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Abstract
Polyamines play preeminent roles in a variety of cellular functions in the central 
nervous system and other organs. A large body of evidence suggests that the 
polyamine pathway is prominently involved in the etiology and pathology of 
schizophrenia. Alterations in the expression and activity of polyamine 
metabolizing enzymes, as well as changes in the levels of the individual 
polyamines, their precursors and derivatives, have been measured in schizo-
phrenia and animal models of the disease. Additionally, neuroleptic treatment has 
been shown to influence polyamine concentrations in brain and blood of 
individuals with schizophrenia. Thus, the polyamine system may appear to be a 
promising target for neuropharmacological treatment of schizophrenia. However, 
for a number of practical reasons there is currently only limited hope for a 
polyamine-based schizophrenia therapy.
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Core Tip: This review summarizes the advancements in research on the implications of 
polyamines and their metabolites for schizophrenia. Evidence from clinical and experi-
mental studies show that some members of the polyamine regulatory system are altered 
in schizophrenia, but no polyamine-based therapy for schizophrenia is currently 
available.
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INTRODUCTION
Schizophrenia is one of the great scourges of humanity, affecting approximately 1% of 
the worldwide population. It is a devastating and debilitating mental illness, which 
appears to result from a complex interplay between genetic and environmental risk 
factors. Clinically, schizophrenia may be characterized by an array of positive, 
negative and cognitive symptoms, which include hallucinations, delusions, 
disorganized speech or executive function, impaired memory and reduced cognitive 
abilities[1]. Unfortunately, a large percentage of patients with schizophrenia suffer 
from treatment-resistance. Therefore, there is an urgent need for new treatment 
opportunity strategies.

Among putative therapeutic targets for schizophrenia treatment are polyamines 
(PAs), their precursors, derivatives and conversion enzymes. Aliphatic PAs constitute 
a small family of polycationic molecules derived from decarboxylation of ornithine[2], 
which play a crucial role in the developing and mature mammalian central nervous 
system (CNS). The initial suggestion that these were contributing factors to schizo-
phrenia pathology dates back to the late 1950s, when it was shown that N,N-dimethyl-
p-phenylenediamine oxidation rates were increased in sera of schizophrenia patients 
compared to non-psychotic individuals[3,4]. Since then, numerous papers have shown 
that the PAs, spermine, spermidine and putrescine, as well as their metabolites, are 
functionally linked with schizophrenia. The goal of this article is to review the current 
knowledge and insights about the role of the PA system in schizophrenia. Further, we 
attempt to assess the suitability of PA as targets for therapeutic intervention.

SEARCH STRATEGY
Using relevant search terms we searched published literature (including doctoral 
theses and patents) from 1 January 1955 to 21 January 2021 in PubMed and Google 
Scholar. Search terms were schizophrenia in combination with one or more of the 
following terms: polyamines, spermine, spermidine, putrescine, agmatine, S-adenosyl-
methionine, acrolein, L-ornithine decarboxylase, antizyme, antizyme inhibitor, 
spermine oxidase, spermidine synthase, spermidine/spermine N1-acetyltransferase, 
polyamine oxidase, S-adenosylmethionine decarboxylase, agmatinase and agmatinase-
like protein. No language restrictions were applied.

THE PA PATHWAY IN THE HEALTHY CNS
Natural PAs, spermine and spermidine, and their precursor putrescine are present at 
relatively high concentrations in the mammalian brain. Because of the limited 
transport of PAs across the blood-brain barrier, their presence in the CNS should 
largely result from local synthesis (described previously in[5]). Brain PA content is 
tightly controlled through a complex network of biosynthetic and catabolic enzymes 
and a recently discovered transport system. However, while there are no doubts about 
the brain-borne origin of the largest fraction of cerebral PA, the precise cellular locus of 
PA biosynthesis has been a matter of contention for several years.

