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ABSTRACT: Deep learning (DL) models in quantitative structure−activity relationship fed the molecular structure directly to the
network without using human-designed descriptors by representing molecule as a graph or string (e.g., SMILES code). However,
these two representations were oversimplification of real molecules to reflect chemical properties of molecular structures. Given that
the choice of molecular representation determines the architecture of the DL model to apply, a novel way of molecular
representation can open a way to apply diverse DL networks developed and used in other fields. A topological distance-based
electron interaction (TDEi) tensor has been developed in this study inspired by the quantum mechanical model of the molecule,
which defines a molecule with electrons and protons. In the TDEi tensor, the atomic orbital (AO) of each atom is represented by an
electron configuration (EC) vector, which is a bit string based on the presence and absence of electrons in each AO according to
spin indicated by positive and negative signs. Interactions between EC vectors were calculated based on the topological distance
between atoms in a molecule. As a molecular structure was translated into 3D array, CNN models (modified VGGNet) were applied
using a TDEi tensor to predict four physicochemical properties of drug-like compound datasets: MP (275,131), Lipop (4193), Esol
(1127), and Freesolv (639). Models achieved good prediction accuracy. PCA showed that a stronger correlation was observed
between the extracted features and the target endpoint as features were extracted from the deeper layer.

■ INTRODUCTION

Diverse quantitative structure−activity relationship (QSAR)
models have been used in drug discovery projects to reduce the
time and cost required for drug discovery by predicting
properties or activities of molecules with their structure
alone.1−3 Even though QSAR models have been successful in
filtering out poor molecules in the early phase of drug discovery,
the models have failed to discover good drug candidates based
on their prediction outcomes alone, which implies that the
prediction accuracy of QSAR models is not satisfactory yet.4

Recently, deep learning (DL) algorithms have been applied in
QSAR model development with expectation of significant
prediction accuracy improvement.5 Even though most of DL
studies claim that the application of DL algorithms improved
prediction accuracy,6−10 it is not certain whether use of DL can
truly improve prediction accuracy of QSAR models. Jiang et al.
compared the performance of machine learning (ML) models
and DL models on multiple datasets and concluded that a
descriptor-based support vector machine outperformed DL
models.11 In order to achieve a breakthrough in drug discovery
using DL, more research studies are still required to test diverse

deep neural network (DNN) architectures on drug-like
compounds to see if DL can truly improve prediction accuracy.
An artificial neural network was frequently used in traditional

QSAR studies with a descriptor vector as an input in a shallow
network architecture having only one hidden layer. A descriptor-
based DL model used a deeper network architecture by staking
more hidden layers inside the network. In more advanced DL
algorithm, methods to feed the molecular structures directly to
the network were developed instead of using molecular
descriptors. The molecular structure can be represented with
different theoretical models,7 and a topological graph is a
common way to define molecular structures with edges
(chemical bonds) and nodes (atoms). A graph convolutional
neural network (GCN) takes the molecular graph as an input,
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represented by an adjacencymatrix with the feature of each atom
and their neighbor information. The feature for each atom
represents the character of the atom based on its microenviron-
ment, and neighbor information is described by the distance
between the atoms, or connectivity features, such as chemical
bond features.8,12,13 The simplified molecular input line entry
system (SMILES) code is a string format representation for
molecular structures14 and is broadly used in public databases.
As molecular structures can be represented in a string format,
techniques used in natural language processing were adopted to
input molecular structures directly to the network through one-
hot encoding on each symbol of SMILES15 or SMILES-
embeddings.16 Even though the graph and SMILES were widely
used for molecular structure representation, these were
oversimplification of molecules in real life to reflect chemical
properties observed in molecular structures. Thus, more
molecular representations need to be developed to represent
molecules realistically. Given that the choice of molecular
representation determines the architecture of DNN to apply,
development of a novel representation can open a way to apply
diverse DL algorithms, developed and used in other fields, on
drug-like compound datasets.
A quantum mechanical (QM) model of the molecule is

represented by electrons and protons. Since a chemical bond can
be described by distribution of electrons between closely located
atoms, the input file for QM calculation did not specify bonding
information. In the SMILES and mol file format, intrinsic
hydrogen is usually omitted; however, it should be explicitly
specified in QM calculation to elaborate the electronic structure
of the molecule. QM descriptors have been used in a wide range
of QSAR studies to establish a correlation between molecular
orbital (MO) energy-derived descriptors and the target

