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ABSTRACT: Integration of omics data and deciphering the mechanism of a biological regulatory network
could be a promising approach to reveal the molecular mechanism involved in the progression of complex
diseases, including Alzheimer’s and Parkinson’s. Despite having an overlapping mechanism in the etiology
of Alzheimer’s disease (AD) and Parkinson’s disease (PD), the exact mechanism and signaling molecules
behind them are still unknown. Further, the acetylation mechanism and histone deacetylase (HDAC)
enzymes provide a positive direction toward studying the shared phenomenon between AD and PD
pathogenesis. For instance, increased expression of HDACs causes a decrease in protein acetylation status,
resulting in decreased cognitive and memory function. Herein, we employed an integrative approach to
analyze the transcriptomics data that established a potential relationship between AD and PD. Data
preprocessing and analysis of four publicly available microarray datasets revealed 10 HUB proteins, namely,
CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93, that may
be involved in the shared mechanism of AD and PD pathogenesis. Further, we identified the relationship
between the HUB proteins and transcription factors that could be involved in the overlapping mechanism
of AD and PD. CREB1 and HINFP were the crucial regulatory transcription factors that were involved in the AD and PD crosstalk.
Further, lysine acetylation sites and HDAC enzyme prediction revealed the involvement of 15 and 27 potential lysine residues of
CREB1 and HINFP, respectively. Our results highlighted the importance of HDAC1(K292) and HDAC6(K330) association with
CREB1 and HINFP, respectively, in the AD and PD crosstalk. However, different datasets with a large number of samples and wet
lab experimentation are required to validate and pinpoint the exact role of CREB1 and HINFP in the AD and PD crosstalk. It is also
possible that the different datasets may or may not affect the results due to analysis parameters. In conclusion, our study potentially
highlighted the crucial proteins, transcription factors, biological pathways, lysine residues, and HDAC enzymes shared between AD
and PD at the molecular level. The findings can be used to study molecular studies to identify the possible relationship in the AD−
PD crosstalk.

1. INTRODUCTION
Neurodegenerative diseases (NDDs) such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD) are forms of
dementia characterized by the progressive loss of neuronal cells
due to the accumulation of toxic protein aggregates. Further,
excessive neuronal cell death due to protein aggregates causes
synaptic dysfunction, memory impairment, and cognitive
defects.1 AD is the most prevalent form of dementia best
characterized by the presence of amyloid plaques and neuro-
fibrillary tangles produced by unsystematic proteolytic process-
ing of amyloid peptide-protein and hyperphosphorylation of the
tau protein.2 For example, Kollmer et al., 2019, demonstrated
that β-amyloid (Aβ) fibrils from meningeal Alzheimer’s brain
tissue are polymorphic but consist of similarly structured
protofibrils.3 Similarly, Bu et al., 2017, concluded that blood-
derived Aβ protein induces AD pathologies that result in the
functional impairment of neurons.4 In contrast, PD, which is the
secondmost commonNDDs, is characterized by the progressive
loss of dopaminergic neurons in the substantia nigra pars
compacta. The pathological feature of PD is the accumulation of
the toxic α-synuclein5 protein and the formation of Lewy bodies,
which cause neuronal cell death and ultimately lead to synaptic

dysfunction and memory loss.6,7 Mounting evidence suggests
the common overlapping molecular phenomenon in the
pathology of AD and PD. However, the exact molecular
pathways and signaling molecules being involved are poorly
understood.Moreover, the active treatment of AD and PD is still
unknown due to a lack of understanding of the molecular
mechanism of disease progression. Accumulating evidence
suggests that protein acetylation and deacetylation play a
significant role in the pathogenesis of AD and PD.8−10 For
instance, Choi et al., 2019, demonstrated that acetylation of tau
facilitated the recruitment of Hsp40, Hsp70, and Hsp110, which
causes tau association with E3 ligases and results in its
degradation through a proteasomal pathway.11 Similarly,
Wang et al., 2020, concluded that AMPK reduces tau acetylation
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and rescues memory impairment by activating sirtuin 1 in APP/
PS1 mice.12 Further, Fan et al., 2020, concluded that PGC-1α

translocation due to its acetylation promotes neuroprotection
from oxidative damage in a PD experimental model.13

