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Abstract
BACKGROUND 
Acute kidney injury (AKI) after surgery appears to increase the risk of death in 
patients with liver cancer. In recent years, machine learning algorithms have been 
shown to offer higher discriminative efficiency than classical statistical analysis.

AIM 
To develop prediction models for AKI after liver cancer resection using machine 
learning techniques.

METHODS 
We screened a total of 2450 patients who had undergone primary hepatocellular 
carcinoma resection at Changzheng Hospital, Shanghai City, China, from January 
1, 2015 to August 31, 2020. The AKI definition used was consistent with the 
Kidney Disease: Improving Global Outcomes. We included in our analysis 
preoperative data such as demographic characteristics, laboratory findings, 
comorbidities, and medication, as well as perioperative data such as duration of 
surgery. Computerized algorithms used for model development included logistic 
regression (LR), support vector machine (SVM), random forest (RF), extreme 
gradient boosting (XGboost), and decision tree (DT). Feature importance was also 
ranked according to its contribution to model development.

RESULTS 
AKI events occurred in 296 patients (12.1%) within 7 d after surgery. Among the 
original models based on machine learning techniques, the RF algorithm had 
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optimal discrimination with an area under the curve value of 0.92, compared to 
0.87 for XGBoost, 0.90 for DT, 0.90 for SVM, and 0.85 for LR. The RF algorithm 
also had the highest concordance-index (0.86) and the lowest Brier score (0.076). 
The variable that contributed the most in the RF algorithm was age, followed by 
cholesterol, and surgery time.

CONCLUSION 
Machine learning algorithms are highly effective in discriminating patients at 
high risk of developing AKI. The successful application of machine learning 
models may help guide clinical decisions and help improve the long-term 
prognosis of patients.

Key Words: Machine learning; Liver cancer; Surgery; Acute kidney injury; Prediction
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Core Tip: Acute kidney injury (AKI) is a relatively common complication after liver 
surgery and has a negative impact on long-term patient prognosis. Early detection and 
timely intervention are key in order to minimize the negative impact of AKI. Machine 
learning has become increasingly better integrated with clinical medicine. In our 
retrospective study, we established a real-time prediction model based on machine 
learning algorithms. The final models showed high power to discriminate AKI events.
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INTRODUCTION
Liver surgery associated acute kidney injury (LSA-AKI) is a relatively common 
postoperative complication in patients with liver cancer. LSA-AKI has a negative 
impact on the postoperative recovery and increases long-term patient mortality[1]. The 
incidence of AKI has been reported to be between 15% and 50% in patients with liver 
cancer that undergo surgery[2]. However, in clinical practice, AKI events are often 
underdiagnosed[3]. Many studies have investigated AKI-associated risk factors, and 
several classical scoring systems for AKI have emerged[4,5]. Nevertheless, the 
potential non-linear relationship between variables and variable-outcome can 
compromise the predictive performance of the model. Moreover, the traditional 
multiple linear analysis methods limit the number of relevant variables that may be 
clinically significant[6]. In contrast, machine learning techniques are not limited to 
linear relationships nor to the number of variables included in the analysis, and 
therefore may offer a better predictive performance.

Machine learning includes computer algorithm-based technology that can efficiently 
process clinical data to solve classification or regression problems[7,8]. With the 
continuous expansion of artificial intelligence (AI) techniques, machine learning and 
clinical medicine are gradually overlapping, as illustrated by numerous studies 
performed on both[9]. In clinical medicine, machine learning has demonstrated its 
value in analyzing postoperative complications and long-term outcomes due to its 
powerful data processing capabilities[10-13]. For example, in contrast to traditional 
regression models, machine learning performed better at screening patients at high-
risk of sepsis[14]. Moreover, in prior prospective evaluations of the AKI events, the 
machine-learning-based AKI predictor outperformed physician predictive 
performance[15].

