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Abstract

Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in 

Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and 

Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated 

intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 

across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This 

study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an 

antibody validated in ATXN2−/− retinas. ATXN2-ir was localized to cytosolic sub compartments in 

retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, 

and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine 

cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 

immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented 

cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming 

the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential 

role in autophagy and stress granule formation in response to ocular hypertension.
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1 | INTRODUCTION

Ataxin-2 (ATXN2), a ubiquitous 140 kDa RNA-binding protein composed of 1312 amino 

acids and a polyglutamine (polyQ) CAG repeat (Imbert et al., 1996; Pulst et al., 1996; 

Sanpei et al., 1996), promotes mRNA stability/translation, inhibits harmful miRNAs and 

noncoding RNA (ncRNA)-harboring R-loops within cytoplasmic translational complexes, 

and interacts with Src kinases, A2BP1/Fox1 splicing factors, and the ubiquitous nuclear 

riboprotein TDP-43 (Abraham et al., 2016; Drost et al., 2013; Elden et al., 2010; Fittschen 

et al., 2015; McCann et al., 2011; Shibata et al., 2000; Yokoshi et al., 2014). In vertebrates, 

ATXN2 is expressed in the developing and adult brain (cerebellar neurons and the 

olfactory bulb) and in the nonneuronal tissues such as heart, skeletal muscle, lung, liver, 

and gut (Huynh et al., 1999; Scoles et al., 2012). Its functions in healthy cells include 

mTOR (mechanistic target of rapamycin)-dependent nutrient sensing, calcium homeostasis, 

cytoskeletal organization, and endocytosis (Carmo-Silva et al., 2017; Halbach et al., 2017; 

Ostrowski et al., 2017; Satterfield et al., 2002), whereas stress periods induce assembly 

of ATXN2-containing stress granules composed of untranslated mRNAs and ribonuclear 

proteins within cytosolic stress granules and P-bodies (Figley et al., 2014; Nonhoff et 

al., 2007; Paul et al., 2018). Gain-of-function >33 poly-Q expansions in SCA2, ALS 

(amyotrophic lateral sclerosis), Parkinsonism patients and mutant mice have been associated 

with increased rates of stress granule formation, dysregulated Ca2+ release from ER stores, 

TDP-43 proteinopathy, and neuronal loss (Huynh et al., 2003; Becker et al., 2017; Elden 

et al., 2010; Liu et al., 2009; Nonhoff et al., 2007; Paul et al., 2018; Scoles & Pulst, 

2018; Watanabe et al., 2020). The prominent disease phenotypes include gait ataxia, muscle 

cramps and spasticity, cerebellar degeneration, nystagmus, slow saccadic eye movement, 

and frontal executive dysfunction (Scoles & Pulst, 2018), whereas mouse KO models and 

clinical trials for reduction of ATXN2 in SCA2/ALS showed reduced cell loss in vitro, 

reduced neuronal loss in vivo, and improved functional outcomes (Becker et al., 2017; 

Scoles et al., 2017). However, Atxn2−/− mice also show increased insulin production, 

decreased fertility, and deregulated lipid metabolism (Carmo-Silva et al., 2017; Lastres-

Becker et al., 2008).

SCA2 patients may present with visual phenotypes such as retinal nerve fiber layer 

thinning, night blindness, ophthalmoparesis, ERG abnormalities, retinal dystrophy, and 

retinitis pigmentosa (Kurashige et al., 2020; Paciorkowski et al., 2011; Pula et al., 2011; 

Rufa et al., 2002; Volpe et al., 2015), whereas a recent GWAS study associated ATXN2 
SNPs with primary open angle glaucoma (POAG), a leading worldwide cause of irreversible 

blindness (Bailey et al., 2016; Jonas et al., 2017). Additional ATXN2 polymorphisms 

have been linked to exfoliation glaucoma (Ma et al., 2019). Taking into account ocular 

phenotypes and pro-apoptotic impairment of autophagosome formation and stress granule 

clearance in glaucoma and ALS (Becker et al., 2017; Deluca et al., 2017; de Majo et al., 
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2018; Fingert et al., 2017; Hirt & Liton, 2017; Kurashige et al., 2020; Paciorkowski et al., 