Figure 1. Methodology of the study: workflow and steps that were considered along with the datasets collected and processed to identify shared
molecular signatures between AD and PD. The figure also highlights the involvement of the acetylationmechanism andHDAC enzymes in the AD and
PD crosstalk.
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In the pathogenesis of NDDs such as AD and PD, HDACs/
HATs are involved in the regulation of biological processes such
as apoptosis and autophagy, cell-cycle arrest, inflammatory and
immune response, oxidative stress, and mitochondrial dysfunc-
tion, which cause neuronal cell death and lead to memory
impairment and cognitive defects.14−18 Different experimental
studies have confirmed the role of HDAC and its inhibitors in
the pathogenesis of AD and PD. For instance, the over-
expression of HDAC3 in the hippocampus increases spatial
memory deficits and amyloid plaque load, whereas HDAC2
dysregulation in the nucleus basalis of Meynert was observed
during the progression of AD.19,20 Similarly, the inhibition of
HDAC through valproic acid increases histone acetylation levels
and decreases the expression of proinflammatory biomarkers in
the LRRK2R1441Gmicemodel of PD.21 Further, the inhibition
of HDAC4/5 with the administration of LMK235 protects
dopaminergic neurons against 1-methyl-4-phenylpyridinium
(MPP+) and α-synuclein-induced neuronal cell death.22 Apart
from HDAC and its inhibitors, acetylated lysine residues of
histone and non-histone substrates also play a crucial role in AD
and PD pathogenesis. For example, Yakhine-Diop et al., 2018,
demonstrated the acetylation of H4 at K5, K8, and K12 and its
increased expression in IPD cells in PD pathogenesis. The
authors also confirmed the acetylation of α-tubulin at K40 and
the role of PCAF/p300 in α-tubulin acetylation.15 Similarly,
Pilkington et al., 2020, concluded that the acetylation of Aβ at
K16 and K28 promotes the extent of aggregation and inhibits
fibril formation and oligomerization. However, the authors
concluded that the acetylation of Aβ at K16 is preferred over the
acetylation at K28.23 A recent study demonstrated the crucial
role of lysine residues in the PTM crosstalk, namely, acetylation,
ubiquitination, and SUMOylation in AD and PD pathogenesis.
The authors concluded that the inhibition of PARP1 acetylation
(K249, K331, K337, K528, K600, K637, K700, and K796) and
the simultaneous activation of ubiquitination and SUMOylation
at identical lysine residues rescue neuronal cell death.24 Further,
lysine residues are also crucial for subcellular localization of
proteins, where the loss of K304 resulted in CREB nuclear
localization and modification of HDAC1 at K444 and K476,
resulting in increased biological activity.25,26 In addition, Kirsh
et al., 2002, demonstrated that SUMOylation of HDAC4 at
K559 takes place at a nuclear pore complex RanBP2 and is
coupled to its nuclear import.27 Thus, the identification of
crucial lysine acetylating/deacetylating residues in novel
pathological biomarkers provide considerable significance in
unraveling a novel therapeutic approach for the treatment of AD
and PD. Extensive research is ongoing on proteomics,
transcriptomics, and epigenetic-based approaches to determine
the molecular signatures and pathways involved in disease

progression using a network biology approach based on
microarray datasets. This will enable us to understand the
molecular basis of the disease and the exact mechanism of
disease progression.
Further, the acetylation and deacetylation of transcription

factors (TFs) play a vital role in regulating cellular andmolecular
processes, which activate different neuronal signal transduction
pathways such as PI3K/Akt and MAPK pathways, cAMP/PKA
pathways, and Ca2+/CaMK cascade. For instance, Fusco et al.,
2016, concluded that the acetylation of CREB1 at K122
increases Hes-1 expression under low glucose concentrations,
facilitating neurogenesis by removing sirtuin 1 on the Hes-1
promoter region.28 Similarly, Paz et al., 2014, demonstrated that
the acetylation of CREB at K136 facilitated its interaction with
the CBP bromodomain that augmented the recruitment of this
coactivator to the promoter.29 Thus, these pieces of evidence
concluded the importance of acetylation of TFs in gene
regulation.
Herein, we aim to investigate the potential conventional

biomarkers and regulatory TFs involved in the pathogenesis of
AD and PD simultaneously with the help of microarray datasets
and the network biology approach. The identified proteomic
and transcriptomic signatures were further analyzed to
investigate the potential lysine residue for acetylation and
deacetylation activity, along with the determination of the type
of HDAC enzyme being involved in the disease progression.
Lastly, the study focuses on investigating conserved amino acid
residues involved in the lysine acetylation/deacetylation process
along with the structural selectivity of molecular signatures,
which could be crucial for protein acetylation or deacetylation
activity.