PAs are present at high concentrations both in glial cells (especially astroglia) and 
neurons[6-9]. Under normal conditions, neurons express L-ornithine decarboxylase 
(EC 4.1.1.17, ODC; Figure 1A), the rate-limiting enzyme of PA biosynthesis, which 
generates putrescine from ornithine[10,11]. This suggests that neurons are the primary 
source of newly synthesized PAs in the brain. Consequently, the observed strong 
astroglial immunostaining for spermidine and spermine would have to occur due to 
other reasons. Currently, it is certain that there is an efficient PA transport system 
involved in translocation of PAs from the site of synthesis in neurons to glial cells, a 
site of uptake, accumulation and release[9]. Indeed, various vesicular transporters for 
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Figure 1 Cellular localization of polyamine-metabolizing enzymes and antizyme inhibitor 2 in human and rat brain with nickel-enhanced 
streptavidin-biotin immunocytochemistry. A: Ornithine decarboxylase immunoreactive neurons of the human prefrontal cortex. Bar = 70 µm; B: Antizyme 
inhibitor 2 expressing neurons in the human prefrontal cortex. Bar = 30 µm; C: Antizyme inhibitor 2 immunoreactive fiber in the human temporal cortex. Note the 
typical pearlchain-like structure as already described by others[18]. Bar = 20 µm; D: Strong spermine oxidase immunoreactive neurons in the human hypothalamus 
(interstitial nucleus). Bar = 30 µm; E: Multiple spermine oxidase expressing neurons in the CA2 region of the human hippocampus. Bar = 30 µm; F: Spermine 
oxidase expressing neurons in rat medial prefrontal cortex. Bar = 55 µm; G: Low power microphotograph of agmatinase immunoreactivity in human habenula. Bar = 
140 µm; H: Single agmatinase immunopositive neuron in the human insular cortex. Bar = 30 µm.

PAs have been identified[12-15], and these may function bidirectionally[9].
Interestingly, other enzymes and enzyme regulators involved in the metabolism 

PAs are also predominantly or exclusively located in neurons. The ODC antizyme 
(which binds to ODC and thereby destabilizes and inactivates the enzyme) and 
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antizyme inhibitors 1 and 2 (AZINs, which both enhance ODC activity) have been 
found in neurons but not glia[16-18] (Figure 1B and C). Spermidine/spermine N1-
acetyltransferase (EC 2.3.1.57, SAT1) is an enzyme responsible for PA interconversion. 
Its mRNA is widely distributed in neurons, with the highest concentrations found in 
the hippocampus and olfactory bulb[19]. The enzyme spermidine synthase (EC 
2.5.1.22, which catalyzes the interconversion of S-adenosylmethionine to spermidine 
and 5’methylthioadenosine was localized to multiple rat brain neurons and neuropil of 
several brain regions [accumbens nucleus, hypothalamus, hippocampus (Figure 1E), 
cerebral cortex, striatum, cerebellum and others][20,21]. Spermine oxidase (EC 1.5.3.16, 
SMOX), which catalyzes the conversion of spermidine to spermine, is immunocyto-
chemically detectable in many neurons of the cerebral cortex, hypothalamus, 
hippocampus, thalamus and cerebellum of human and rat brains (Figure 1D-F).

The neuromodulator agmatine, which is a precursor of putrescine, can be detected 
in synapses[22,23]. Agmatine is highly expressed in magnocellular hypothalamic 
neurons and many other nerve cell populations[23,24]. The agmatine-degrading 
enzyme, agmatinase (EC 3.5.3.11) was found in distinct interneurons of rat and human 
brain, located in cerebral cortex, hippocampus, habenula and cerebellum (Figure 1G 
and H)[25,26]. Interestingly, a second agmatine-metabolizing enzyme (called 
agmatinase-like protein) is present in rat brain neurons and astrocytes[27]. Finally, 
arginase (EC 3.5.3.1, ARG), which converts L-arginine into L-ornithine and urea, and 
arginine decarboxylase (EC 4.1.1.19, which catalyzes the conversion of L-arginine into 
agmatine and carbon dioxide) are widely expressed in rat brain neurons[28,29]. Thus, 
neurons harbor all PA synthesizing and degrading enzymes studied so far apart from 
the agmatinase-like protein, which is located mainly in astroglial cells[27]. However, 
the situation may be different in neonatal brains because recent evidence suggests that 
developing astroglial cells contain catalytically active ODC, synthesize PAs and release 
these[30]. The major reactions of the PA pathway are shown in Figure 2.

