
Machine Learning with 18F-Sodium Fluoride PET and
Quantitative Plaque Analysis on CT Angiography for the
Future Risk of Myocardial Infarction

Jacek Kwiecinski1,2, Evangelos Tzolos3,4, Mohammed N. Meah4, Sebastien Cadet3, Philip D. Adamson5,
Kajetan Grodecki6, Nikhil V. Joshi7, Alastair J. Moss4, Michelle C. Williams4, Edwin J.R. van Beek4,8,
Daniel S. Berman3, David E. Newby4, Damini Dey6, Marc R. Dweck4, and Piotr J. Slomka1

1Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California;
2Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland; 3Department of Imaging,
Cedars-Sinai Medical Center, Los Angeles, California; 4BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh,
United Kingdom; 5Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; 6Department of Biomedical Sciences,
Cedars-Sinai Medical Center, Los Angeles, California; 7Bristol Heart Institute, University of Bristol, United Kingdom; and 8Edinburgh
Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom

Coronary 18F-sodium fluoride (18F-NaF) PET and CT angiography–
based quantitative plaque analysis have shown promise in refining
risk stratification in patients with coronary artery disease. We com-
bined both of these novel imaging approaches to develop an optimal
machine-learning model for the future risk of myocardial infarction in
patients with stable coronary disease. Methods: Patients with known
coronary artery disease underwent coronary 18F-NaF PET and CT
angiography on a hybrid PET/CT scanner. Machine-learning by
extreme gradient boosting was trained using clinical data, CT quanti-
tative plaque analysis, measures and 18F-NaF PET, and it was tested
using repeated 10-fold hold-out testing. Results: Among 293 study
participants (656 9 y; 84% male), 22 subjects experienced a myocar-
dial infarction over the 53 (40–59) months of follow-up. On univariable
receiver-operator-curve analysis, only 18F-NaF coronary uptake
emerged as a predictor of myocardial infarction (c-statistic 0.76, 95%
CI 0.68–0.83). When incorporated into machine-learning models, clini-
cal characteristics showed limited predictive performance (c-statistic
0.64, 95% CI 0.53–0.76) and were outperformed by a quantitative pla-
que analysis-based machine-learning model (c-statistic 0.72, 95% CI
0.60–0.84). After inclusion of all available data (clinical, quantitative
plaque and 18F-NaF PET), we achieved a substantial improvement
(P 5 0.008 versus 18F-NaF PET alone) in the model performance
(c-statistic 0.85, 95% CI 0.79–0.91). Conclusion: Both 18F-NaF
uptake and quantitative plaque analysis measures are additive and
strong predictors of outcome in patients with established coronary
artery disease. Optimal risk stratification can be achieved by combin-
ing clinical data with these approaches in a machine-learning model.
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In everyday clinical practice, prediction of myocardial infarction
is challenging and is typically based on cardiovascular risk factors
and scores, especially in subjects with suspected coronary artery
disease (1). However, in patients with established coronary artery
disease, the performance of risk scores is limited, with c-statics
ranging from 0.60 to 0.68 (1). Recently, advanced imaging techni-
ques have demonstrated considerable promise in refining risk strat-
ification in patients with established coronary artery disease. We
have demonstrated that assessment of disease activity in the coro-
nary arteries with 18F-sodium fluoride (18F-NaF) PET outperforms
clinical variables and risk scores for the prediction of myocardial
infarction in patients with a high burden of coronary artery disease
(2,3). Similarly, in observational studies and a subanalysis of the
SCOT-HEART trial, quantitative plaque analysis investigating
both plaque type and burden on contrast enhanced CT angiogra-
phy has emerged as a major predictor of adverse outcomes (4,5).
To date, no study has investigated whether these 2 promising
methods (which can be obtained during a single imaging session
on a hybrid PET/CT scanner) are interchangeable or can provide
superior predictive performance when used in combination.
In this study, we used machine-learning to investigate whether

the prognostic information provided by quantitative CT plaque
analysis and assessments of disease activity by 18F-NaF PET are
complementary, and to develop an optimized model to determine
the future risk of myocardial infarction in patients with established
coronary artery disease (6).