2011; Paul et al., 2018; Porter et al., 2013; Pula et al., 2011; Rufa et al., 2002; Scoles 

et al., 2017; Volpe et al., 2015), it is conceivable that abnormal intracellular transport, 

translation, stability, and distribution of mRNAs in chronic ocular neuropathologies might 

involve ATXN2; yet, there is virtually no information about its ocular localization and 

expression. Here, we demonstrate strong ATXN2 expression in the somata and proximal 

dendrites of retinal ganglion cells (RGCs) and moderate ATXN2-ir signals in amacrine cells, 

horizontal cells, and the anterior eye, whereas retinal glia and ribbon synapse-containing 

neurons showed little expression. Our observations are consistent with ATXN2 functions 

in projection neurons, such as motor neurons and Purkinje cells, and identify ATXN2 as a 

potential target for functional studies and therapeutic assessment in the eye.

2 | RESULTS

2.1 | Ataxin-2 is predominantly localized to retinal ganglion cells

2.1.1 | Mouse retina—ATXN2 expression was investigated with a monoclonal antibody 

validated in previous characterizations of rodent central nervous system, heart, liver, and 

lower genito-urinary tract (Kiehl et al., 2006). Confocal fluorescent images of vertical 

sections of the wild-type mouse retina immunostained with the ATXN2 antibody showed 

prominent expression of the protein in RGCL (M = 29.350, SD = 10.016) (Figure 1(a,b,f)), 

which was significantly decreased (t (190) = 12.788, p < .0001) in the Atxn2−/− retina 

(M = 14.447, SD = 5.337) (Figure 1(c,d,f)). The normal organization of somatic and 

synaptic layers (Figure 1) in Atxn2−/− littermates (Figure 1(a)) indicates that ATXN2 is 

not required for retinal development and cell-type specification. Indicating specificity, the 

ATXN2 antibody recognized a single ~150 kDa band that was absent in Atxn2−/− retinas 

(Figure 1(e)). Co-staining with RBPMS (“RNA-binding protein with multiple splicing”) 

showed ATXN2 immunoreactivity (ir) in retinal ganglion cells (RGCs) (Figure 2(a,b)) in 

central, mid-peripheral, and peripheral retina (Figure 2(c–e)). Signals in large-diameter 

cells (white arrowheads) were more pronounced vis à vis smaller-diameter cells (yellow 

arrowheads in Figure 2(a,b,f–k)). ATXN2-ir was strongest in cell somata, with a subset 

of cells showing signal within the proximal dendrite (Figure 2(b)). Punctate cytoplasmic-

nuclear expression agrees with proposed ATXN2 functions in transcription and formation 

of cytosolic translational complexes (Figley et al., 2014; Nonhoff et al., 2007; Paul et al., 

2018; Yokoshi et al., 2014), whereas dendritic localization suggests the possibility of local 

translation (Eberwine et al., 2001; Kleiman et al., 1990). Atxn2−/− littermates (Figure 1(a)) 

showed normal organization of somatic and synaptic layers (Figure 1), suggesting that 

ATXN2 is not required for the retinal development and cell-type specification.

ATXN2-ir was also detected in the proximal inner plexiform layer (IPL) and nonRBPMS-

ir cells within the RGCL (Figure 2(a,b)). To assess the potential localization to major 

amacrine subpopulations, retinas were double-labeled with choline acetyl transferase (ChAT; 

Figure 3(a–c)), glycine transferase 1 (GlyT1; Figure 3(d–f), and GAD 65/67 (Figure 3(g–

i)) antibodies; horizontal cell (HC) expression was tested by double labeling with an anti-

Calbindin D28k antibody (Figure 3(j,l)) (Krizaj et al., 2004; Ryskamp et al., 2011; Voinescu 

et al., 2009; Witkovsky et al., 2008). All three classes of amacrine cells from INL and GCL 
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regions were ATXN2-ir (yellow arrowheads in Figure 3). The overall signal intensity in INL 

and displaced amacrine cells was markedly weaker relative to RBPMS+ cells (Figures 2 

and 3(a–i)). Double labeling with calbindin (Figure 3(J–l)), a marker of axonbearing HCs in 

many species including mouse (Hamano et al., 1990), suggests moderate ATXN2 expression 

(Figures 3 and 4).

The retinal immunosignal was remarkable for cell types that did not express ATXN2. 

