of lysine acetyltransferases enables 

Matlock et al. Page 23

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



screening and mechanistic analysis of cellular acetylation inhibitors. ACS Chem. Biol 2016, 11, 
734–741. [PubMed: 26428393] 

(80). Olson ME; Abate-Pella D; Perkins AL; Li M; Carpenter MA; Rathore A; Harris RS; Harki 
DA Oxidative reactivities of 2-furylquinolines: ubiquitous scaffolds in common high-throughput 
screening libraries. J. Med. Chem 2015, 58, 7419–7430. [PubMed: 26358009] 

(81). Matson SL; Chatterjee M; Stock DA; Leet JE; Dumas EA; Ferrante CD; Monahan WE; Cook 
LS; Watson J; Cloutier NJ; Ferrante MA; Houston JG; Banks MN Best practices in compound 
management for preserving compound integrity and accurately providing samples for assays. J. 
Biomol. Screening 2009, 14, 476–484.

(82). Engeloch C; Schopfer U; Muckenschnabel I; Le Goff F; Mees H; Boesch K; Popov M Stability 
of screening compounds in wet DMSO. J. Biomol. Screening 2008, 13, 999–1006.

Matlock et al. Page 24

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Assay data from PubChem reveals a large number of potential bioassay promiscuous 

compounds. (A) Analysis of all non-ChEMBL PubChem assays testing greater than 1000 

compounds. This study restricted analysis to compounds tested in greater than 100 bioassays 

(384 328 compounds, from an initial 1 226 075). (B) Compounds were defined as 

promiscuous bioactives if they were active above a fixed percentage of tested bioassays. 

Cutoffs of 5, 10, 15, and 20% were initially considered. Promiscuous activity of compounds 

follows an approximate power distribution (Figure S1). At a promiscuity cutoff of 5%, 

approximately 3.40% of compounds in the data set were considered promiscuous. Note, 

many compounds were active in more than 20% of tested assays.
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Figure 2. 
Schematic of deep convolutional neural network models for predicting small-molecule 

reactivity and bioassay promiscuity. (A) Atoms in a test compound are represented as rows 

of numerical descriptors in a data matrix. These data are input to a neural network with one 

hidden layer of ten units. This neural network calculates four atom reactivity scores, each 

score predicts nucleophilic attack at that atom by GSH, cyanide, DNA, or protein. The top 

five atom reactivity scores in each category are then combined with molecule descriptors 

and are then used to calculate four molecule reactivity scores. Each molecule level reactivity 

score is then trained to predict conjugation of the input molecule to either GSH, cyanide, 

DNA, or protein.34,35 (B) Molecule-level reactivity scores are further combined with another 

neural network to produce a single integrated reactive promiscuity score. This network can 

then be trained to predict promiscuous bioactivity in HTS data sets. (C) A hybrid model 

combines molecule-level reactivity scores with binary indicators for PAINS substructure 

filter matches. A single hidden layer neural network is then trained to predict promiscuous 

behavior in HTS data sets.
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Figure 3. 
Substructure filter-based methods for flagging promiscuous and/or assay interference 

compounds detecting promiscuous bioactives in PubChem. (A) At the 5% promiscuity 

cutoff, PAINS filters (red) are enriched 3.85-fold for promiscuous bioactives (p < 10−10, χ2 

test) and Lilly MedChem filters (yellow) are enriched 1.85-fold for promiscuous bioactives 

(p < 10−10, χ2 test). (B) PAINS filters have a lower sensitivity than the Lilly MedChem 

filters for promiscuous bioactive compounds in PubChem. (C) However, PAINS filters 

have a 95% specificity for promiscuous actives, while Lilly MedChem filters have 67.5% 

specificity. ***: p < 0.0001.