MATERIALS AND METHODS

Study Population
The current study is based on a cohort of patients with established

coronary artery disease on guideline-recommended medical treat-
ments, which we assembled for our previous publication regarding the
prognostic utility of 18F-NaF PET (2). However, in the current study,
we have included longer follow-up and used novel quantitative plaque
analysis of coronary CT angiography. Our work is focused specifically
on whether machine-learning methods can combine the prognostic
information provided by clinical factors, quantitative CT plaque analy-
sis and 18F-NaF PET to improve the prediction of myocardial
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infarction. All participants underwent hybrid coronary 18F-NaF PET
and contrast CT coronary angiography within prospective observational
research studies (NCT01749254, NCT02110303, NCT02607748)
(3,7,8). All patients had established coronary artery disease and under-
went a comprehensive baseline clinical assessment with evaluation of
their cardiovascular risk factor profile including calculation of the
Secondary Manifestations of ARTerial disease (SMART) risk score
(supplemental materials, available at http://jnm.snmjournals.org) (1).
Studies were conducted with the approval of the local research ethics
committee, in accordance with the Declaration of Helsinki, and with
written informed consent from each participant.

CT Angiography and 18F-Sodium Fluoride PET
Acquisition and Reconstruction. Patients underwent 18F-NaF

PET on hybrid PET/CT scanners (128-slice Biograph mCT, Siemens
Medical Systems; or Discovery 710, GE Healthcare) 60 min after
intravenous administration of 18F-NaF (250 MBq). We acquired a
noncontrast CT attenuation correction scan followed by a 30-min PET
emission scan in list mode, a low-dose noncontrast ECG-gated CT for
calculation of the coronary calcium, and a contrast-enhanced ECG-
gated coronary CT angiogram, which was obtained in mid-diastole
and end-expiration on the same PET/CT system without repositioning
the patient. The ECG-gated PET list-mode dataset was reconstructed
using harmonized protocols as described previously (supplemental
materials) (8–10).
Coronary Microcalcification Activity (CMA) Quantification.

Image analysis was performed in FusionQuant (Cedars-Sinai Medical
Center) (11). We used a recently described measure of coronary 18F-NaF
uptake, CMA, that quantifies PET activity across the entire coronary vas-
culature (12). CMA is a highly reproducible and robust measure of disease
activity predicting both disease progression and myocardial infarction
(2,13). We calculated the per-vessel and per-patient CMA (Fig. 1), maxi-
mum coronary SUV, and target-to-background ratio (TBR) as described
previously (supplemental materials) (3,12).

CT. The coronary artery calcium score was measured in Agatston
units (AU) using clinical software (NetraMD, ScImage) on noncon-
trast CT scans. The presence, extent, and severity of coronary artery
disease were evaluated on contrast-enhanced CT angiography by
defining the segment involvement score, DUKE coronary artery dis-
ease index, and the number of vessels with .50% luminal stenosis
(14). Multivessel coronary artery disease was defined as at least 2
major epicardial vessels with any combination of either .50% steno-
sis, or previous revascularization.
Quantitative Plaque Analysis of CT Angiography. We per-

formed quantitative plaque analysis of all coronary segments with a
lumen diameter greater than 2 mm using semiautomated software (Auto-
Plaque, version 2.0, Cedars-Sinai Medical Center) (4,5). Proximal and
distal limits of lesions were manually marked by an experienced reader
after examination of coronary CT angiography images in multiplanar
format. Subsequent plaque quantification was fully automated using
adaptive scan-specific thresholds. Total, calcified, noncalcified as well as
low attenuation plaque volumes were calculated. The plaque burden was
calculated according to the following equation (plaque volume 3 100%/
vessel volume). The contrast density difference was the maximal differ-
ence in contrast density (mean Hounsfield unit/cross-sectional area) in
the plaque and the reference proximal vessel cross section.

Machine Learning
Machine learning was used to derive a joint score for myocardial

infarction by incorporating the key clinical variables, quantitative CT
variables, and 18F-NaF PET findings.
Model Building. XGBoost is a recent implementation of a gradient

boosting algorithm, which iteratively trains a set of weak learners
(simple decision trees) using a given set of patient data, to build a
combined strong classifier to identify an outcome (15). For every
patient, the XGBoost algorithm computes an individualized probabil-
ity of outcome, considering all input variables.