endpoints.17 In order to calculate electron interactions between
atoms in a molecule, an autocorrelation descriptor was used to
calculate the interaction of QM properties between two atoms
within a certain topological distance.18,19 This method uses
human-preprocessed information based on different levels of
QM calculation theories. To my best knowledge, no DNN
studies defined a molecule with a QM model so that the DNN
automatically extracts QM property interactions. Given that
MO energies were calculated in QM through linear combination
of atomic orbitals (AOs), interactions between AOs in a
molecule can be used to generate an input for DLmodels so that
the network can efficiently weigh the interactions between AOs
for prediction of the target properties in a data-driven way.
In this study, a topological distance-based electron interaction

(TDEi) tensor was developed to convert themolecular structure
into a 3D array format to feed the electronic structure of the
molecule into convolutional neural network (CNN) architec-
ture. In the TDEi tensor calculation, AOs in each atom were
represented by the electron configuration (EC) vector, and the
number of interactions between each AO was calculated to
convert the molecular structure into the TDEi tensor.
Particularly, the TDEi tensor was designed to be adjustable
according to the size of the data and the complexity of the
molecular structure by changing the EC vector and topological
distance channel. Here, modified VGGNet was used in model
development with the TDEi tensor, and it achieved good
prediction accuracy for prediction of four physicochemical
properties: normal melting point (MP), water solubility (Esol),
octanol/water distribution coefficient (Lipop), and hydration
free energy (Freesolv). Analysis of the features revealed that a
higher correlation was achieved between the features and the

Figure 1. Calculation of electron configuration (EC) vectors of each atom. The EC vector of each atom was used in order to calculate electron
interaction matrices. (A) Indices of the full EC vector are atomic orbitals with different spins, and the EC vector was designed to be reduced by
integrating (B) atomic orbitals in an identical energy level (degenerate orbitals) and (C) in different spins. (D−F) Each EC vector was condensed to
reduce sparsity in feature space.
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target properties when features were extracted from the deeper
layer of the VGGNet.

■ METHODS

TDEi Tensor Calculation. In QM calculation, coefficients
for linear combination of AOs were estimated in the density
matrix, which is a diagonal matrix whose rows and columns are
AOs in a molecule. As a molecule can be translated into a matrix
format with AO information, the concept was adopted in the
TDEi tensor design. The size of the density matrix is dependent
on the number of AOs in themolecule; however, the input shape
must be equal regardless of the size of the molecule in order to
input them into the CNN. Therefore, the electron interaction
(Ei)matrix was designed with rows and columns with a fixed size
of the EC vector so that every input has an identically sized
matrix. As the size of the Ei matrix was fixed, molecular geometry
differences were lost in the matrix because the EC vector was
solely based on the composition of molecules. Since molecules
with identical compositions can have different molecular
geometries, the Ei matrix was generated for each topological
distance within a molecule to consider the topological structure
of a molecule.
In QM calculation, 3D geometry of a molecule is used to

calculate the distance between atoms. The 3D structure of
molecules can be obtained by geometry optimization; however,
calculated 3D geometry is not suitably accurate. The 3D
structures available in PubChem were also the optimized
structures. Thus, 2D structural information alone was used in
this study due to the absence of precise 3D molecular geometry
for compounds in datasets.
Definition of an Electron Configuration Vector. The TDEi

tensor was calculated based on the EC of atoms in a molecule.
The EC vector was defined in a previous study by giving a zero
for each unoccupied AO and one for each occupied AOwith two
different electron spins marked by positive and negative signs.20

The EC vector can be varied by combining degenerated AOs or

electron spins because these electrons possess identical levels of
energy. It is particularly significant in the case of handling small
sized data set to integrate the information for efficient model
training. Such information condensation was successful in the
prediction model development with a small dataset.21 The
possible variations of EC vectors are summarized in Figure 1.