Matlock et al. Page 27

J Chem Inf Model. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
GSH reactivity predictions for compounds in DrugBank and PubChem. PAINS filters 

are associated with increased GSH reactivity scores in PubChem, but reactivity is not 

increased among FDA-approved drugs. (A) Reactivity scores for FDA-approved drugs in 

DrugBank are comparable between PAINS and non-PAINS, whereas reactivity scores of 

PubChem PAINS matches are substantially elevated compared to non-PAINS and compared 

to DrugBank (p = 2.06 × 10−7, Mann–Whitney U-test). While some FDA-approved drugs 

act via a reactive mechanism, the majority of FDA-approved drugs are not explicitly reactive 

and not found to be promiscuous bioactives. Outliers are not shown. (B) Compounds 

active in more than 5% of tested assays in PubChem have substantially higher reactivity 

scores than nonpromiscuous compounds (p < 10−10, Mann–Whitney U-test). Outliers are not 

shown. **: p < 0.001. ***: p < 0.0001.
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Figure 5. 
Reactivity scores are predictive of promiscuous bioactivity. (A) Model scores of small-

molecule reactivity with DNA (AUC 63.8%), GSH (AUC 62.1%), and protein (AUC 62.1%) 

are all modestly predictive of promiscuous behavior at the 5% bioactivity cutoff. Predictions 

of GSH reactivity achieve similar sensitivity and specificity to PAINS filters, while Lilly 

MedChem filters have a higher sensitivity for promiscuous actives but lower specificity. 

Combining the four reactivity scores into a single integrated score via a small neural 

network achieves a 100-fold cross validated AUC of 69.1%. Including PAINS filter matches 

with reactivity scores in a similar manner achieves a 100-fold cross validated AUC of 

69.5%. (B) CROC curves58 with the exponential transform (α = 10) show a substantial 

increase in early recall for the combined PAINS and reactivity model, with a 4% increase in 

sensitivity compared to PAINS filters at the same specificity.
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Figure 6. 
Reactivity scores flag subclasses of chemotypes with predicted enriched biological 

reactivity. The cyano_pyridone PAINS filter group consists of a core pyridone ring with 

one cyano substituent. (A) Note six of the 11 promiscuous compounds matched by this 

filter group are predicted to be reactive at an sp2 carbon within a Michael-acceptor-like 

motif located meta to the cyano group (purple). Reactivity modeling predicts that GSH 

attacks this electron-deficient region. The percentage of biological assays in which each 

compound was active are noted. (B) The other five promiscuous compounds within this filter 

group correspond to variants of the cyano_pyridone filter group not containing a traditional 

Michael-acceptor (pink), which are not predicted to be strongly reactive with GSH. (C) 

These predicted less-reactive compounds are active in a smaller percentage of biological 

assays (p = 0.0001, Mann–Whitney U test). **: p < 0.001.
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Figure 7. 
Many PAINS filters are associated with a nearby or overlapping reactive Michael-acceptor 

motif. (A) The imineone filter group matches a chemical motif with adjacent imine and 

ketone groups, as well as diones. Among 457 compounds matching this filter (red), 185 

compounds (40%) possess a Michael-acceptor motif that overlaps with the motif matched by 

this filter group (purple). Michael-acceptor motifs are well-known electrophiles assigned 

high reactivity scores by our model.71 (B) The thiophene_amino filters match various 

substituted thiophene rings. Among 224 compounds matching this filter group, 28 (13%) 

contain a Michael-acceptor motif adjacent to the amide and outside the motif matched by the 

filter group (purple). (C, D) Compounds with this Michael-acceptor are enriched 3.99-fold 

for promiscuous actives among compounds matching the imineone filter (p < 10−10, χ2 

test), while compounds matching the thiophene amino filter group and the Michael-acceptor 

motif are enriched 3.30-fold for promiscuous actives (p = 7.97 × 10−3, χ2 test). Compounds 

with Michael-acceptor motifs not matching the imineone or thiophene amino filters are not 

strongly enriched for promiscuous bioactivity. **: p < 0.001, ***: p < 0.0001.
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Figure 8. 
Some PAINS filters may be associated with other, unrelated reactive motifs. (A) The 

imine_one_fives filter group matches a five-membered ring motif containing both imine and 

ketone groups. Among 102 compounds matching this filter group (red), 28 (27%) contain a 

thioamide group conjugated to the ring motif (purple). (B) Compounds matching the filter 

group and this thioamide group are enriched 3.31-fold for promiscuous actives compared 

to compounds matching only the filter group (p = 7.97 × 10−3, χ2 test). (C) Compounds 

containing the thioamide group are assigned higher reactivity scores than compounds 