2. RESULTS AND DISCUSSION

2.1. Transcriptomic Signatures of AD and PD. The
obtained datasets were normalized through quantile normal-
ization and log2 transformation. Statistically, in microarray data,
the intensity values are relative numbers, and thus log2
transformation is necessary to make variations similar across
the order of magnitude. Boxplots of data before normalization
and after normalization were created to check the background
corrections in the datasets (Supplementary Figure 1). Further,
independent histograms of normalized data with a color
intensity such as green for control and red for the disease were
prepared to check the variation in the required datasets
(Supplementary Figure 2B). Our results identified 4736
(GSE7621), 2961 (GSE19587), 1989 (GSE1297), and 3634
(GSE28146) differentially expressed genes (DEGs) (Figure 1)
(Table 1). Independent volcano plots of different datasets were
used to measure the extent of DEGs in AD and PD

Table 1. Datasets Obtained from the GEO Database for AD and PD

GEO accession
number platform sample source

total
samples

control
samples

disease
samples

total
DEGs

upregulated
DEGs

downregulated
DEGs

Alzheimer’s Disease
GSE1297 Affymetrix Human Genome U133A

Array
hippocampal
region

31 9 22 1989 949 1040

GSE28146 Affymetrix Human Genome U133
Plus 2.0 Array

hippocampal
region

30 8 22 3634 1718 1916

Parkinson’s Disease
GSE7621 Affymetrix Human Genome U133

Plus 2.0 Array
Substantia nigra 25 9 16 4736 2508 2228

GSE19587 Affymetrix Human Genome U133A
2.0 Array

Substantia nigra 22 10 12 2961 1457 1504
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Figure 2. It represents the protein−protein interaction network of the top 15 ranked or HUB genes involved in Alzheimer’s disease, Parkinson’s
disease, Alzheimer’s disease−Parkinson’s disease union merged network, and Alzheimer’s disease−Parkinson’s disease intersection merged network.
Further, the top 15 proteins of the individual network were mapped against the clusters of AD, PD, AD−PD intersection, and AD−PD union network
to extract HUB proteins.
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(Supplementary Figure 2A). After identifying DEGs, the probe
IDs were converted into respective gene symbols, and then Venn
analysis of DEGs was performed. Venn analysis results
demonstrated 579 DEGs in AD while 406 DEGs in PD.
2.2. PPI Interaction Analysis. PPI interaction analysis

confirmed the presence of 492 proteins with 2335 physical
interactions and 311 proteins and 1014 physical interactions in
the AD and PD network, respectively. The clustering coefficients
of AD and PD networks were found to be 0.244 and 0.248,
respectively, which implies a higher coexpression of DEGs in AD
networking than in PD networking. Further, the characteristic
path lengths of AD and PD networks were 3.504 and 3.390,
respectively. Herein, the network centralization was found to be
0.107 and 0.200, whereas the network heterogeneity was found
to be 1.028 and 1.057 for AD and PDPPI networks, respectively.
The analysis found that the network densities of AD and PD
networks are 0.019 and 0.021, respectively, which indicates that
a particular node in the PD PPI network has more participants
compared to the AD PPI network (Figure 2).
Further, network biology using PPI networking becomes an

important tool to establish a relationship between two proteins
and identify the interactive pattern of proteomics data.30 In
addition, PPI networking provides an in-depth understanding of
the biological characteristics of proteins encoded through DEGs
and helps in estimating their biological significance.31,32 The PPI
network is characterized by the presence of nodes and edges
along with other topological features, namely, clustering
coefficient, characteristic path length, network density, and
network centralization.33 The protein in the networks were
represented as nodes marked in a circle, while their biological
association with other proteins were represented as edges
marked as lines.34 The clustering of the network determines the
extent to which genes in the network coexpressed in biological
conditions based on distance calculation. Thus, the higher the
clustering coefficient, the lower the probability of proteins
coexpressing in the biological network.35 The characteristic path
length denotes the best possible configuration of the biological
network.36 Network homogeneity refers to a nonuniformity in
character,37,38 while network centralization or centrality
identifies the network’s essential vertices or proteins.39,40