Photoreceptor somata in the outer nuclear layer (ONL) were consistently ATXN2-

immunonegative, and the antibody did not indicate expression in bipolar cells based on 

colocalization with the pan-bipolar cell marker, OTX2 (not shown). Demonstrating lack 

of expression in retinal glia, ATXN2 did not colocalize with Müller cell (Figure 5(a–c,j–

l)), microglial (Figure 5(g–i,p–r)), and astrocyte (Figure 5(d–f,m–o)) markers (glutamate 

synthase, IBA1, and GFAP, respectively) in mouse or human tissue). These data show 

that ATXN2 in the mouse retina is expressed in nonribbon-containing neurons with by far 

the strongest expression in RGCs but it is absent from glia, endothelial cells, and ribbon-

containing neurons. Horizontal cells, which provide local/global feedforward and feedback 

signals to photoreceptors and bipolar cells through as-of-yet unknown synaptic mechanisms 

(Behrens et al., 2019 Preprint), are also ATXN2+.

2.1.2 | Human retina—Immunohistochemical analysis in the human retina was 

conducted on tissue from two healthy donors (aged 76 and 78 years). ATXN2 signals 

matched the expression pattern seen in the mouse (Figures 1–4), with prominent ATXN2 

immunoreactivity in RBPMS+ cells (Figures 4(d–f) and 6(a–c)), and moderate levels of 

expression in GAD 65/67, GlyT1, and ChAT-labeled populations within the INL and GCL 

(Figure 6). Similar to mouse, ATXN2 was expressed in horizontal cells (Figure 6(d–f)); 

however, colocalization with OTX2 (Figure 6(g–i)) suggests potential expression in bipolar 

cells.

2.2 | ATXN2 is expressed in the trabecular meshwork and the ciliary body
—The pathogenesis of glaucoma has been linked to dysregulated autophagy mechanisms 

in trabecular meshwork (TM) cells that mediate the principal component of the outflow 

pathway (DeLuca et al., 2017; Fingert et al., 2017; Hirt & Liton, 2017; Nettesheim et al., 

2019; Minegishi et al., 2016; Morton et al., 2008; Porter et al., 2014; Rezaie et al., 2002). 

The prominent ATXN2 immunoreactivity within the TM (Figure 7(d–i)), suggests that this 

may involve stress granules and/or ATXN2. The ATXN2 antibody labeled all three TM 

layers (corneoscleral, uveoscleral, and juxtacanalicular) but did not mark the endothelial 

cells that line the canal of Schlemm. We also examined ATXN2 signals in primary human 

TM cells isolated from healthy donors, which were ATXN2-ir (Figure 7(a–c)). Finally, 

ATXN2 expression was detected in nonpigmented and pigmented cells of the mouse (Figure 

7(j–l)) and human ciliary body (Figure 7(m–o)), suggesting potential functions in regulation 

of aqueous humor secretion.

3 | DISCUSSION

This study was undertaken to ascertain the ocular distribution of ATXN2, a key intracellular 

stress-response protein that has been linked to multiple neurodegenerative diseases and 
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vision loss. We localized ATXN2 to anterior and posterior tissues of the mouse and human 

eye, including the retina, ciliary body, and the trabecular mesh-work. Arguing against a 

direct mechanistic link with ocular hypertension which initially targets RGCs and glia 

(Križaj, 2019; Krizaj et al., 2004), ATXN2 was also expressed in horizontal cells and 

displaced amacrine cells, which resist IOP stress (Harwerth et al., 2010; Kendell et al., 

1995), but absent from glia, which function as early retinal responders to IOP (Inman and 

Horner, 2007; Woldemussie et al., 2004). The normal layering and structure in ATXN2−/− 

retinas suggest that the stress protein is not required for development or function in the 

healthy eye.

We found that the overall pattern of ATXN2 expression is largely conserved between mouse 

and human retinas. In the mouse, ATXN2 is expressed in three out of five classes of 

neuron, with dominant signals observed in spiking (RGCs and amacrine) cells whereas 

graded potential neurons (photoreceptors and bipolar cells) did not label for ATXN2. 

RGCs showed by far the strongest signal, with intense punctate immunofluorescence in 

somatic, perinuclear, and primary dendritic regions. Specifically, the RGC labeling pattern 

resembles cerebellar Purkinje cells (Huynh et al., 1999), in which cytosolic puncta were 

suggested to correspond to Golgi cisternae, ER cisternae, mitochondrial, nuclear and/or 

stress granule locations (Huynh et al., 2003; Ostrowski et al., 2017; van de Loo et al., 2009). 