matching only the filter group (p < 10−10, Mann–Whitney U-test). (D) Oxidation of the 

thioamide group is known to form a reactive intermediate that can conjugate to proteins in 

rat hepatocytes.73 **: p < 0.001. ***: p < 0.0001.
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Figure 9. 
Reactivity scores suggest mechanisms of promiscuity for PAINS filters without a known 

mechanism. (A) The pyrrole filter group matches compounds containing the five-membered 

nitrogen aromatic ring pyrrole. Many promiscuous bioactive compounds contain a reactive 

double bond motif (purple). Compounds 1 and 3 also match the ene_rhod PAINS filter 

group, but compound 2 does not match another PAINS filter. Compound 2 is a hydrazone, 

which may tautomerize to form a reactive azo compound68,74 (B) Predicted atom-level GSH 

reactivity at this double bond was used to construct a ROC curve. Compounds matching 

the filter group but not containing an adjacent double bond motif received a score of 

0. Molecule-level protein reactivity predicts pyrrole promiscuity (AUC = 65.3%). GSH 

reactivity scoring of the double bond achieves an AUC of 60.6%, which accounts for the 

majority of the predictive power of this model (difference not statistically significant, p = 

0.19, ROC Z-test70). The dashed line denotes the expected ROC of a random model.
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Figure 10. 
Reactivity scores identify non-obvious, reactive motifs not captured by PAINS filters. (A) 

The het_thio_666 PAINS filter group consists of tricyclic, heteroaromatic, sulfur-containing 

compounds. Twenty-four of 44 bioassay promiscuous compounds matching this filter 

group in PubChem also contain tertiary amine rings such as piperidines, piperazines, or 

pyrrolidines. (B) Among compounds matching this PAINS filter group, site-level cyanide 

reactivity scores are nonzero only on the atoms not matched by the filter group, suggesting 

a reactive mechanism unrelated to the motifs in this filter group. (C) Cyclic tertiary amines 

are known to be oxidized in vivo by Cytochrome P450 enzymes.66,67 This oxidation leads 

to the formation of an iminium ion intermediate that can react with cyanide or biological 

substrates. ***: p < 0.0001.
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Figure 11. 
A reactivity analysis of literature reported HAT inhibitors identifies likely sites of 

nonspecific reactivity. (A) The combined reactive promiscuity model predicts the results 

of their GSH adduct formation counterscreen with the same sensitivity (75%) as PAINS 

filters, but with enhanced specificity (100% versus 63.6%, respectively). (B) The reactivity 

model also predicts the results of their CoA adduct formation counterscreen with the 

same sensitivity (66.7%) as PAINS filters, but with enhanced specificity (100% versus 

70%, respectively). (C) Example reported HAT inhibitors and respective GSH reactivity 

predictions. From left to right: C646 contains an ene_rhod PAINS filter group match, 

a common reactive motif. Our GSH reactivity score predicts that the mechanism of 

nonspecific thiol reactivity involves nucleophilic attack at the β carbon of a Michael-

acceptor contained within the motif matched by this filter group. The catechol groups of 

gossypol match the catechol PAINS filter group, though our model predicts the aldehyde 

substituents as thiol-reactive. We note gossypol can undergo redox-activity and form 

quinones under certain conditions, and it is confirmed which adduct(s) are formed under 

any given assay condition.76 While MB-3 is not flagged by PAINS filters, it contains a 

reactive terminal olefin group. Dashed line denotes the expected ROC of a random model.
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Table 1.

Selected PAINS Filter Groups That Are Enriched for Promiscuous Bioactives Compared to the Background
a

a
Enrichment scores in bold indicate statistically-significant enrichment for promiscuous bioactives above the background rate of 3.84% (p < 

0.05, Bonferroni-corrected χ2 test). Example molecules shown are the lowest molecular weight match in PubChem to the given filter group. 
Substructures matched by the filter group are shown in red. In addition, the change in mean reactivity score between molecules matching the 
PAINS filter and those not matching is shown: cyanide (blue), GSH (green), DNA (orange), protein (red). A complete list of filter groups 
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significantly enriched for promiscuous actives is provided in the supplementary material (Table S1). Filter groups are sorted by promiscuous 
activity enrichment fold change.
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