We applied XGBoost for prediction of myocardial infarction by
building 3 models. First, a clinical model with baseline clinical charac-
teristics: age, sex, comorbidities, medication, biomarkers, past medical
history, and coronary calcium score (model 1). The second model was
derived from quantitative plaque analysis variables (including low
attenuation plaque burden and the contrast density difference). A final
model incorporated clinical, CT and 18F-NaF PET data in combina-
tion. All variables used in the machine-learning modeling are pre-
sented in Supplemental Table 1.
Model Testing. Given the limited number of cases, we refrained

from performing data-specific hypertuning and applied fixed XGBoost
parameters established in our previous studies (15). Furthermore, to
avoid biased results and limit overfitting, we tested all of our models
using repeated 10-fold cross-testing, which separates training and test-
ing data (16). The dataset was randomly split into 10-folds with simi-
lar myocardial infarction rates in each fold (stratified 10-folds). Ten
models were created each from 90% of the data, and each tested in
held-out test sample (10% of the data). These 10 held-out samples
containing nonoverlapping test results were subsequently concatenated
to evaluate the average performance of XGBoost in unseen data.
Feature Importance. To elucidate the influence of each of the var-

iables included in the machine-learning model, we provided machine-
learning feature importance scores. Importance is the relative amount
that each attribute improves the XGBoost performance measure. The
variable importance was determined directly from the XGBoost model
separately in each fold and returned from the XGBoost model for each
variable. The variable importance represents the relative improvement
in the log loss objective function of the XGBoost (17).

Clinical Follow-up
The primary endpoint of the study was fatal or nonfatal myocardial

infarction. Outcome information was obtained in June 2020 from the
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FIGURE 1. Measuring disease activity across the coronary vasculature
with 18F-NaF CMA and the low-attenuation plaque burden with quantita-
tive plaque analysis. Three-dimensional (3D) rendering of coronary CT
angiography coregistered with PET for evaluation of 18F-NaF uptake (blue
and red; left panel). The CMA is a summary measure of 18F-NaF activity
across the entire coronary vasculature as it includes all counts originating
from the coronary artery 3D rendering of CT angiography–based quantita-
tive plaque analysis with orange low-attenuation plaque (LAP) and yellow
calcified plaque. The low-attenuation plaque burden was defined as the
LAP volume3 100%/vessel volume. LAD5 left anterior descending; LCX
5 left circumflex; RCA5 right coronary artery.
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TABLE 1
Baseline Clinical Characteristics

Category Variable Mean 6 SD/median [Q1-Q3]/n (%)

Baseline clinical characteristics Age 65 6 9

Men 245 (84%)

Body-mass index (kg/m2), 29 6 5

Systolic blood pressure (mm Hg) 141 6 20

Diastolic blood pressure (mm Hg) 79 6 11

Cardiovascular history History of acute coronary syndrome 161 (55.1%)

History of percutaneous coronary intervention 182 (62.3%)

History of coronary artery bypass graft surgery 48 (16.4%)

History of angina 136 (46.6%)

Recent acute coronary syndrome 61 (21%)

Cerebrovascular accident or transient ischemic attack 9 (3.1%)

Comorbidities/risk factors Hypertension 174 (59.6%)

Hyperlipidemia 257 (88%)

Diabetes mellitus 61 (20.8%)

Current smoking 58 (19.9%)

Ex-smoker 137 (46.9%)

Atrial fibrillation 10 (3.4%)

Peripheral vascular disease 16 (5.5%)

Medications* Aspirin 268 (91.8%)

Dual antiplatelet therapy 62 (21.2%)

Statin 262 (89.7%)

b-Blocker 196 (67.1%)

Angiotensin-converting enzyme inhibitor or
angiotensin receptor blocker

197 (67.4%)

Insulin 4 (1.4%)

Oral diabetic medications 48 (16.4%)

Calcium blockers 63 (21.6%)

Diuretics 38 (16.0%)

Biomarkers Total cholesterol (mg/dL) 159 [139–182]

