Skip to main content
. 2021 Dec 16;8:771246. doi: 10.3389/fcvm.2021.771246

Table 2.

Performance of machine learning models.

Model AUC ACC (%) Youden index (%) Sensitivity (%) Specificity (%) F1 score PPV (%) NPV (%)
XGBoost 0.90 81 70 89 81 0.26 15 99
CatBoost 0.88 80 65 86 80 0.24 14 99
LightGBM 0.85 84 57 73 85 0.25 15 99
MLP 0.80 80 47 67 80 0.19 11 98
SVM 0.78 74 47 73 74 0.17 10 99
LR 0.74 67 40 73 67 0.14 8 98
Random forest 0.74 71 40 69 71 0.15 8 98
Gradient boosting 0.71 37 34 100 34 0.10 5 100
KNN 0.66 74 29 55 75 0.13 8 98
AdaBoost 0.61 85 27 40 87 0.16 10 97
Naive Bayes 0.59 38 21 86 36 0.09 5 98

XGBOOST, eXtremely Gradient Boosting; CatBoost, Categorical Boosting; LightGBM, Light Gradient Boosting; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine; LR, Logistic Regression. KNN, K-Nearest Neighbor; AdaBoost, Adaptive boosting; ACC, accuracy, PPV, positive predictive value; NPV, negative predictive value.