SOME CRITICAL FUNCTIONS OF PA IN THE CNS AT A GLANCE
The classical PAs, spermine, spermidine and putrescine are multifunctional chemical 
compounds, which serve a variety of important tasks in the CNS (for overviews see[5,
9,10,30-32]). PA pathways play pivotal roles in the correct development of nervous 
tissue. There is experimental evidence to suggest that the replication of neurons and 
their precursor cells are dependent on the maintenance of certain region-and time-
specific PA levels[32]. Depletion of PAs through inhibition of ODC arrests brain cell 
maturation, disrupts neuronal migration, disturbs the outgrowth of neurites and 
impairs the formation of synapses[11,31,32]. In addition, PAs are prominently 
involved in proliferation of neonatal astrocytes[30]. In both the pre- and postnatal 
CNS, PAs act as intracellular growth factors. By directly binding to DNA or the rough 
endoplasmic reticulum, spermine and spermidine increase the rate of cell growth and 
control protein synthesis of brain cells[11,33].

In the mammalian CNS PAs act as important endogenous modulators of glutamate 
receptors and are capable of altering the functioning of N-methyl-D-aspartate (NMDA) 
receptors. As NMDA receptor ligands, PAs exert both activator and inhibitor effects. 
On the one hand, PAs can enhance NMDA receptor currents by increasing the 
probability of channel opening. On the other hand, spermine is able to block NMDA 
channels in the open state, thereby reducing or blocking NMDA receptor currents by a 
voltage-dependent reduction of single-channel conductance[34,35]. Another inhibitory 
effect of spermine is to reduce the sensitivity to glutamate (or other glutamate site 
agonists) at NMDA receptors composed of NMDA receptor 1/NMDA receptor 2B 
subunits by reducing the affinity for glutamate[34]. PAs also contribute to alterations 
of membrane excitability by interacting with ionotropic kainate and AMPA glutamate 
receptors (discussed in detail in[36]). Modulation of glutamate signaling by PA 
influences a variety of functional processes in the brain, ranging from regulation of 
neuronal and glial excitability to memory and aging[37].

Another mechanism through which PAs exert influence on membrane excitability is 
the blockade of outward potassium currents through, consequently so-called, 
inwardly-rectifying potassium channels. Inwardly-rectifying potassium channels 
exhibit a sharp voltage dependence and crucially contribute to maintenance of the 
resting membrane potential. Thus, they are involved in the regulation of bioelectrical 
excitation of many cell types including neurons and glial cells[9,37-40]. The basic 
mechanism underlying this steep voltage dependence is the channel blockade by PA 
and magnesium. PAs are thought to enter the inwardly-rectifying potassium channel 
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Figure 2 Major pathways of polyamines biosynthesis and interconversion (from Gross and Turecki[71]; scheme reproduced with 
permission of Bentham; modified). ADC: Arginine decarboxylase; AGMAT: Agmatinase; AMD: S-adenosylmethionine decarboxylase; ARG: Arginase; AZIN: 
Ornithine decarboxylase antizyme inhibitor; dcSAM: Decarboxylated S-adenosylmethionine; MTA: 5’-methylthioadenosine; OAT: Ornithine aminotransferase; OAZ: 
Ornithine decarboxylase antizyme; ODC: Ornithine decarboxylase; PAO: Polyamine oxidase; SAM: S-adenosylmethionine; SAT1: Spermidine/SpermineN1 
acetyltransferase; SMS: Spermine synthase; SMOX: Spermine oxidase; SRM: Spermidine synthase.

pore via the intracellular side of the membrane and displace multiple ions during their 
stable binding site within the channel[40].