Electron Interaction Matrix Calculation. Instead of using
chemical bonds, the TDEi tensor checks neighboring atoms to
define the topological structure of a molecular geometry.
Intrinsic hydrogens were not indicated in SMILES; however,
they should be specified in order to correctly calculate the
electronic structure of a molecule; therefore, all hydrogens
present in the molecule were specifically added. The
GetDistanceMatrix function implemented in RDKit (version
2018.09.01) was used to obtain the topological distance (TD) of
atoms within amolecule. Topological distance 0means the atom
itself (Figure 2A); thus, the EC vector of the atom was
multiplied by a row and a column in order to calculate the
number of electron interactions within the atom. The
topological distance 0 matrix is the sum of the Ei matrices for
all atoms within a molecule. When the topological distance was
higher than one, the pairs of atoms within the molecule were
taken to calculate the Ei matrices between them. Since the Ei
matrices between two paired atoms were calculated twice, they
were divided by two, and all Ei matrices for each topological
distance were summed. All Ei matrices with topological
distances greater than one were calculated as explained in
Figure 2B.

Concatenating Electron Interaction Matrices in Different
Topological Distances. The Ei matrix can be calculated from
any topological distance. In the example molecule (Figure 3),
atom pairs existed up to a topological distance of 4. The Ei
matrices from atom pairs with a greater topological distance can
be calculated if the size of the molecule increases. When Ei
matrices were prepared from predetermined topological
distances, they were concatenated to form the TDEi tensor
(Figure 4). As the TDEi tensor size can be varied based on the

Figure 2. Electron interaction matrices (Eis) in each specified topological distance were calculated based on the EC vector of each atom in a molecule.
(A) Eis within topological distance 0 are electron interactions within an atom, and (B) Eis within topological distance longer than 0 are Eis between
pair of atoms according to the distance. After calculation of Eis, they were summed within the identical topological distance.
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size of the EC vector and the topological distance, it can be
flexibly adjusted according to the size of the data or the diversity
of the molecular structure.
Preparation of Datasets. In this study, four datasets were

selected for the regression tasks: MP, Esol, Lipop, and Freesolv.
There are wide ranges of available datasets used in DL model
development studies8,11,13,16 such as human immunodeficiency
virus replication inhibition, human ß-secretase 1 inhibition,
blood−brain barrier penetration, toxicity in clinical trials, drug
adverse reactions, biological targets screened in Tox21 and
ToxCast, and PubChem BioAssay data; however, they were
seriously imbalanced whether they were binary or multiple
classification tasks. Thus, these were not used in this study.
The MP was obtained from the study of Tetko et al., in which

275,131 compounds were extracted with their MP values from
patent documents.22 The dataset was divided into training,
validation, and external test sets by a random split in a ratio of
8:1:1. ESOL, Freesolv, and Lipop were obtained from the study
by Jiang et al.11 The datasets were already divided into training,
validation, and externa test sets by the authors, thus I used them
as such. The number of data and the range of the endpoint are
listed in Table 1, and the chemical space of the datasets were
plotted to verify the structural diversity in the training,
validation, and external test sets (Figure 5).

Model Development and Validation. The CNN was
used in this study for model development, through Tensorflow
2.2.0,23 and the network architecture was modified from
VGGNet as (1) the size of the initial filter channel was reduced
by half, from 64 to 32, (2) the filter shape was reduced from
three by three to two by two, (3) average pooling was used to
minimize information loss, and (4) a convolutional layer was
applied once instead of twice before the pooling layer (Figure
6A). A grid search was performed on the CNN architectures,
activation functions, and epoch numbers to obtain the finest
hyperparameters for model development. Model training was
conducted using the NEURON system of the National
Supercomputing Center of South Korea, which is mainly
composed of GPU nodes (https://www.ksc.re.kr/eng/
resource/neuron). The prediction accuracy of the model was
measured using four metrics: mean absolute error (MAE),
normalized mean absolute error (NMAE), R square (R2), and
Spearman’s rank correlation coefficient (Sr).
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where ypred is the model’s prediction values, yobs is the
observation values, n is the number of compounds, yobs ̅ is the
average of observation values, and d is the difference between the
ranks of each compound. The prediction model with an R2

higher than 0.6, on the external test set, is considered as an
accurate model. Even though the model did not achieve R2 > 0.6,
it was still able to make an accurate prediction of the target value
when the NMAE was less than 10%. As the QSAR model was
used in the prioritization of compounds, an Sr higher than 0.6

Figure 3. Possible atom pairs. In this molecule, the longest topological
distance was 4D; however, further atom pairs can be found if the size of
the molecule increases.