The similarities in ATXN2 expression between RGCs and CNS/PNS projection neurons 

(Scoles & Pulst, 2018) suggest that the metabolic milieu in these cells requires localized and 

well-timed translation events.

The ATXN2 signal was expressed in every RBMPS+ cell across central and peripheral 

regions. There was no evidence that ATXN2 is excluded from any RGC subtype (Duan et 

al., 2015; El-Danaf & Huberman, 2019), and the intensity of ATXN2-ir was the strongest 

in αRGC-like large-diameter cells. The somatic and dendritic signals in putative αRGCs 

suggest the possibility of compartmentalized stress signaling and mRNA processing at 

dendritic locations in a cell type that may be particularly vulnerable to mechanical and 

inflammatory injury (Guttenplan et al., 2020). ATXN2 functions in autophagy (Paul et al., 

2018; Wardman et al., 2020) suggest possible links to TBK1 (tank-binding kinase 1) and 

OPT (optineurin) pathways that have been linked to impaired autophagosome formation and 

stress granule clearance in normotensive glaucoma, primary open angle glaucoma, SCA2, 

and ALS (de Majo et al., 2018; DeLuca et al., 2017; Fingert et al., 2017; Morton et al., 

2008; Porter et al., 2013; Rezaie et al., 2002). RGC autophagy can be affected by acute 

and chronic IOP elevations (Deng et al., 2013; Park et al., 2012; Rodríguez-Muela et al., 

2012; Su et al., 2014) with αRGCs responding with autophagic arrest, loss of synapses, 

and apoptosis (Della Santina et al., 2013; Guttenplan et al., 2020). While it remains to be 

seen whether manipulation of ocular ATXN2 reduces autophagic and apoptotic stress in 

hypertensive RGCs, it is worth noting that ATXN2 depletion is neuroprotective in SCA2 

and ALS mouse models as well as ataxic flies (Auburger et al., 2017; Bakthavachalu et 

al., 2018; Becker et al., 2017; Lessing & Bonini, 2008; Scoles et al., 2017; Watanabe et 

al., 2020), possibly due to the loss of TDP-43 recruitment (Becker et al., 2017; Canet-Pons 

et al., 2021; Elden et al., 2010). It may also be of interest to determine potential ATXN2 

colocalization with mTORC1 (mTOR, raptor, and S6 ribosomal proteins), which function as 

auxiliary nutrient sensors and autophagy suppressors in the inner retina, given their physical 
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interaction described in flies and modulatory activity described in mouse fibroblasts and 

human neuroblastoma cells (Lastres-Becker et al., 2016; Takahara & Maeda, 2012).

The predominant localization to spiking neurons suggests that ATXN2 signaling, stress 

granule formation, and quality control of nascent mRNAs might be associated with neuronal 

biosynthetic activity and cell firing patterns. We previously reported that ATXN2 repeat 

expansions interfere with stress granule assembly dynamics in Purkinje cells, leading to 

stress-granule-induced cytotoxicity and neurodegeneration in SCA2 and ALS (Huynh et al., 

1999; Paul et al., 2018; Scoles et al., 2017). The similarity between the expression patterns 

in Purkinje cells and RGCs thus points at potential significance of non-ER mRNA signaling 

and stress granule assembly in projection neurons. Loss of TDP-43, a binding nuclear 

partner that is recruited by ATXN2 into stress granules (Becker et al., 2017; Canet-Pons et 

al., 2021; Elden et al., 2010; Kim et al., 2014), has been linked to retinal neurodegeneration, 

RGC axonal loss, and frontotemporal dementia (Atkinson et al., 2021; Ward et al., 2014; 

Watanabe et al., 2020). Depletion of ATXN2 has been shown to reduce TDP-43-mediated 

cytotoxicity (Becker et al., 2017) in Purkinje neurons, the predominant ATXN2+ cell type in 

the cerebellum, which may suggest a similar treatment strategy for POAG may be effective.