LDL cholesterol (mg/dL) 73 [46–93]

HDL cholesterol (mg/dL) 46 [39–66]

Triglycerides (mg/dL) 133 [97–204]

Creatinine (mg/dL) 0.9 [0.8–1.0]

Risk scores SMART 18 [13–26]

CT – qualitative & noncontrast - Single vessel disease 87 (29.8%)

- Two vessel disease 110 (37.7%)

- Three vessel disease 81 (27.6%)

- Left main stem involvement 18 (6.1%)

Coronary stent 218 (73.4%)

Segment involvement score 5 [3–7]

Segment involvement score . 5 145 (73.5%)

Coronary calcium score 334 [76–804]

Coronary calcium score category

0–99 84 (28.7%)

100–399 76 (25.9%)

400–999 74 (25.3%)

.1,000 59 (20.1%)

(continued)
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local and national health-care record systems that integrates primary
and secondary health-care records. Categorization of these outcomes
was performed blinded to the coronary CT angiography and PET data.

Statistical Analysis
We assessed the distribution of data with the Shapiro–Wilk test.

Continuous parametric variables were expressed as mean 6 SD, and
nonparametric data were presented as median (interquartile interval).
Fisher exact test or x2 test was used for analysis of categoric variables.
The performance of machine-learning models and single clinical char-
acteristics in predicting myocardial infarction was assessed using
receiver operator characteristic (ROC) analysis, and the area under the
curve (c-statistic) values were compared with the DeLong test (18).
Statistical analysis was performed with SPSS, version 24 (IBM SPSS
Statistics for Windows, version 24.0, IBM Corp.) and R studio and
R software, version 4.01 (R Foundation for Statistical Computing).
A 2-sided P , 0.05 was considered statistically significant.

RESULTS

All 293 study participants (656 9 y; 84% male) had established
coronary artery disease and were on guideline-recommended med-
ical treatments (Table 1). Two-hundred thirty-seven (81%) patients
had a history of revascularization, 191 (65%) had multivessel
obstructive coronary artery disease, and the median coronary cal-
cium score was 334 (76 to 804) AU. Over the 53 (40–59) months
of follow-up, 22 subjects experienced a fatal (n 5 3) or nonfatal
(n 5 19) myocardial infarction.
The high burden of atherosclerosis was reflected in the quantita-

tive plaque analysis derived from coronary CT angiography. The
median total plaque volume was 1,174 (716 to 1,772) mm3 and
consisted largely of noncalcified plaque (1,099 [647 to 1,574]
mm3) with a substantial volume of low-attenuation plaque (88 [44
to 167] mm3). Over half of the study population (166 [56%]) had

a low-attenuation plaque burden exceeding 4%. On PET, 109
(37.2%) patients presented with a high 18F-NaF CMA (.1.56;
Fig. 2).
On receiver operator curve analysis, 18F-NaF CMA (c-statistic

0.76, 95% CI 0.68 to 0.83; P , 0.001), maximum 18F-NaF TBR
(c-statistic 0.72, 95% CI 0.63 to 0.82; P , 0.001) and maximum
18F-NaF SUV (c-statistic 0.70, 95% CI 0.59 to 0.81; P 5 0.002)
were the only statistically significant predictors of myocardial
infarction. In contrast, baseline clinical characteristics, luminal ste-
nosis severity, qualitative or quantitative CT-derived variables
were not significant predictors of myocardial infarction on
their own (Table 2). However, when incorporated into machine-
learning models, the aforementioned variables emerged as
predictors of adverse events. Although a model based on clinical
characteristics only showed limited predictive performance with a
c-statistic of 0.64 (95% CI 0.53–0.76), the quantitative plaque
analysis-based machine-learning model outperformed the former
with a c-statistic of 0.72 (95% CI 0.60–0.84, P 5 0.02), which
was comparable to 18F-NaF CMA alone (P 5 0.47). Inclusion of
clinical data improved the 18F-NaF CMA and quantitative plaque
analysis–based models only slightly (0.77 [95% CI 0.69–0.84] and
0.74 [95% CI 0.64–0.83], respectively). Importantly, after inclu-
sion of all available data (clinical, quantitative plaque and 18F-NaF
PET), we achieved an increase in model performance with a
c-statistic of 0.85 (95% CI 0.79–0.91, P , 0.001), which was
higher than the quantitative CT plaque model (P 5 0.008) and the
18F-NaF CMA (P 5 0.01; Figs. 3 and 4) as well as the clinical
characteristics model (P , 0.001).