Figure 4. Preparation of the TDEi tensor. The TDEi tensor was prepared by concatenating Ei matrices in each topological distance and designed to be
adaptable to structural diversity and the size of datasets by adjusting EC vectors and topological distances.
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implies that the model’s prediction is valid and useful in relative

comparison of chemicals, even if the NMAE is over 10%.24 It is

important to assess the model prediction accuracy with more

than one metric since one metric alone cannot properly
represent the prediction accuracy of the model.

Model Analysis. VGGNets with the TDEi tensor were
developed over four datasets; however, the model developed

Table 1. Datasets for Model Building

training set validation set test set

endpoints total num. num. range num. range num. range

MP 275,131 220,104 −199.0 to 517.0 27,513 −157.15 to 420 27,514 −185.18 to 438.65
Lipop 4193 3354 −1.5 to 4.5 420 −1.42 to 4.49 419 −1.17 to 4.5
Esol 1127 901 −11.6 to 1.58 113 −9.16 to 0.94 113 −8.40 to 1.02
Freesolv 639 511 −25.47 to 3.16 64 −9.76 to 3.43 64 −20.52 to 3.12

Figure 5. Structure diversities between training, validation, and external test set. (A) The normal melting point (MP) data was the largest data set.
Datasets for (B) Lipop, (C) Esol, and (D) Freesolv were the octanol/water partition coefficient, water solubility, and hydration free energy,
respectively.
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with the MP alone was analyzed because this model was trained
with the largest dataset in this study. In the QSAR study, the
capacity to separate different molecular structures was the most
significant point in the descriptor design. As the CNN extracted
features from the TDEi tensor, the performance of these features
in distinguishing compounds along the MP was examined. The
features were extracted from the middle of the VGGNet before
the final prediction value was calculated. Principal component
analysis (PCA) was used to project extracted tensors into 2D
space.

■ RESULTS AND DISCUSSION

TDEi Parameter Search. The TDEi parameter search
results are presented in the supplementary tables: MP (Table
S1), Lipop (Table S2), Esol (Table S3), and Freesolv (Table
S4). As the TDEi tensor can be varied by changing the EC
vectors and topological distances, the influence of different
options in the TDEi tensor on prediction accuracy was analyzed.

First, an appropriate EC vector size was searched. In the Lipop,
Esol, and Freesolv datasets, a dramatic decrease in prediction
accuracy was observed regardless of topological distance when
the EC vector size was reduced, whereas the MP model showed
a mild decrease in prediction accuracy. The full EC vector
achieved the highest accuracies in MP, Lipop, and Esol, whose
data size was greater than 1000, and the condensed full EC
vector in Freesolv, whose data size was less than 1000. According
to this experiment, full or condensed full EC vectors should be
used in the development of themodels for drug-like compounds.
Second, a suitable topological distance was checked. Desirable

prediction accuracy was achieved in the MP when the TDEi
tensor with topological distance 3 was used, and a further
increase in topological distance did not lead to a significant
improvement in the accuracy. In the other three datasets, the
TDEi tensor with topological distance 2 achieved the highest
accuracy. When prediction accuracy variation in the external test
set was compared between the MP and other three datasets,
prediction accuracy was gradually improved in the MP, whereas

Figure 6. CNN architecture used in this study and electron interactions integrated through each layer. (A) VGGNet was modified by decreasing the
channel size of filter, filter size in the convolutional layer to two by two, and the number of convolutional layers before the pooling layer. In grid search,
diverse CNN architectures were tested; however, increasing the number of layers did not improve prediction accuracy. (B) Electron interactions were
combined through each convolution and average pooling layer. Since the full electron configuration vector size was 53, all electron interactions were
considered when the TDEi tensor passed the last pooling layer. (C) Electron interactions integrated in each convolution and pooling layer were shown
as an example.