Machine learning has also made progress in critical care medicine[16], and was 
shown to be valuable in the emergency department[17], and iconography[18]. In the 
era of big data, the combination of machine learning and electronic medical records 
can provide more advanced technical support for clinical management of AKI patients
[19]. AKI predictive models based on big data and artificial intelligence are potentially 
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Figure 1 Patient selection and analysis. The 3218 patients who underwent liver cancer resection were initially included. 768 patients were excluded based on 
exclusion criteria, and a total of 2450 patients were included in the study (data set). The data set was divided into a training set and test set. First, the model was 
applied to the training set for the modeling process and the parameters were debugged. Then, the model was validated in the test set.

reliable tools to individually and prospectively monitor the condition of each patient 
and help support clinical decisions accordingly[20,21]. In our research, machine 
learning algorithms were used to develop the LSA-AKI models, with appropriate 
validation and evaluation of the model’s performance.

MATERIALS AND METHODS
Study population
A total of 2450 patients who had undergone primary hepatocellular carcinoma 
resection at Changzheng Hospital, Shanghai City, China, from January 1, 2015 to 
August 31, 2020 were screened (Figure 1). The study was approved by the Ethics 
Committee of Navy Medical University, with an exemption from the informed 
consent.

Data collection
The AKI standard used was the 2012 KDIGO criteria, which is defined as: (1) An 
increase in serum creatinine of more than 50% within 7 d after surgery; and (2) An 
increase in serum creatinine of more than 0.3 mg/dL within 48 h after surgery. The 
preoperative serum creatinine was measured as a baseline value.

We included in our analysis preoperative data such as demographic characteristics, 
laboratory findings, comorbidities, and medication, as well as perioperative data such 
as duration of surgery. The baseline characteristics included age, gender, and dyslip-
idemia. Data on tumor characteristics such as alpha-fetoprotein (AFP) and tumor size 
were also collected. Laboratory measurements included hemoglobin, serum creatinine, 
and cholesterol. Perioperative variables included the use of blood products and 
surgery duration.

Statistical analysis
Python version 3.6 and Scikit-learn package (https://github.com/scikit-learn/scikit-
learn) were used for development of the model. Patients were randomly assigned to 
the training and the test sets at a ratio of 7:3. The training set was used for model 
development and optimization, while the test set was used for model validation and 
evaluation.

Machine learning techniques
We used several mature machine learning algorithms for modelling: the logistic 
regression (LR), the support vector machine (SVM), the random forest (RF), the 
extreme gradient propulsion (XGBoost), and the decision tree (DT). The operating 
principle of the LR model is to calculate the regression coefficient through the 
maximum likelihood ratio, and therefore to calculate the occurrence probability of the 
observing endpoint. The DT, RF, and XGBoost techniques adopted the tree-based 
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algorithm, which is a tree-like modelling which can synthesize the analysis to reach 
the best prediction decision (Figure 2). Feature importance was ranked according to 
the mean decrease in the Gini index[22]. SVM, a binary program introduced by Vapnik
[23], was able to place the tagged targets to their belonged hyperplane partitions 
according to the inputted variable characteristics[24]. In this study, we used the five 
machine learning algorithms described above to predict whether a patient developed 
AKI within 7 d after liver cancer resection.

Performance evaluation
The area under the curve (AUC) in the receiver operating characteristic curve was 
applied to show the RF model performance. The greater the AUC, the better the 
predictive performance. Additionally, the concordance index (C-index)[25] and the 
Brier score (BS)[26] were measured to gauge the model’s discriminatory ability. A high 
C-index and a low BS suggest superior predictive performance. The optimal 
hyperparameters were identified in a 10-fold cross-validation to avoid the overfitting 
pitfall during model development.