Lastly, PAs act as free radical scavengers and effective antioxidants. This role is 
unrelated to the activation of the NMDA receptor[41]. Of note, PA catabolism, which is 
upregulated after traumatic brain injury and other stressful situations, can be a source 
of toxic reactive oxygen species[41,42].

The PA agmatine, a decarboxylation product of arginine, is an endogenous ligand of 
imidazoline, α2-adrenergic and glutamatergic NMDA receptors[43,44]. Agmatine is a 
neuromodulator and neurotransmitter, which significantly contributes to the 
regulation of various neurotransmitters and signaling pathways (reviewed in[43-47]). 
Several studies have demonstrated that agmatine is involved in cognitive processes
[47-50]. In addition, it performs a neuroprotective function by reducing oxidative 
damage, neuroinflammation and proapoptotic signaling[43,51].

THE PA SYSTEM IN SCHIZOPHRENIA
In the early 1980s it was hypothesized that PA might play a central role in the etiology 
of schizophrenia[52]. Since then, numerous papers have appeared in support of this 
conjecture, while others call in question a significant role of PA in schizophrenia 
development and persistence.

GENETIC ASPECTS OF PA METABOLISM IN SCHIZOPHRENIA
Compared with psychically healthy individuals, tissue and body fluid concentrations 
of some PAs are altered in patients suffering from schizophrenia. Since single 
nucleotide polymorphisms in the intron region of ODC (+316 G>A) and the promoter 
region of the SAT1 encoding gene SAT (1415 T>C) genes are known to be associated 
with the expression levels of PAs[53], both gene polymorphisms might be potential 
genetic markers for susceptibility to schizophrenia. Only the SAT 1 gene 
polymorphism has been studied so far. There were no significant differences in the 
distribution of the genotypes of the SAT-1415 T/C single nucleotide polymorphisms 
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between schizophrenia patients, non-psychotic psychiatric patients and healthy 
controls. However, a “mild association” between the C allele and psychopathology 
was found for the female group[54]. A translational convergent functional genomics 
study identified AZIN 1, the gene encoding antizyme inhibitor 1, as a candidate gene 
for schizophrenia (convergent functional genomics score 3.0[55]).

ALTERATIONS IN GENE EXPRESSION, ENZYME ACTIVITIES AND 
EPIGENETIC REGULATION OF PA-RELATED GENES IN SCHIZOPHRENIA 
A comprehensive DNA microarray study revealed that the expression of AZIN 1 was 
reduced in almost all samples from subjects with schizophrenia. In addition, reduced 
cellular expression of AZIN 1 was verified by in situ hybridization of postmortem 
brain samples of the same schizophrenia subjects. Of note, this reduction was not a 
consequence of long-term neuroleptic treatment of the patients since there was only a 
marginal reduction of AZIN 1 expression in haloperidol treated monkeys[56]. 
Ornithine aminotransferase (EC 2.6.1.13) is an enzyme that has been indirectly 
connected with PA metabolism through catalyzing the formation of glutamate or 
proline from ornithine[57]. This enzyme was found to be reduced in samples from 
schizophrenia patients[56]. However, other studies were unable to replicate these 
findings. Maycox et al[58] could not identify any differentially expressed genes 
implicated in PA metabolism in two large schizophrenia cohorts (with more than 
30000 mRNA transcripts).