Amacrine cells are the first neurons in the visual system to fire action potentials, with the 

three main subtypes (GABAergic; glycinergic and starburst), differing in stratification and 

dendritic arbor size (Diamond, 2017; Wässle et al., 2009; Yan et al., 2020). Similar to 

RGCs, amacrine cells utilize conventional synapses to transmit visual signals (Grimes et al., 

2015), but in contrast to ganglion cells, nothing is known about autophagy or stress granule 

formation in these neurons. Our finding that ATXN2 is expressed in all three principal 

amacrine subtypes and therefore suggests novel functions for mRNA processing in these 

cells. Amacrine expression was modest compared to RGCs, potentially due to lower rates 

of firing and/or metabolic rates. In the mouse, ATXN2 was absent from photoreceptors 

and bipolar cells; however, its presence in HCs suggests an intriguing difference between 

retinal neurons that signal via graded membrane potentials, that is, ribbon-containing and 

nonribbon-containing graded-signaling neurons. Similar to the brain, the validated ATXN2 

antibody (Huynh et al., 1999) labels glial subtypes (Müller cells, astrocytes and microglia) 

weakly, or indiscernibly from background immunofluorescence, whereas the nonexcitable 

cells in the anterior eye (ciliary body, trabecular meshwork, and corneal epithelial cells) 

were strongly immunopositive.

ATXN2 SNPs were associated with risk for contracting POAG (Bailey et al., 2016), an 

age-related disease associated with increased production of aqueous humor by the ciliary 

body or its decreased drainage via the trabecular meshwork (Križaj, 2019). Some studies 

(Ma et al., 2019) but not others (Aung et al., 2016), linked it to the exfoliation syndrome 

(XFS), a common risk factor for secondary glaucoma. Strong expression in the epithelial 

cells of the ciliary body (Figure 7) is in accord with the labeling of choroid plexus ependyma 

(Huynh et al., 1999) and other epithelia (Human Protein Atlas, n.d.; Lastres-Becker et al., 

2019; Uhlén et al., 2015). Human TM tissue shows age- and IOP-dependent increases in 

the levels of autophagy markers (Pulliero et al., 2014) and autophagic flux in TM cells, 

as indicated by increased LC3-II/LC3-I ratio, and p-62, Beclin-1 and SMAD2 signaling 

in POAG and animal glaucoma models (Hirt & Liton, 2017; Nettesheim et al., 2020). In 
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vitro studies in porcine TM cells similarly showed increases in LC3-II following exposure 

to cyclic stretch (Porter et al., 2014). Because ATXN2 aggregation may be associated with 

increased levels of LC3-II and p62 (Paul et al., 2018), it may be of interest to determine 

whether intronic ATXN2 SNPs associated with POAG contribute to gradual accumulation 

of intracellular insults in the presence of relatively low increases in IOP. The association 

of ATXN2 mutations to pathological release from internal stores (Halbach et al., 2017), 

which play important roles in conventional outflow (Boussommier-Calleja et al., 2012; 

Rosenthal et al., 2005; Sumida & Stamer, 2011) additionally suggest functions in calcium 

homeostasis, mechanotransduction and trabecular function. The mechanosensitive channel 

TRPV4, which contributes to IOP regulation, is selectively localized to RGCs (Lakk et al., 

2018; Ryskamp et al., 2011, 2016) and strongly expressed in the TM (Yarishkin et al., 2019, 

2021) constitutes an element of the ATXN2 interactome together with the DDX1 protein 

associated with stress granule formation (Pérez-González et al., 2014).

4 | METHODS

4.1 | Animals

C57BL/6J mice (1–3 months of age) were obtained from JAX (Bar Harbor, ME). Atxn2−/

− mice were generated as previously reported (Kiehl et al., 2006). The animals were 

maintained in a pathogen-free facility with a 12-hour light/dark cycle and ad libitum access 

to food and water at 22–23°C. No sex differences in the immunolabeling data were noted, 

so their data were pooled. Mice were euthanized by isoflurane and rapid cervical dislocation. 

The protocols were approved by the University of Utah Institutional Animal Care and Use 

Committee and adhered to the guidelines from Association for Research in Vision and 

Ophthalmology, Statement for the Use of Animals in Ophthalmic and Vision Research, and 

the US Public Health Service and Institute for Laboratory Animal Research.

4.2 | Human tissue

De-identified postmortem eyes from two donors (76-year-old male and 78-year-old female) 

with no history of glaucoma or other eye diseases were procured from Utah Lions Eye Bank 

with written informed consent of the donors’ families. The maximum processing time was 

3.5–4 h and the recovery protocols conformed to the standards set by the WMA Declaration 

of Helsinki and the Department of Health and Human Services Belmont Report. TM cells 

were isolated from juxtacanalicular and corneoscleral regions, as described (Yarishkin et 

al., 2018, 2021), in accordance with consensus characterization recommendations (Keller 

et al., 2018). Passage 2–4 TM cells were seeded onto Collagen I-seeded coverslips, grown 

in Trabecular Meshwork Cell Medium (ScienCell, Catalog#6591) at 37°C and 5% CO2. 