RESULTS
Patient characteristics
A total of 2450 cases were included in our analysis. The age of the population was 54 ± 
10.5 (mean ± SD). The majority were men, accounting for 81.3% (1992/2450) of the 
population. Tumor-associated information included: the tumor size (ranging from 0.8 
cm to 8.3 cm); specific tumor markers of liver cancer (AFP fluctuated between 483 and 
43203). 23.9% (586/2450) of the patients had dyslipidemia, 7.8% (190/2450) had 
diabetes mellitus, 48.4% (92/190) of which were currently receiving insulin. 13.2% 
(324/2450) of the patients had been prescribed oral beta blockers, and 8.1% (198/2450) 
were on aspirin. Table 1 shows the baseline characteristics in the training and the test 
sets, and confirms that there were no statistically significant differences between the 
two sets.

AKI morbidity
Serum creatinine fluctuations were continuously monitored after the operation, and 
were compared with the preoperative baseline values. Our results indicate that a LSA-
AKI event occurred in 296 patients (12.1%) within 7 days after surgery. The incidence 
of AKI in the training set and test set was 11.5% (198/1715) and 13.3% (98/735), 
respectively.

Measures of effectiveness
The LR, SVM, RF, XGboost, and DT models were developed to predict postoperative 
AKI events. Table 2 and Figure 3 show the performance of the five machine learning 
models used. The RF technique had the largest evaluated AUC (0.92) in contrast to the 
LR technique which had the minimum evaluated AUC (0.85). Table 2 shows the C-
index and the BS of the five models. The models developed from machine learning 
were, as expected, shown to have a great C-index and small BS for the interest 
outcomes of AKI. In particular, the RF model performed better than the other 
prediction models with a higher C-index and lower BS (C-index: 0.86, BS: 0.076).

Tree structure
Figure 2 depicts a tree-like algorithm processing variables to classify the sample. Each 
variable flowed through the tree and showed the importance of its value. Samples in 
the training set continue to branch out according to the classification results. Variables 
were given an entropy value and Gini index in the decision tree. In the random forest, 
the final prediction result was determined according to the majority votes of the final 
decision trees, with the importance of each variable ranked according to the Gini 
index.

Importance rank
The ranked variable value of the RF algorithm is shown in Figure 4, revealing the 18 
foremost variables. Variables were ranked according to the mean decreases in the Gini 
index. The top five contributing variables to the model were age, cholesterol, surgery 
time, serum creatinine, and platelet counts.
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Table 1 Patient characteristics