Numerous communications have dealt with altered expression and/or activity of 
PA-metabolizing enzymes in brain tissue or blood of schizophrenia patients. 
Conflicting findings exist regarding polyamine oxidase(PAO). Blood plasma PAO 
activity was reportedly lower in acute schizophrenia patients[59,60]. This decrease in 
activity was unrelated to the subtype of schizophrenia (paranoid vs non-paranoid), age 
of onset or neuroleptic treatment[60-62]. In contrast with these findings, Dahel et al[63] 
and Das et al[64] found increased PAO activity in blood sera from schizophrenic 
patients, which was reduced by electroconvulsive therapy[63]. On the other hand, 
ODC activity was found to be normal in prefrontal cortex and hippocampus autopsy 
samples from people who suffered from schizophrenia[65], and there were no 
differences with regard to the number of ODC immunoreactive entorhinal cortex 
neurons between schizophrenia patients and controls[5]. Another study that measured 
SMOX activity found increased activity in sera from schizophrenia patients compared 
to non-psychotic controls[66], whereas AMD and SAT1 activities were unaltered in 
prefrontal cortex and hippocampus tissue of schizophrenia patients[65].

The density of agmatinase-containing interneurons was lower in the hippocampus 
of schizophrenia patients in comparison with controls[43]. Significantly increased 
activity of ARG (a gate keeper enzyme of PA synthesis) was observed in the 
cerebrospinal fluid of schizophrenia patients[67]. Lastly, increased enzyme activity 
and ARG II protein expression were found in postmortem brain tissue specimen in 
schizophrenia[68], whereas plasma ARG activity was significantly lower in schizo-
phrenia than in controls[69].

There is evidence that gene regulation via epigenetic modifications play a major role 
in schizophrenia pathophysiology. However, in contrast to other mental disorders and 
suicide, no such modifications for PA metabolizing genes in schizophrenia have been 
identified[70-72].

PA CONTENT IN TISSUES AND BODY FLUIDS IN SCHIZOPHRENIA
Several reports have targeted the levels of cerebral and peripheral PA in schizophrenia 
patients. Elevated blood concentrations of spermine and/or spermidine have been 
measured in treated schizophrenia patients[73,74] and in drug-naïve cases[75], 
whereby long-term neuroleptic treatment was shown to reduce spermine levels[75,
76]. Also, increased concentrations of spermidine and total PA were detected in 
fibroblasts obtained from schizophrenia patients (reviewed in[11]). So far, little 
information is available regarding brain PA concentrations in schizophrenia. Gilad et 
al[65] could not find significant alterations of PA levels in postmortem brain tissue of 
schizophrenia persons compared with controls. However, a more recent paper 
described significantly elevated levels of spermine, spermidine and putrescine in 
many brain regions of psychotic individuals[77].
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Significantly increased agmatine concentrations were measured in blood plasma 
and postmortem frontal cortex tissue of individuals with first episode and chronic 
schizophrenia[68,78-80], and antipsychotic treatment was found to decrease blood 
agmatine levels[77]. In contrast to the previously mentioned work, reduced blood 
agmatine levels were measured in early-onset schizophrenia[81]. The amino acid L-
arginine is metabolized by ARG, which is the first step in PA synthesis. Increased 
blood plasma arginine levels were reported in medication-naïve, first episode patients. 
Medication had no influence on enhanced blood concentrations in schizophrenia 
patients[79]. Finally, two-fold increased concentrations of S-adenosylmethionine were 
found in prefrontal cortex samples of schizophrenia patients compared with controls. 
This drastically increased brain S-adenosylmethionine content was not affected by 
postmortem interval or medication[82]. The main findings regarding this are 
summarized in Table 1.

PA IN THE CNS OF SUICIDE COMPLETERS
Numerous studies have shown alterations of PA and PA-metabolizing enzymes in 
individuals who died by suicide (reviewed in[5,71,83]). However, a closer look at these 
studies reveals that they all provide findings from individuals who had suffered from 
major depression or from suicide victims with no specified psychiatric diagnosis but 
not from those with schizophrenia. Thus, it would be interesting to determine if 
schizophrenia patients who died by suicide would differ from non-suicide schizo-
phrenia persons with regards to PA levels.