The cell fixation and immunolabeling protocols were as reported (Lakk & Krizaj, 2020; 

Ryskamp et al., 2016).

4.3 | Immunohistochemistry

4.3.1 | Vertical sections—Mice were euthanized by isoflurane inhalation followed 

by cervical dislocation, after which eyes were enucleated and retinas fixed in 4% 

paraformaldehyde for 1 h, as described (Jo et al., 2017; Lakk et al., 2018). After wash (3 x 

15 min) the tissue was dehydrated in 15% and 30% sucrose gradients for 12 h, embedded 
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in optimal cutting temperature (OCT) medium (Electron Microscopy Sciences, Hatfield, 

PA) and allowed to settle for 20 min then frozen on dry ice. Retinas were cryosectioned at 

12 μm and stored at −20°C. Antibodies against known retinal cell markers were utilized 

(Table 1), with localization and labeling consistent with past reports (Jo et al., 2015, 

2016, 2017; Lakk et al., 2018; Ryskamp et al., 2016). Cryosections were incubated in a 

blocking buffer (5% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 0.3% Triton 

X-100 in 1x PBS) for 20–30 min. Sections were incubated in primary antibody buffer (2% 

bovine serum albumin (BSA), 1% penicillin/streptomycin, and 0.2% Triton X-100 in 1x 

PBS (phosphate buffer saline)) overnight at 4°C followed by incubation with fluorophore-

conjugated secondary antibodies (1:500; goat anti-mouse AlexaFluor 405, 488 or 647, goat 

anti-rabbit AlexaFluor 488 or 594, Life Technologies/ThermoFisher, Carlsbad, CA) for 90 

min at RT. ChAT bands were used to assess RGC dendritic stratification within the IPL.

4.3.2 | Wholemount preparations—Retinas were dissected in PBS, fixed in 4% PFA 

for 20 min and washed twice in PBS for 15 min. Retina were blocked in wholemount 

blocking buffer (4% BSA, 0.2% Triton X-100, and 1% penicillin/streptomycin) for 2 h 

and incubated with the primary antibody solution (2% BSA, 0.2% Triton X-100, and 1% 

penicillin/streptomycin) for 72 h at 4°C. Following the wash in sterile PBS (3x for 2 h), 

the tissue was incubated with fluorophore-conjugated secondary antibodies for 24 h and 

washed 3x for 2 h (6 h total). Images were acquired on an Olympus (Center Valley, PA) 

FV1200 confocal microscope using a 20x (N.A. water) objective. Images were processed 

and quantified with ImageJ (NIH; Bethesda, MD) (Rasband 1997-2018).

4.4 | Primary antibodies

Ataxin-2—(ATXN2) mouse antibody (BD Transduction Laboratories; RRID: AB_398900) 

was raised against the 713–904 amino acid sequence of the Human Ataxin-2 and purified 

from tissue culture supernatant by affinity chromatography. The manufacturer’s data sheet 

shows it labels a ~150 kDa band and was tested by the manufacturer for reactivity against 

Human and Rat protein. The antibody has been characterized in the following publications 

(Boeynaems et al., 2017; Paul et al., 2018; Zhang et al., 2018) and fails to produce a Western 

blot band or a substantial immunofluorescence signal in Ataxin-2 knockout tissues (Figure 

1).

Ataxin-2—(ATXN2) rabbit antibody was custom-designed against the 

EKSTESSSGPKREE epitope sequence common to both humans and mice (SCA2-280). 

Specific labelling for human and mouse peptide has been verified by Western blot and 

IHC in comparison to the previously listed commercial antibody and shown in previous 

publications (Hansen et al., 2013; Huynh et al., 1999; Nechiporuk et al., 1998).