Variables Training set Test set P value

Patient population, n 1715 735

Age (yr) 55 (45-65) 54 (44-66) 0.323

Male, n (%) 1390 (81.0) 602 (81.9) 0.307

BMI (kg/m2) 24.6 (17.1-29.8) 24.9 (17.3-28.9) 0.956

Tumor size (cm) 4.5 (0.9-7.8) 4.8 (0.8-8.3) 0.283

AFP 8301 (489-35203) 8842 (503-43203) 0.058

WBC (× 103/µL) 7.3 (3.5-13.8) 7.5 (3.3-15.8) 0.128

Hemoglobin (mg/dL) 13.0 (10.8-15.6) 12.7 (10.5-16.5) 0.460

PLT (× 103/µL) 168 (102-245) 175 (113-260) 0.156

Creatinine (mg/dL) 0.92 (0.71-1.16) 0.90 (0.70-1.15) 0.128

ALB (g/dL) 3.8 (3.3-4.4) 3.7 (3.2-4.3) 0.603

AST (IU/L) 36.1 (6.3-163.5) 42.4 (5.8-173.4) 0.096

Diabetes mellitus, n (%) 109 (6.4) 81 (11.0) 0.098

Dyslipidemia, n (%) 395 (23.0) 191 (26.0) 0.063

ALT (IU/L) 39.8 (8.3-178.5) 42.3 (6.5-169.8) 0.132

Glucose (mg/dL) 11.8 (5.8-18.3) 12.5 (6.3-19.8) 0.285

Cholesterol (mg/dL) 162.2 (135.8-198.3) 168.0 (130.0-198.3) 0.323

PRBC (units) 0.5 (0.0-3.0) 0.8 (0.0-3.0) 0.112

Crystalloid (mL) 2318.8 (1500-3500) 2218 (1500-4000) 0.994

Surgery time (min) 278 (198-363) 285 (202-387) 0.856

Beta blockers, n (%) 257 (15.0) 67 (9.1) 0.155

Aspirin, n (%) 152 (8.9) 46 (6.3) 0.183

RAAS blocker, n (%) 91 (5.3) 61 (8.3) 0.360

Insulin, n (%) 48 (2.8) 44 (6.0) 0.059

Systolic blood pressure 113 (88-154.8) 118 (95-165.5) 0.658

Diastolic blood pressure 75 (55-84) 77 (58-89) 0.537

Mean arterial pressure 93 (71-119) 108 (68-121) 0.437

PLT: Platelet; AFP: Alpha-fetoprotein; WBC: White blood cell; BMI: Body mass index; ALB: Albumin; ALT: Alanine aminotransferase; AST: Aspartate 
aminotransferase; PRBC: Packed red blood cell; RAAS: Renin-angiotensin-aldosterone system.

DISCUSSION
Early detection and timely intervention are key to efficient treatment of AKI events
[27]. Therefore, it is a clinical priority to develop risk assessment systems to screen the 
high-risk population so that timely and effective interventions can be conducted. 
However, due to the multifactorial nature and the multilinear relationships of LSA-
AKI, previous risk scores have been inefficient in predicting AKI episodes[28]. In 
addition, development of such risk scores commonly used a small set of preoperative 
clinical variables. Nevertheless, other factors, including intraoperative events such as 
surgery duration and body fluid loss may also actively impact the development of 
LSA-AKI.

With the advent of big data, machine learning holds great potential in the field of 
AKI research due to its unparalleled ability in data processing[19]. Therefore, machine 
learning models may be powerful tools for AKI risk stratification and prediction[20]. A 
clinical decision support system based on the machine learning technique has many 
advantages, such as helping save clinicians' time and energy, increasing the efficiency 
of diagnosis and treatment, and improving real-time monitoring of patients' 
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Table 2 Model performance (Concordance-index, Brier score, and area under the curve)

Machine learning models Concordance-index Brier score AUC

Logistic regression 0.84 0.078 0.85

Support vector machine 0.86 0.083 0.90

Random forest 0.86 0.076 0.92

Extreme gradient boosting 0.80 0.083 0.87

Decision tree 0.83 0.085 0.90

AUC: Area under the curve.

Figure 2 Tree-like algorithm. Tree-like modelling can help analysis to reach the best prediction decision. Classification results for acute kidney injury (AKI) and 
non-AKI are shown in blue and orange, respectively. The smaller the Gini index, the darker the color. BMI: Body mass index; WBC: White blood cell; HGB: 
Hemoglobin.

conditions[29]. In this retrospective study, we developed, validated, and evaluated 
several LSA-AKI machine learning models based on preoperative and intraoperative 
features. It is important to note that we included intraoperative variables to construct 
the models to offer a better simulation of the real physiological conditions during liver 
surgery. The existent risk scores in predicting AKI events after liver surgery included 
the Kalisvaart Score[30] and the Park Score[31]. These risk scoring systems were 
developed from traditional regression analysis methods, with AUC values ranging 
from 0.70 to 0.85. In our study, the prediction models established by a machine 
learning approach had a high discriminatory power with AUC values ranging from 
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Figure 3 Areas under the receiver operating characteristic curve. LR: Logistic regression; SVM: Support vector machine; RF: Random forest; XGboost: 
Extreme gradient boosting; DT: Decision tree; AUC: Area under the curve.

Figure 4 Ranked variable values of the random forest algorithm. PLT: Platelet; AFP: Alpha-fetoprotein; WBC: White blood cell; BMI: Body mass index; 
CR: Creatinine clearance; HB: Hemoglobin; ALB: Albumin; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; SBP: Systolic blood pressure; DM: 
Diabetes mellitus.