PA IN ANIMAL MODELS OF SCHIZOPHRENIA
A promising approach to identify and better understand diverse schizophrenia 
symptoms in humans has been to investigate behavioral phenotypes in animal models 
of the disease[84]. Although numerous animal models of schizophrenia have been 
introduced so far, only a few of these have accounted for the role of PAs and their 
metabolites. We studied the cellular expression of ODC in rats with neonatal lesions of 
the ventral hippocampus and found increased immunostaining in the prefrontal, 
perirhinal and entorhinal cortex[85]. In addition, we found an increased density of 
SMOX-immunoreactive medial prefrontal neurons (unpublished findings). Increased 
levels of putrescine, spermidine, spermine and arginine and decreased levels of 
agmatine were found in the prefrontal cortex and hippocampus of male and female rat 
offspring after maternal immune activation[86].

Prepulse inhibition of the startle reflex response is disturbed in schizophrenia, 
although there are conflicting findings regarding the influence of agmatine on this 
effect. In one study, agmatine was reported to disrupt prepulse inhibition in rats[87], 
whereas another investigation found that low doses of agmatine attenuated the 
disruptive effects of the psychotomimetic substance phencyclidine on this response
[88]. Other studies showed that agmatine depressed conditioned avoidance response 
and enhanced the inhibitory effect of haloperidol and olanzapine on this readout. 
Furthermore, agmatine attenuated apomorphine induced climbing and diminished 
amphetamine or ketamine induced hyperlocomotor activity[89,90]. Injection of 
phencyclidine, which induces psychotic symptoms in healthy individuals, was shown 
to also alter arginine metabolism in the rat hippocampus and prefrontal cortex[90], 
and withdrawal from repeated phencyclidine administration has been found to alter 
ARG activity as well as the concentration of arginine metabolites in rat brain[68].

Interestingly, transgenic animals, which overexpress ODC and/or SAT1, show a 
variety of neuroanatomical, neurochemical and behavioral peculiarities but not schizo-
phrenia-like behavior[91]. SMOX overexpression in the neocortex in Dach-SMOX mice 
leads to glutamate excitotoxicity[92], which is a characteristic feature of human schizo-
phrenia[93-95]. The main findings regarding this are summarized in Table 2.

POSSIBLE IMPACT OF PA PATHWAY ABNORMALITIES ON SCHIZO-
PHRENIA PATHOLOGY
PAs and their metabolites are crucial factors in a variety of functions, which are 
disrupted in schizophrenia. These disease-related functional impairments range from 
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Table 1 Summary of polyamine-related findings in human schizophrenia studies

No significant differences in the distribution of the genotypes of the SAT-1415 T/C SNP between schizophrenia patients and healthy controls[54].

CFG study identified AZIN 1 as a candidate gene for schizophrenia[55].

DNA microarray and in situ hybridization studies show decreased AZIN 1 expression in schizophrenia. No influence of neuroleptic treatment[56].

OAT expression is reduced in samples of schizophrenia individuals[56,57].

No differently expressed genes implicated in PA metabolism in two large schizophrenia cohorts[58].

PAO activity is lower in blood plasma of acute and chronic schizophrenia patients[59-62].

PAO activity increased in blood sera of schizophrenic patients[64,65], reduction by electroconvulsive therapy[62].

ODC activity and cellular expression is normal in brain autopsy samples from people who suffered from schizophrenia[65,66].

SMOX activity is markedly higher in sera of schizophrenic patients[67]. 

AMDI and SAT1 activities are unaltered in brain tissue of schizophrenia individuals[65]. 

Density of AGMAT-containing interneurons is reduced in the hippocampus of schizophrenia patients[43].

Increased ARG activity in the CSF of schizophrenia patients[67]. 

Increased ARGII activity and protein expression in postmortem brain tissue in schizophrenia[68]. 

ARG activity is lower in plasma of schizophrenia individuals[71].

Elevated blood concentrations of spermine and/or spermidine in drug-naïve and treated schizophrenia patients[73-75].

Long-term neuroleptic treatment reduces spermine levels[76,77].