DISCUSSION

We have built a machine-learning model for risk stratification in
patients with established coronary artery disease. In our cohort of

TABLE 1
Baseline Clinical Characteristics (cont.)

Category Variable Mean 6 SD/median [Q1-Q3]/n (%)

CT – quantitative Total plaque volume, mm3 1174 [716, 1772]

Noncalcified plaque volume, mm3 1099 [647, 1574]

Calcified plaque volume, mm3 77 [23, 180]

Low-attenuation plaque volume, mm3 88 [44, 167]

Total plaque burden, % 55 [49, 63]

Noncalcified plaque burden, % 51 [45, 57]

Calcified plaque burden, % 3.5 [1.4, 7.9]

Low-attenuation plaque burden, % 4.4 [2.6, 7.0]

Area stenosis, % 58 [47, 75]

Contrast density difference, % 29 [24, 37]

Ischemia score 31 [21, 47]
18F-NaF PET CMA 0.66 [0–2.84]

TBRmax 1.22 [1.1–1.42]

SUVmax 1.44 [1.19, 1.71]

Outcome Myocardial infarction 22 (7.5%)

Recent acute coronary syndrome was defined as an event within less than 14 days before PET imaging.
SMART 5 Secondary Manifestations of ARTerial disease risk score; SUVmax 5 maximum SUV; TBRmax 5 maximum target to

background ratio.
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patients with advanced coronary atherosclerosis, we showed that
risk prediction does not depend on cardiovascular risk scores, ste-
nosis severity or CT calcium scoring. Rather the risk of myocar-
dial infarction is primarily governed by the analysis of plaque type
and plaque burden provided by coronary CT angiography and
assessments of disease activity by 18F-NaF PET. Importantly, our
machine-learning approach has overcome the challenges posed by
colinearity of these variables and, for the first time, has demon-
strated that this information is complementary and additive with
the combination of both providing the most robust outcome predic-
tion. If confirmed in further studies this comprehensive approach
holds major promise in refining risk stratification of patients with

established coronary artery disease, a population for which such
prediction is currently challenging. Importantly, such stratification
in these patients can be achieved objectively with quantitative vari-
ables obtained on a single hybrid PET/CT acquisition.

18F-NaF PET provides an assessment of vascular injury and
disease activity across a wide spectrum of cardiovascular condi-
tions including aortic stenosis, mitral annular calcification,
abdominal aortic aneurysm, erectile dysfunction, bioprosthetic
valve degeneration and coronary artery disease (2,19–22).
Indeed, baseline 18F-NaF PET is consistently associated with
future disease progression and adverse events in each of these
conditions. On the other hand, quantitative assessment of athero-
sclerotic plaque on contrast-enhanced CT angiography allows us
to measure the burden of different types of plaque across the
coronary arteries (4). We recently demonstrated that the low-
attenuation plaque burden provides powerful prediction of myo-
cardial infarction, outperforming cardiovascular risk scores,
Agatston coronary artery calcium scoring, or the presence and
severity of obstructive coronary artery disease (5). Whether
these 2 exciting developments can be used in combination to
further advance risk prediction was previously unknown.
Using the information from these approaches and by leveraging

machine learning, we were able to build an integrated model for
prediction of events in patients with established coronary artery
disease, a group of patients in whom risk prediction is currently
challenging. The XGBoost algorithm has been successfully imple-
mented for risk prediction in a wide range of clinical scenarios
(15,23). It enables the incorporation of numerous predictors into
the model even when these variables are correlated—a major limi-
tation with conventional regression analyses. Although we have
previously shown that 18F-NaF uptake is associated with quanti-
tative plaque analysis indices, our current analysis highlights the
complementary prognostic information that PET and quantita-
tive CT plaque assessments provide together (24,25). Indeed,
our machine-learning model incorporating the information
from these 2 modalities alongside clinical factors outperformed
the individual components analyzed separately with a high
c-statistic of 0.85. Importantly, our study also underscores that
in patients with advanced coronary artery disease, markers of
disease activity, plaque type and plaque burden provide risk pre-
diction superior to clinical risk scores and conventional coronary
calcium CT analyses.
According to societal guidelines, patients with clinically man-