Table 2. Best Prediction Results for Each Endpoint

training set validation set test set

endpoints TD EC vector MAE NMAE R2 Sr MAE NMAE R2 Sr MAE NMAE R2 Sr

MP 3D full 31.959 4.46% 0.584 0.742 33.352 5.78% 0.553 0.720 32.874 5.27% 0.565 0.729
Lipop 2D full 0.450 7.50% 0.726 0.867 0.654 11.07% 0.525 0.740 0.620 10.93% 0.516 0.724
Esol 2D full 0.346 2.63% 0.948 0.976 0.557 5.52% 0.872 0.922 0.465 4.94% 0.896 0.951
Freesolv 2D full (cond.a) 0.425 1.48% 0.968 0.989 0.729 5.53% 0.875 0.942 0.563 2.38% 0.961 0.979

acond.: condensed.
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fluctuation of prediction accuracy was observed in other three
datasets. This difference may be derived from the data size
difference. As bigger data was used, the training process of the
model seems much stable than other models trained with
smaller data.
As the prediction accuracy of the model varied significantly

based on the EC vector size and the topological distance of the
TDEi tensor in each dataset, a preliminary search was required
to select themost suitable option for the TDEi tensor, which was
selected such as topological distance 3 with a full EC vector for
MP, 2 with a full EC vector for Lipop and Esol, and 2 with a
condensed full EC vector for Freesolv. In this study, experiments
were performed on small drug-like compounds. TDEi tensor

options could be changed if the structural diversity of datasets is
different from that of drug-like molecules.25,26

Model Prediction Accuracy. The VGGNet was optimized
with the best option of TDEi tensors in the preliminary search
for each dataset (Table 2), and the goodness-of-fit of eachmodel
is shown in Figure 7. The R2 of the MP model was 0.565 for the
external data set. Prediction errors between 0 and 400 °C were
relatively high as data points were widely distributed across the
best-fit line (Figure 7A). However, NMAE = 5.27% indicates
that prediction values were accurate on average, and Sr = 0.729
implied that the model correctly ordered the molecules
according to MP values. The Lipop model achieved an R2 of
0.516 on the external test set, and the NMAE was 10.93%. Even
though the NMAE is slightly over 10%, Sr = 0.724 showed that

Figure 7. Examination of goodness-of-fit on four endpoints: (A) normal melting point, (B) octanol/water partition coefficient, (C) aqueous solubility,
and (D) solvation free energy.
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the model can be used to compare lipophilicity of the molecules,
which is a common use of logP in chemical space visualization
(Figure 7B). The models developed by Esol and Freesolv
achieved high R2 (Figure 7C,D). Most of DL studies prove their
prediction accuracy with one metric; however, more than one
metric should be used to examine prediction accuracy of the
model thoroughly. Particularly, R2 can vary significantly even
though MAE is not varied much.
VGGNet was developed with more convolutional layers to

examine whether the prediction accuracy would improve
significantly. However, adding more convolutional layers or

increasing the number of nodes within fully connected layers did
not lead to a meaningful improvement in prediction accuracy.
Thus, CNN models with deeper layers, such as ResNet and
Inception, were not applied. This was similar to the previous
study where increasing the weights within the neural network
architecture did not always improve prediction accuracy.20

Moreover, it is important to find a model architecture with the
minimum number of weights achieving the highest prediction
accuracy because the use of an excessive number of weights in
the model could induce false positives in prediction outcomes.11

Figure 8. Results of principal component analysis (PCA). TheMP prediction model was analyzed since it was developed with the largest dataset. Each
point was colored based on theMP value: a brighter color implies a higherMP, whereas a darker color means a lowerMP. (A) Initially, the TDEi tensor
itself could not sufficiently prioritize compounds according to theMP. (B) Features extracted after the last convolutional layer showed that data points
were arranged along the trend of MP values. (C) The trend was strengthened after the last average pooling layer, and (D) stronger correlation was
established after the fully connected layer.
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Among the four datasets used in this study, the experimental
error in MP data was available in the reference. According to the
study, the inherent experimental error was 35 °Cmeasured from
18,058 duplicated compounds,22 which was larger than theMAE
of theMPmodel in this study. This experimental error indicated
that the lowest error achieved by the model is around 35 °C in
reality. Therefore, prediction accuracy improvement for this
dataset is limited by data itself, and ML and DL algorithms were
not able to make meaningful improvement any further. In DL-
based QSAR studies, datasets were collected from a wide range
of studies to increase the volume of data; however, it inevitably
leads to increase in noises in it since experimental values were
measured with different experimental protocols.27 Therefore,
understanding the experimental errors of the dataset is of great
aid in determining whether the prediction accuracy of the model
is meaningful. In DL model studies, the prediction accuracy of
the model was compared with others to prove that their own
methods achieved improvement in prediction accuracy. Even
though prediction accuracy of the DL model was numerically
improved compared to other methods, these achievements
might not be meaningful if the prediction errors were lower than
inherent experimental errors in the dataset since the prediction
error cannot be smaller than the experimental error.1