Another essential feature of biological networks is network
density, which measures the average number of connections of a
particular protein or node divided by the total number of
participant proteins in the network.41 Statistically, the

topological coefficient is a relative measure for the extent to
which a particular protein in the given network shares neighbors
with other proteins. The proteins that have one or no neighbors
are assigned a topological coefficient of zero.42 The topological
analysis of the PPI network provides a way to identify HUB
proteins, which pass signaling stimulus to other proteins or
nodes in the network. Subsequently, HUB proteins were
identified based on topological features of the PPT network,
especially node degree (number of proteins interacting with
single protein), which may serve as potential biomarkers in AD
and PD therapeutics.

2.3. Network Clustering and Proteomic Signatures of
AD and PD. The merging of two PPI networks was done in two
steps. In the first step, the PPI networks of AD and PD were
combined by a union to ensure complete coverage of relevant
proteins involved in the study, followed by extraction of
common proteins (nodes) of the individual PPI network. The
AD−PD union PPI network consists of 784 proteins and 3344
physical/functional interactions, while the AD−PD intersection
biological network consists of 19 proteins and five physical/
functional interactions (Figure 2). The top 15 highly connected
proteins of individual AD, PD, AD−PD (union), and AD−PD
(intersection) PPI networks were extracted. The HUB proteins
were marked according to their presence in the respective PPI
cluster. CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B,
ARHGEF9, USP5, INPP5D, and NUP93 were found to be the
most prominent proteins found in clusters of AD, PD, and AD−
PD (union) PPI networks. Table 2 describes the role of HUB
proteins in the pathogenesis of AD and PD (Supplementary
Table 1). Here, our network analysis study demonstrates the
involvement of CDC42, CD44, FGFR1, MYO5A, NUMA1,
TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93 in the onset
and progression of AD and PD. Studies demonstrated that these
proteins were associated with different biological processes. For
instance, the activation of FAK/Rac1/CDC42-GTPase signal-
ing rescued the impaired microglial migration response to Aβ42
in triggering the receptor expressed on myeloid cells 2 loss-of-
function.43 Similarly, the inhibition of FGFR1 effectively
blocked the GLP-promoted NPC proliferation in the mouse
model of AD.44 However, the exact role of FGFR1 and CDC42
in the AD and PD crosstalk is still missing. In addition, Lim et al.,
2018, concluded that CD44 activates tau pathology, whereas
Neal et al., 2018, concluded that GPNMB attenuates astrocyte
inflammatory response through the CD44 receptor.45,46

Table 2. Role of HUB Genes in the Pathogenesis of Alzheimer’s Disease and Parkinson’s Disease Identified with the Help of
MalaCards

HUB genes description involvement in Alzheimer’s disease involvement in Parkinson’s disease

CDC42 Cell Division Cycle 42 establishes neuron polarity, regulates cell morphology and
mortality, and regulates cell cycle

inhibits the activating features of microglia

TUBB4B Tubulin β 4B regulates inflammatory response serves as a target for PD-associated toxins
CD44 CD44 Molecule (Indian Blood

Group)
interacts with mutant p53 activity causes α-synuclein-induced migration of BV-2

microglial cells
FGFR1 Fibroblast Growth Factor

Receptor 1
involved in axonal projection and inhibits apoptosis elevates DA levels and protects the specific

midbrain neurons
MYO5A Myosin VA (Heavy-Chain, Myoxin) induces cell motility mutant MYO5A exhibits alterations in dopamine

metabolism
NUMA1 NuclearMitotic Apparatus Protein 1 identifies transported MSC in the brain helps in mitotic spindle formation
ARHGEF9 CDC42 Guanine Nucleotide

Exchange Factor (GEF) 9
plays a role in integrin signaling and axon guidance signaling encodes synaptic proteins, and loss of function

results in intellectual disability
USP5 Ubiquitin-Specific Peptidase 5 compromises tau levels deletion causes increased p53 activity
INPP5D Inositol Polyphosphate-5-