0.85 to 0.92. The RF classifier had the largest evaluated AUC (0.92), in contrast to the 
LR classifier which had the minimum evaluated AUC (0.85). These models, derived 
from machine learning algorithms, showed an apparent improvement in LSA-AKI 
discrimination ability compared with that of the Kalisvaart and the Park Scores.

The first report of machine learning on LSA-AKI indicated that XGBoost had a high 
obtained AUC score for predicting LSA-AKI events [0.90, 95% confidence interval (CI): 
0.86-0.93], whereas the AUC of LR analysis was 0.61 (95%CI: 0.56-0.66)[6]. These 
results suggest that the traditional regression model does not perform better than 
machine learning models in predictive analysis, which may result from its linear 
assumption during data analysis[6].
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Figure 4 lists the factors involved in the development of the RF model and the 
contribution ranking of the related variables. These ranked variables may be potential 
risk factors for the development of LSA-AKI events. It is worth noting that the rank of 
the relevant variables did not include some previously known risk factors, such as 
intraoperative urine output. In addition, several factors previously thought to be 
unrelated to AKI development, such AFP, appear to be relevant. These findings might 
prompt new research ideas and better understanding of AKI events.

There are also some limitations in our study. First, this was a single-center 
retrospective study. Due to the relatively small sample size and the lack of external 
validation, our results may not be generalizable. Second, including all variables in the 
process of data collection is a very challenging task, and therefore some potentially 
relevant factors may have been ignored. Finally, most of the inputted features were 
implemented manually. We are still working on developing a real-time automated 
electronic health record algorithm that could collect perioperative patient information 
from a variety of data sources. With these new technologies, predictive models based 
on machine learning may have the potential to change clinical practice.

CONCLUSION
LSA-AKI is a postoperative complication with high incidence in patients with liver 
cancer. LSA-AKI has a negative impact on the postoperative recovery of patients and 
results in increased long-term mortality. As LSA-AKI is associated with a variety of 
factors, and given the complex nonlinear relationship among variables and outcomes, 
it is challenging for traditional regression analysis to predict its occurrence. In recent 
years, the intersection of machine learning and clinical medicine has allowed early 
detection of AKI. Our model, based on machine learning approaches, may be helpful 
for screening patients at high risk of AKI, ultimately helping to guide clinical decisions 
and facilitate prospective interventions for high-risk individuals. Future research 
should attempt to further improve the predictive performance of LSA-AKI by 
combining AKI biomarkers such as IL-18, NGAL and KIM1[32] with machine learning.

ARTICLE HIGHLIGHTS
Research background
Recently, machine learning has proven helpful in the interpretation of medical results 
and has potential for helping guide diagnosis and treatment, ultimately improving 
patient outcomes.

Research motivation
Machine learning methods to predict acute kidney injury (AKI) events remain largely 
unexplored.

Research objectives
We aimed to develop prediction models for AKI after liver cancer resection based on 
machine learning techniques.

Research methods
A total of 2450 patients who had undergone primary hepatocellular carcinoma 
resection at Changzheng Hospital, Shanghai City, China, from January 1, 2015 to 
August 31, 2020 were screened. Patients were randomly assigned to the training and 
the test sets at a ratio of 7:3. The training set was used for model development and 
optimization, while the test set was used for model validation and evaluation.

Research results
AKI events occurred in 296 patients (12.1%) after surgery. Among the original models 
based on machine learning techniques, the random forest (RF) algorithm had optimal 
discrimination with an area under the curve value of 0.92, compared to 0.87 for 
extreme gradient boosting, 0.90 for decision tree, 0.90 for support vector machine, and 
0.85 for logistic regression. The RF algorithm also had the highest concordance-index 
(0.86) and the lowest Brier score (0.076). The variables that contributed the most in the 
RF algorithm were age, cholesterol, and surgery time.
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Research conclusions
Machine learning technology can accurately predict AKI after hepatectomy.

Research perspectives
In the era of personalized medicine, our model based on machine learning can 
discriminate patients at high risk for AKI, thus helping guide clinical decisions and 
facilitating prospective interventions for high-risk individuals.
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