RNA binding protein with multiple splicing—(RBPMS) antibody (Phosphosolutions; 

RRID: AB_2492225) was raised against a synthetic N-terminal peptide of the rat RBPMS 

sequence. The manufacturer’s data sheet shows it labels a single band at ~24 kDa. We (Lakk 

et al., 2018) and others (Cueva Vargas et al., 2015; Johnson et al., 2019) previously showed 

that it colocalizes with Brn3a and selectively labels RGCs.
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Glial Fibrillary Acidic Protein—(GFAP) antibody (Dako; RRID: AB_10013382) was 

raised against GFAP protein isolated from cow spinal cord. The cow protein shows between 

90% and 95% homology with the human peptide and the manufacturer demonstrated 

reactivity by immunohistochemistry. GFAP is predominantly specific to astrocytes and 

undergoes marked upregulation following neuronal tissue injuries, selective labelling has 

been described previously by us (Jo et al., 2015) and others (Calbiague et al., 2020; Vessey 

et al., 2011).

Glutamic Acid Decarboxylase—(GAD-6) antibody (DSHB; AB_2314499) was raised 

against C-terminal sequence (a.a. 423–585) of purified protein from rat brain but it is 

reactive for mouse, human, and rat protein. The manufacturer’s data sheet indicates it labels 

a single band at ~59 kDa. Verification for IHC has been described previously in our works 

(Ryskamp et al., 2011; Witkovsky et al., 2008) and the following publication (Lee et al., 

2016).

Glycine Transporter 1—(GlyT1) antibody (Millipore; RRID: AB_90893) was raised in 

goat against synthetic C-terminal peptide from rat serum and has shown reactivity for mouse 

and human peptide. The antibody is specified for IHC and tested by the manufacturer 

against central nervous system tissues. It has been described in the following studies 

(Akopian et al., 2019; Gallagher et al., 2010; Voinescu et al., 2009).

Choline acetyl transferase—(ChAT) antibody (Millipore; RRID: AB_2079751) was 

raised in goat against the human placental peptide. According to manufacturer’s data, it 

marks a ~70 kDa band on a Western blot of the mouse brain lysate. It labels the cholinergic 

(star-burst) amacrine cells in mouse and human retinas (Elshatory et al., 2007; Voinescu et 

al., 2009; Whitney et al., 2008).

Calbindin D-28K—(CALB) antibody (Millipore; RRID: AB_2068336) is a marker of 

axon-bearing HCs in mouse (Chua et al., 2013; Hamano et al., 1990; Krizaj et al., 2002). 

The antibody was raised in rabbit against recombinant mouse peptide with reactivity against 

human, mouse, and rat peptide based on significant sequence homology. A single Western 

blot product is detected at ~28 kDA.

Orthodenticle homeobox 2—(OTX2) antibody (R&D Systems; RRID: AB_2157172) 

derived from Escherichia coli against human Otx2 Met1-Leu289. Tested for specificity 

against human embryonic carcinoma cells and mouse embryo tissue and specificity has been 

shown in the following studies (Buenaventura et al., 2019; Yamamoto et al., 2020). The 

antibody labels a single Western product at ~37 kDa.

Ionized calcium binding adaptor molecule 1—(IBA1) antibody (Abcam; RRID: 

AB_2636859) was raised in rabbit with specificity against mouse, rat, and human protein 

and marks a single band at ~17 kDa. The antibody labels microglia specifically and has been 

used extensively in retinal studies (Cai et al., 2018; Hu et al., 2019; Kukreja et al., 2018).

Glutamine synthetase—(GS) antibody (Santa Cruz Biotechnology; RRID: AB_641095) 

was raised in goat against the C-terminal peptide of human origin and corresponds to a ~42 
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kDa Western blot product. The antibody shows reactivity with mouse and human peptide, 

among numerous other species, and is a specific marker for Müller glia in mouse and human 

retina (Bastone et al., 2009; Jager et al., 2020; Melzer et al., 2021).
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FIGURE 1. 
Vertical sections of retinas from Atxn2−/− and age-matched wild-type littermate mice 

labeled for DAPI (insets, blue) and ATXN2 (green). (a, b) The majority of ATXN2 

immunofluorescence in WT retinas (M = 29.350, SD = 10.016) localized to the ganglion 

cell layer. (c, d) Most of the signal is lost in Atxn2−/− retinas (M = 14.447, SD = 5.337). 