Phosphatase, 145 kDa
modulates inflammatory response involved in immune response

NUP93 Nucleoporin 93 kDa promotes nuclear accumulation of mRNA inhibits mRNA transport
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Further, loss of MYO5A resulted in structural and functional
alterations in the rat brain through alterations in dopamine

metabolism, whereas TUBB4B may be a part of the signaling
cascade involved in the etiology of PD and is related to an

Figure 3.Represents the bar graph of the top 10 biological processes, molecular functions, and biological pathways of HUB proteins along with their p-
value and involved HUB proteins. The axis of the bar represents the p-value. The figures also represent the critical cellular components in which HUB
proteins lie with their corresponding p-value. Terms with a P-value ≤ 0.05 were considered significant.
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inflammatory response.47,48 ARHGEF9 encodes collybistin
involved in the postsynaptic clustering of glycine and inhibitor
γ-aminobutyric acid receptors.49 Further, Griffin et al., 2020,
concluded the upregulation of ARHGEF9 during astroglia
response to Aβ oligomers.50 USP5, a stress granule protein,
increases TNFα expression through the ubiquitin-proteasome
pathway and regulates inflammatory response through
Smurf1.51 Recently, Tsai et al., 2021, demonstrated that
INPP5D was positively associated with amyloid plaque density
in the human brain.52 Thus, these pieces of evidence concluded
that the abovementioned HUB proteins are associated with
neurological diseases in some manner through the regulation of
different biological phenomena, yet their relationship in the AD
and PD crosstalk is still missing. Further, HUB proteins, namely,
NUMA1 and NUP93, lack the potential involvement in the
pathogenesis of either AD and PD.
2.4. Gene-Set Enrichment Analysis and Pathway

Analysis. To identify the complicated relationship between
the highly dense connected components of PPI networks (AD,
PD, AD−PD union, and AD−PD intersection), pathway
analysis and GO analysis were performed. Moreover, we
extracted the top 10 biological pathways, cellular components,
and molecular functions of highly interconnected proteins
involved in neurodegeneration, as demonstrated in Figure 3.
Moreover, after GO analysis, the extracted highly intercon-
nected proteins were subjected to pathway analysis, which
enables the identification of the molecular pathway, followed by
the interconnected proteins in the progression of AD and PD.
Figure 3 demonstrates the top 10 biological pathways in which
these proteins were involved. Gap junction (TUBB4B), GnRH
signaling pathway (CDC42), and Rap1 signaling pathway
(CDC42 and FGFR1) were critical pathways in which HUB
proteins were involved and may be potential biological pathway
targets for the AD and PD crosstalk. For instance, Esteves et al.,
2017, demonstrated that nicotine effectively prevented
prefrontal long-term potentiation and memory deficits induced
by streptozotocin in AD,53 whereas Carvajal-Oliveros et al.,
2021, demonstrated that nicotine suppresses the PD-like
phenotype induced by synphilin-1 overexpression through

increased dopamine levels.54 Similarly, a study concluded that
the balance between dopamine and adenosine signals regulates
the PKA/Rap1 pathway in spiny neurons, where D1R and A2AR
agonist enhanced PKA-mediated Rap1 phosphorylation in vivo
and in vitro.55 Further, studies demonstrated that impaired
GnRH production is directly linked to oxidative stress and
mitochondrial dysfunction in neurons.56,57 Another significantly
enriched pathway is the gap junction that is involved in the
pathogenesis of AD and PD.58,59 For instance, Angeli et al.,
2020, demonstrated the altered expression of glial gap junction
proteins, namely, Cx43, Cx30, and Cx47, in the 5XFAD model
of AD,60 whereas Maulik et al., 2020, concluded that Aβ
regulates the gap junction protein connexin 43 in cultured
primary astrocytes.61 Consistent with this, the results demon-
strated the importance of CDC42, TUBB4B, and FGFR1 in the
pathogenesis of AD and PD. Further, these three HUB proteins
were a potential target for identifying the relationship between
AD and PD.