Unfortunately, it is difficult to find studies that compared the
prediction accuracy of the QSAR model with the experimental
errors of the target endpoint. It may be attributed to dataset
curation being done without an understanding of their inherent
experimental errors. Unless the prediction errors of QSAR
models are analyzed based on experimental errors in the dataset
first, a simple comparison between the prediction accuracy of
QSAR models may be inadequate to provide decisive evidence
of significant improvement in prediction accuracy. As models in
computer vision predict unambiguous labels, a higher prediction
accuracy always implies a better model. If the problem of
mislabeling was excluded from the discussion, then prediction
models in computer vision achieved great success because of

certainty in the dataset. It is practically impossible to obtain
experimental noise-free datasets in drug-like compound data-
sets. To make a successful case, inherent experimental errors in
the dataset must be understood precisely in order that the
models are trained and validated reliably.

Model Analysis. PCA was performed to exhibit how the
feature space was varied as the TDEi tensor was processed
within the VGGNet. In Figure 8, dots are brighter if the value is
higher and darker if they are lower. Initially, the original TDEi
tensor’s feature space established a low correlation with MP
(Figure 8A). Once the TDEi tensor was processed up to the last
convolutional layer (the 8th layer), compounds were well
prioritized (Figure 8B). An additional pooling layer strength-
ened the trend in data distribution by separating compounds
with a lowmelting point to the upper left side and a high melting
point to the lower right side in the projected space (Figure 8C).
When the extracted features from the convolutional layer and
pooling layer were processed in a fully connected layer, most of
the compounds were arranged with a stronger correlation with
their MP values (Figure 8D).
To examine the difference in feature extraction by deepening

the VGGNet, PCA was identically performed with an increased
number of convolutional layers. In Figure 6, the convolutional
layer is applied once before the pooling layer. In the deeper
VGGNet, convolutional layers were applied twice with identical
hyperparameters before the pooling layer. Features from the last
pooling layer, and the second fully connected layer were
extracted and visualized (Figure 9). PCA showed that the
features extracted after additional convolutional layers were
strongly correlated with the MP. Lack of improvement in
prediction accuracy even after the increase in correlation in the
deeper VGGNet may be attributed to inherent experimental
noise in the dataset.
In the CNN models trained with image data, initially, the

fundamental level of features was extracted, and a higher level of
features was found as the layer went deeper. The EC is

Figure 9.Results of using a deeper layer of VGGNet in feature space variation. Results shown in this figure were obtained by deepening the VGGNet in
Figure 6 by applying a convolutional layer twice before the average pooling layer. (A) Features extracted from the last pooling layer prioritize
compounds accurately. (B) After the fully connected layer, features were in stronger correlation with the target endpoint.
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fundamental information compared to atom-level features; thus,
the use of EC in the CNN was expected to fully harness the
CNN’s automatic feature extraction capacity through filters
establishing significant electron interactions for prediction of the
target endpoint. According to the analysis of electron
interactions in the CNN (Figure 6B,C), interactions with a
wider range of electrons were established as the TDEi tensor
passed through each convolution and average pooling layer, and
interactions between all AOs were calculated by the last average
pooling layer. Given that MOs were calculated through a
combination of AOs, values from the 10th layer, which is the
fifth pooling layer (Figure 6A), were similar to the molecular
orbital values of a molecule. Thus, the CNN automatically
extracts MO energy-like values through five convolution and
pooling layers, and then these values were fed into fully-
connected layers to calculate the physicochemical properties.
Feature space variation in PCA supported this idea because the
extracted features were rearranged with a stronger correlation
toward the MP values as the layer went deeper.
Comparative Study between CNN Models for Drug