Increased concentrations of spermidine and total PA in fibroblasts from schizophrenia patients (reviewed in[11]).

PA levels normal in postmortem brain tissue of schizophrenia persons[65].

Elevated levels of spermine, spermidine and putrescine in brains of psychotic individuals[77].

Increased agmatine concentrations in blood plasma and postmortem brains of individuals with first episode and chronic schizophrenia[68,78-80].

Antipsychotic treatment decreases blood agmatine levels[77].

Reduced blood agmatine concentrations in early-onset schizophrenia[81].

Increased concentrations of SAM in brain samples of schizophrenia patients[82].

SNP: Singlenucleotide polymorphism; OAT: Ornithine aminotransferase; ODC: Ornithine decarboxylase; SMOX: Spermine oxidase; AGMAT: Agmatinase; 
AMD: S-adenosylmethionine decarboxylase; ARG: Arginase; PA: Polyamines; CSF: Cerebrospinal fluid; CFG: Convergent functional genomics; SAM: S-
adenosylmethionine; SAT1: Spermidine/Spermine N1 acetyltransferase; PAO: Polyamine oxidase; AZIN: Antizyme inhibitor.

abnormal prenatal CNS development (disrupted neuronal migration and other 
pathological processes), impaired glutamate receptor functioning, glia pathology and 
immune dysregulation, to serious cognition problems and bizarre behavior. Thus, it is 
conceivable that altered PA supply and/or action contribute to the initiation and 
further progression of these impairments. More specifically, since spermine and 
spermidine positively influence many of these disturbed cellular mechanisms (see our 
considerations about PA functions), one may expect deficits in brain PA content in 
schizophrenia. Curiously, the opposite is the case as either increased blood and brain 
levels[73-75] or normal concentrations[65] of PA and ODC[81,85,87] have been 
reported for schizophrenia and animal disease models. Moreover, increased PA levels 
are not the result of neuroleptic treatment since anti-psychotics decrease PA concen-
trations in tissues and blood[75,76]. Thus, it seems unlikely that increased concen-
trations of spermine or other PAs contribute to schizophrenia pathology. In particular, 
there is no evidence that a PA excess is involved in impaired NMDA receptor 
functioning as observed in schizophrenia[34].

The situation is less evident with agmatine, which shows beneficial effects on some 
of the functions disrupted in schizophrenia. Increased agmatine concentrations were 
determined in blood plasma and post-mortem brain of individuals with first episode 
and chronic schizophrenia[68,76-81]. In contrast, reduced levels were measured in 
brain tissue of rat offspring after maternal immune activation[86]. It cannot be 
excluded, however, that overproduction of PA in human schizophrenia represents an 
attempt to compensate for certain functional losses (for example, induction and 
promotion of autophagy[95-97], which is abnormally reduced in schizophrenia[96]).
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Table 2 Summary of polyamine-related findings in studies of animal models

Neuronal expression of ODC increased in rats with neonatal lesion of the ventral hippocampus[85].

Neuronal expression of SMOX increased in rats with neonatal lesion of the ventral hippocampus (unpublished).

Increased brain levels of putrescine, spermidine, spermine and arginine but decreased levels of agmatine were measured in rat offspring after maternal 
immune activation[86].

Agmatine disrupts prepulse inhibition in rats[87].

Agmatine attenuates the disruptive effects of phencyclidine on prepulse inhibition[88,89].

Injection of phencyclidine alters arginine metabolism in rat brain[90].

Withdrawal from repeated phencyclidine administration alters ARG activity and the levels of arginine metabolites in rat brain tissue[91,92]. 

No schizophrenia-like behavior in transgenic animals that overexpress ODC and/or SAT1[91].

SMOX overexpression in mice leads to glutamate excitotoxicity[91,92], a characteristic feature of “human” schizophrenia.

ARG: Arginase; ODC: Ornithine decarboxylase; SAT1: Spermidine/SpermineN1 acetyltransferase; SMOX: Spermine oxidase.