Brightfield images indicate normal retinal architecture. (e) ATXN2 protein expression was 

confirmed by Western blot for whole retina lysates from Atxn2−/− mice (n = 3) and age-

matched wild-type littermates (n = 4) with β-actin utilized as an internal control. Scale bars 

= 25 μm. (f) RGCL ATXN2--ir quantified for wild type and KO retinal samples [Color 

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2. 
(a) Immunoreactivity for ATXN2 (green) and the retinal ganglion cell (RGC)-specific 

marker, RNA binding protein with multiple splicing (RBPMS) (magenta) shows strong 

ATXN2-RBPMS colocalization in the RGCL. (b) RGCL detail. RGCs (RBPMS+ ATXN2+; 

white arrowheads) were strongly ATXN2-ir. Displaced amacrine cells (RBPMS−, ATXN2+; 

yellow arrowheads) showed modest ATXN2-ir whereas putative astroglial somata (blue 

arrowheads) were ATXN2-immunonegative. (c-k) Retina wholemounts immunostained for 

ATXN2 (green) and RBPMS (magenta). ATXN2 is localized to RGCs, and amacrine 

cells, in central (c), mid-peripheral (d), and peripheral retina (e) i. Insets in f-k show 

parallel RBPMS (f,h,j) and ATXN2 (g,i,k) channels for the respective wholemounts 

from central, mid-central, and peripheral retina. ATXN2 is expressed in amacrine cells 

(yellow arrowheads, ATXN2+, RBPMS− cells) and RGCs (white arrowheads, ATXN2+, 

RBPMS+ cells. Scale bars: 25 μm (a–e), 50 μm2 (f–k) [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 3. 
Wild-type mouse retina vertical sections co-labeled for ATXN2 (green) and markers 

(magenta) for cholinergic amacrine cells (ChAT) (a–c), glycinergic amacrine cells (GlyT1) 

(d,f), and GABAergic amacrine cells (GAD66/67) (g,i). ATXN2-ir labeled all classes of 

amacrine cell. Co-localization between ATXN2 (green) and calbindin D28K (magenta) 

suggests expression in horizontal cells j–l). Scale bars: 25 μm (a,d,g,j) and 10 μm 

(b,c,e,f,h,i.k,l) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4. 
Vertical sections from mouse (a–c) and human v(d–f) retinas labeled for ATXN2 (green) 

and DAPI (blue). The expression is remarkably similar apart from the ATXN2-ir in the 

human INL. Enlarged insets (c,f) indicate ATXN2-ir of INL (yellow arrowheads) in human 

vs. mouse tissue. Scale bars: 25 μm (a,b,d,e) and 10 μm (c,f) [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 5. 
Mouse (a–i) and human retina (j–r) were investigated for co-localization of ATXN2 with 

markers of retinal glia such as Müller cells (GS), astrocytes (GFAP), and microglia (IBA1). 

There was no indication of co-localization between ATXN2 and any glial markers in mouse 

or human tissues. Scale bars: 25 μm (a,d,g,j,m,p) and 10 μm (b,c,e,f,h,i,k,l,n,o,q,r) [Color 

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6. 
Human tissue was co-labeled for ATXN2 (green) and markers (magenta) for RGCs 

(RBPMS; a–c), amacrine cells (ChAT, GlyT1, GAD 65/67; j–r), horizontal cells (Calb 

D28K; d-f), and bipolar cells (OTX2; g–i). Findings from human tissue agree with 

those from mouse tissue indicating that ATXN2 expression is highest in RGCs and 

amacrine cells. ATXN2-ir is detected in horizontal cells and potentially bipolar cells. 

Enlarged insets show merged channels and ATXN2-specific immunofluorescence with 

yellow arrowheads indicating colocalization of ATXN2 with cell type-specific markers. 

Scale bars: 25 μm (a,d,g,j,m,p) and 10 μm (b,c,e,f,h,i,k,l,n,o,q,r) [Color figure can be viewed 

at wileyonlinelibrary.com]
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FIGURE 7. 
(a-c) Primary human trabecular meshwork cells show ATXN2-ir (FITC) in the cytoplasm 

and the perinuclear region. (d-i) The ATXN2 antibody labels mouse and human TM tissue 

butnot the endothelial cells of the Schlemm’s canal (SC). (g-i) Human TM. ATXN2-ir is 

seen in juxtacanalicular (J) and corneoscleral (C) regions, but lower signal in the uveoscleral 

(U) region. Nonpigmented (NPE) and pigmented epithelium (PE) of the ciliary body in 
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mouse j–l) and human tissues (m–o) are ATXN2-ir. Scale bars: 25 μm [Color figure can be 

viewed at wileyonlinelibrary.com]
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