Molecules. Most of DL studies used a GCN by defining
molecular structure as a graph. In my best knowledge, there were
only few studies that developed the CNNon drugmolecule data.
Application of CNN to molecular structure data was limited due
to the lack of adequate method to convert a molecular structure
into a 3D array.Meyer et al. used an image of a 2D structure as an
input for the CNN.28 However, the use of a 2D image caused
issue of structure standardization since the pixel of the image can
be easily changed if a molecular structure image on 2D space was
rotated. Moreover, chemical features cannot be extracted from
the 2D image alone, and thus, Meyer et al. used an additional
fingerprint-based prediction model to compensate the possible
disadvantage of the image-based CNN model. Hirohara et al.
used the SMILES matrix whose column is a one-hot encoded
vector of each symbol in SMILES.15 Hirohara et al. used
normalization algorithm on the SMILES string so that only one
SMILES code is produced from a molecule. However, in this
approach, the limitation is in applicable length of the SMILES
code and production of sparse information in the matrix.
Hirohara et al. fixed the size of matrix by 400 rows, maximum
length of SMILES string, and 42 columns, length of SMILES
symbols. Therefore, this is a limitation to calculate the SMILES
matrix for a larger molecule whose SMILES string is longer than
400 characters, and also it produces large sparse matrix when a
small-sizedmolecule was converted into the matrix. Karpov et al.
used SMILES embedding to prepare the input for the CNN
model.16 Preparation for SMILES embedding requires data
augmentation and a Transformer architecture training. Once the
Transformer encoder part was ready, then output of the encoder
part becomes a fixed size of matrix, which is called SMILES
embedding and used as an input for CNN to train the model for
prediction of target endpoint. Thus, its computational cost is
highly expensive.
The TDEi tensor efficiently standardizes chemical structures

without extra training processes by converting atoms into AO-
level information and applying a fixed-topological distance to
produce an identically sized tensor regardless of size and
complexity of a molecule. In the case of one-hot encodedmatrix,
a sparse matrix is produced since all vectors were zero except
only one relevant position, while the use of an EC vector makes
the TDEi tensor contain richer information than a one-hot
encoded vector. Therefore, the TDEi tensor is a better way to
overcome the standardization issue and input sparsity problem.

The fact that the TDEi tensor has a shape of 3D array is also
another advantage that all the CNN architectures developed in
computer vision can be easily applied to the TDEi tensor. On the
other hand, there is a disadvantage using a QM model of a
molecule. DL models that defined a molecule as a graph can
identify significant molecular fragments after the model was
trained.13,15,16 However, the TDEi tensor cannot be used for
molecular fragment identification since it is based on electrons
within a molecule and topological distance between them.

■ CONCLUSIONS
Graphs and SMILES were the most commonly used molecular
representations in DL-based QSAR models. In this study, a
TDEi tensor was developed to represent molecular structures
based on interactions between electrons within a molecule. The
TDEi tensor was calculated following the steps as (1) AOs of
each atom were described by an EC vector, which is a bit string
according to the presence and absence of electrons in each AO
based on their spin indicated by positive and negative signs, (2)
the number of electron interactions were calculated based on EC
vectors between two atoms, and (3) electron interactions in each
topological distance were concatenated within a 3D array. The
TDEi tensor prepared from a molecule was used as a CNN
model input.
Modified VGGNet was trained with the TDEi tensor as an

input to predict four physicochemical properties: MP, Lipop,
Esol, and Freesolv. The TDEi tensor was designed to be
adjustable by changing EC vector size and depth of topological
distance in order to cope with structural diversity and small size
dataset. The result in the preliminary search showed that
appropriate option for EC vector and topological distance depth
were varied for each dataset. When VGGNet was optimized for
each endpoint, models achieved good prediction accuracy.
In VGGNet, it was expected that the network weighs each

electron interactions automatically to predict the target
endpoint. In order to visualize the assumption, MP data was
analyzed. When feature space changes were traced by PCA, a
stronger correlation was found between the features and the
target endpoint as features were extracted from the deeper layer.
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