ifest atherosclerotic arterial disease are considered to be at very
high risk of a recurrent cardiovascular events and cardiovascular
mortality. However, in everyday clinical practice, it is apparent
that there is a wide distribution of actual risk for recurrent vas-
cular events in patients with clinically established arterial dis-
ease. Although the population of subjects with manifested
coronary artery disease is rapidly growing, accurate risk predic-
tion in this important population remains challenging. The
guideline-recommended SMART risk score was shown to have
only a moderate c-statistic (0.64–0.68), and there is a paucity of
data regarding the role imaging could play in this cohort (1). In
our study we have targeted this important high-risk population.
We have demonstrated that quantitative plaque analysis meas-
ures and the coronary microcalcification activity considerably
improve stratification of patients’ risk (c-statistic 0.85). In a con-
servative 10-fold cross testing machine-learning model, we
showed that CT and PET data need to be used together for opti-
mal stratification.

RGB

FIGURE 2. Case examples of quantitative plaque analysis on coronary
CT angiography and 18F-NaF PET in patients with established coronary
artery disease. Hybrid CT angiography and 18F-NaF PET of coronary arter-
ies. (A) A 70-y-old male, who presented with diffused largely noncalcified
disease (middle panel in red) in the LAD and demonstrated increased 18F-
NaF uptake in the LAD on PET. (B) A 59-y-old male with mild LCX athero-
sclerosis, who presented with a high noncalcified plaque burden (middle
panel in red) on CT angiography, significant 18F-NaF uptake and experi-
enced a lateral non–ST-segment elevation myocardial infarction during
follow-up. LAD 5 left anterior descending; LCX 5 left circumflex; LAP 5

low attenuation plaque.
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Limitations

With the limited number of patients and events, our findings
require confirmation in future studies. Machine-learning models
can perform better when trained within bigger datasets, and

therefore further studies are needed to confirm our findings and
allow further testing to refine and to calibrate the machine-
learning models. External validation of our findings in other
cohorts is needed. Although this is currently challenging given

TABLE 2
Prediction of Myocardial Infarction in Patients with Advanced Coronary Artery Disease