In addition, the possibility cannot be excluded that there may be a PA deficit in the 
developing CNS of future schizophrenia patients, which would contribute to 
disturbed prenatal brain development[11,96]. However, the latter scenario is not likely 
since increased concentrations of PA have been determined in rat offspring after 
maternal immune activation, a suitable neurodevelopmental model of the disease[86].

While the findings showing that increased PA and agmatine levels would not serve 
as convincing arguments in support of their involvement in schizophrenia pathology, 
it is possible that increased expression and enzyme activity of SMOX is a contributing 
factor[66]. SMOX catalyzes the oxidation of spermine to produce spermidine, 
hydrogen peroxide (H2O2) and 3-aminopropanal, which may spontaneously be 
converted to acrolein[97]. Consequently, increased oxidative stress was identified in 
SMOX over-expressing Dach-SMOX mice[92] which resulted in glu, tamate excito-
toxicity[92,95]. Both reactive oxygen species, hydrogen peroxide and acrolein, are 
highly cytotoxic, as these can lead to production of massive cellular damage and 
pathologies[98-101]. Interestingly, in major depression and schizophrenia patients, 
significantly increased concentrations of protein-conjugated acrolein were measured, 
which could be reduced by anti-psychotic medication[101]. There is ample evidence 
that oxidative stress is a core feature in schizophrenia (for recent comprehensive 
reviews, see[101-104]). Oxidative stress is thought to be one of the mediators of 
progressive changes in brain structure and function in schizophrenia, which take place 
as schizophrenia progresses. The pathophysiological consequences include gray 
matter loss, myelination deficits and subsequent cognitive and functional impairment
[105].

The extent that increased SMOX activity contributes to the aberrantly activated 
immune[104] and inflammatory[106] processes in schizophrenia remains to be 
established.

THE PA PATHWAY – A TARGET FOR NEW THERAPIES?
In schizophrenia, the brain and blood levels of PAs are normal or even increased. 
Hence, higher dietary intake of spermine or spermidine[43,107] cannot be a suitable 
approach to remove or mitigate schizophrenia symptoms. A potentially more 
promising approach would be to reduce SMOX expression or activity in order to 
diminish the generation of hydrogen peroxide and acrolein. Indeed, it has been shown 
recently that targeting SMOX is neuroprotective in a model of ischemic brain damage
[108]. In this context, however, two questions need to be answered: (1) How to depress 
SMOX activity; and (2) What would be the consequences of this? In general, there are 
only a few approaches for a potentially successful intervention in this pathway. One of 
these is the application of the SMOX inhibitor N-(3-{[3-(dimethylamino)propyl] 
amino}propyl)-8-quinolinecarboxamide, which is under consideration for anti-cancer 
therapy[107]. Another one is the irreversible inhibition of SMOX by use of the PAO 
inhibitor MDL72527 {N1,N4-(bis(2,3-butadienyl)-1,4-butanediamine)}[108]. However, 
the application of both enzyme inhibitors produces a number of serious side effects. 
Furthermore, SMOX has an essential role in normal brain PA homeostasis (for review, 
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see[101,107,108]), which might be disrupted by any kind of intervention. Thus, the use 
of these enzyme inhibitors for schizophrenia therapy does not appear to be viable. 
Hence, PA-based schizophrenia therapy will probably remain an unresolved issue in 
the foreseeable future.

CONCLUSION
The PA system plays an essential role in the brain and other organs. Over the past half 
century, numerous reports appeared that showed that PAs, their precursors and 
derivatives, as well as some PA-metabolizing enzymes, are altered in schizophrenia, 
thus giving rise to the possibility for new PA-based therapies. Unfortunately, there are 
currently no prospects for such a therapeutic intervention, given a number of currently 
insurmountable obstacles. Therefore, further studies are urgently needed to learn more 
about the relationship between the PA system and schizophrenia pathology.
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