Category Variable
Area under the
curve (95% CIs) P value

Baseline clinical characteristics Age 0.51 (0.35–0.67) 0.81

Sex 0.51 (0.38–0.64) 0.84

Body-mass index 0.58 (0.46–0.70) 0.23

Systolic blood pressure 0.52 (0.37–0.67) 0.74

Past medical history Myocardial infarction 0.45 (0.33–0.58) 0.48

Recent acute coronary syndrome 0.57 (0.43–0.71) 0.33

Percutaneous coronary intervention 0.53 (0.40–0.67) 0.66

Coronary artery bypass graft 0.52 (0.39–0.65) 0.80

Cerebrovascular accident 0.53 (0.40–0.67) 0.60

Comorbidities Hypertension 0.47 (0.35–0.59) 0.57

Hyperlipidemia 0.48 (0.35–0.60) 0.61

Diabetes 0.51 (0.37–0.65) 0.29

Smoking 0.46 (0.32–0.60) 0.59

Peripheral vascular disease 0.52 (0.39–0.66) 0.80

Biomarkers Total cholesterol (mmol/L) 0.53 (0.38–0.68) 0.68

LDL cholesterol (mmol/L) 0.59 (0.43–0.75) 0.18

HDL cholesterol (mmol/L) 0.53 (0.38–0.67) 0.71

Triglycerides (mmol/L) 0.57 (0.44–0.69) 0.33

Creatinine (mmol/L) 0.54 (0.40–0.68) 0.54

Risk scores SMART 0.57 (0.43–0.70) 0.35

CT – qualitative & noncontrast Multivessel disease 0.55 (0.42–0.68) 0.48

Segment involvement score 0.56 (0.41–0.71) 0.40

Coronary calcium score 0.51 (0.37–0.66) 0.87

Modified Duke index 0.61 (0.48–0.74) 0.11

CT – quantitative Total plaque volume 0.53 (0.39–0.67) 0.65

Noncalcified plaque volume 0.54 (0.40–0.68) 0.53

Calcified plaque volume 0.46 (0.33–0.58) 0.48

Low-attenuation plaque volume 0.57 (0.41–0.72) 0.30

Total plaque burden 0.45 (0.33–0.57) 0.42

Noncalcified plaque burden 0.47 (0.35–0.59) 0.67

Calcified plaque burden 0.41 (0.29–0.54) 0.16

Low-attenuation plaque burden 0.61 (0.48–0.75) 0.071

Area stenosis 0.48 (0.35–0.62) 0.79

Contrast density difference 0.56 (0.40–0.71) 0.33

Ischemia score 0.52 (0.38–0.65) 0.77
18F-NaF PET CMA total 0.76 (0.68–0.83) , 0.001

TBRmax 0.72 (0.63–0.82) , 0.001

SUVmax 0.70 (0.59–0.81) 0.002

Receiver operator curve modeling for prediction of myocardial infarction.
HDL 5 high-density lipoprotein; LDL 5 low-density lipoprotein; SMART 5 Secondary Manifestations of ARTerial disease risk score;

SUVmax 5 maximum SUV; TBRmax 5 maximum target-to-background ratio.
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that 18F-NaF PET is an emerging technique, this will be possible in
the future using outcome data from the Prediction of Recurrent
Events With 18F-Fluoride (PREFFIR) study, which is prospectively
investigating the ability of 18F-NaF coronary PET and CT angiogra-
phy to predict recurrent events in patients with multivessel disease
and recent myocardial infarction. Since most of the study partici-
pants had multivessel disease, future studies should characterize the
utility of 18F-NaF PET in patients with single vessel disease.

CONCLUSION

Both 18F-NaF uptake and quantitative plaque analysis measures
from contrast CT are strong predictors of outcome in patients with

established coronary artery disease. Optimal risk stratification can
be achieved by combining these imaging assessments of plaque
type, burden, and activity with clinical variables in a machine-
learning model.
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FIGURE 3. Prediction of myocardial infarction by machine-learning. (A) Receiver operator curves for the risk of myocardial infarction: 18F-NaF CMA
alone (dark blue), machine-learning models based on clinical data (light blue), quantitative plaque analysis (gray), clinical 1 quantitative plaque analysis
1 18F-NaF PET (red). The model based on both PET and quantitative CT–based plaque analysis data outperformed the clinical data and both unimodal-
ity models (P , 0.01 for all). (B) Feature importance for the machine-learning model based on all variables. Solid bars and error bars represent the mean
gain and SD derived from the distribution of the importance within 10-folds of the cross testing, for each variable. *indicates a P , 0.01 for a difference
compared with 18F-NAF CMA, quantitative plaque, Clinical and CT (DeLong test). #error bars indicate 95% CIs. TBR5 target-to-background ratio.

RGB

FIGURE 4. Calibration plot for clinical 1 quantitative plaque analysis 1
18F-NaF PET machine-learning XGBoost model. Calibration plot shows
the relationship between the observed and predicted proportion of events,
grouped by decile of risk. Our model showed very good calibration with
the observed risk of myocardial infarction during follow-up.
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KEY POINTS

QUESTION: Does combining information provided by CT plaque
analysis and assessments of disease activity by 18F-NaF PET with
machine-learning enhance risk stratification in established
coronary artery disease?

PERTINENT FINDINGS: In a post hoc analysis of data collected for
prospective observational studies, on a cohort of 293 patients with
established coronary artery disease, we have demonstrated that
optimal risk stratification can be achieved by combining clinical data
with 18F-NaF PET and quantitative coronary CT angiography plaque
analysis in a machine-learning model.

IMPLICATIONS FOR PATIENT CARE: This approach has major
potential for the risk stratification of patients with established
coronary artery disease.
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