2.5. CREB1 and HINFP: Essential RegulatoryMolecules
in AD and PDCrosstalk with High AcetylationMarks.The
functions of a particular protein depend on its subcellular
location. Mounting evidence demonstrated that acetylation was
highly observed on nuclear proteins involved in chromatin
regulation and transcription. This observation is consistent with
the known nuclear function of acetyltransferase, deacetylase, and
acetylated lysine-binding bromodomain proteins.62 For in-
stance, a study demonstrated that in response to oxidative
stress, TyrRS becomes highly acetylated, which causes its
nuclear translocation, where sirtuin 1 and PCAF/p300 regulate
its nuclear translocation in an acetylation-dependent manner.63

Further, Zhao et al., demonstrated that silica nanoparticle-
mediated sirtuin 1 suppression markedly increased p53
acetylation and cytoplasmic localization.64

Herein, we analyzed the cellular location of HUB proteins
with CELLO version 2.5: subCELlular LOcalization predictor.
Among the 10 HUB proteins extracted, 40% were cytoplasmic
proteins, 50% were nuclear proteins, and 10% were extracellular
proteins. CD44 (1.974), FGFR1 (2.078), INPP5D (3.954),
MYO5A (3.300), and NUMA1 (1.858) were predicted as

Table 3. Biological Significance of Top Interacting Transcription Factors in the Progression of Alzheimer’s Disease and
Parkinson’s Disease, along with Their Degree of Node and Interacting Partners
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Figure 4. (A) PPI network of HUB genes with associated regulatory transcription factors. Among the transcription factors, FOXC1 (8) has the highest
number of interacting proteins, followed by GATA2 (5), CREB1 (4), FOXL1 (3), NFIC (3), HINFP (3), and SREBF1 (3). The total number of
proteins and physical/functional interaction in HUB proteins and transcription factors in protein−protein interaction networks are 52 and 73. (B)
Acetylation signatures of non-histone protein substrates, such as HUB genes and transcription factors. CREB1 and HINFP are the most prominent
acetylated transcription factors, whereas CDC42, CD44, and TUBB4B are the most crucial non-histone protein acetylating substrates.
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nuclear proteins, while CDC42 (2.037) was predicted as an
extracellular protein. Similarly, ARHGEF (2.770), NUP93
(2.534), TUBB4B (3.682), and USP5 (2.207) were predicted
as cytoplasmic proteins. Studies demonstrated that acetylation
activates STAT3 through the nuclear translocation of CD44,
whereas the acetylation of histone proteins controls FGFR1
polymorphisms and isoform splicing.65,66 In addition, lysine
acetylation of SCF FBXL19 ubiquitin E3 ligase increases its
activity and stabilization that targets CDC42 for its ubiquitina-
tion and degradation.67

Further, we identified HUB protein−TF interaction and
detected central regulatory molecules using topological features.
Thus, we extracted seven regulatory TFs, namely, FOXC1 (8),
GATA2 (5), CREB1 (4), FOXL1 (3), NFIC (3), HINFP (3),
and SREBF1 (3). Subsequently, the cross-validation of TFs in
the pathogenesis of AD and PD was identified with the help of
MalaCards, as demonstrated in Table 3. TFs are transcriptional
regulators that are involved in the pathogenesis of AD and
PD.68−71 In this study, we also studied the potential relationship
between TFs and HUB proteins to identify mutual transcrip-
tional regulators of the identified HUB proteins. The identified
TFs are FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and
SREBF1 as a regulator of HUB proteins commonly expressed in
AD and PD pathogenesis (Figure 4A). For instance, Xu et al.,
2019, concluded that the deletion of CREB1 diminishes the
effect of DJ1 on TH regulation through the deregulation of the
CaMKKβ/CaMIV/CREB1 pathway.72 Similarly, the deletion of
CREB1 promotes proinflammatory changes in the mouse
hippocampus.73 Moreover, He et al. concluded that the
deacetylation of EZH2 through SIRT6 causes an increased
association between EZH2 and FOXC1 that exerts anti-
inflammatory response, whereas Emelyanov et al., 2018,
concluded the positive correlation between dopamine and
GATA2 expression in PD.74,75 FOXL1 is implemented in the
pathogenesis of NDDs, while NFIC was identified as novel loci
in AD.76−78 Studies demonstrated that HINFP is a coactivator in
the sterol-regulated transcription of PCSK9, a target gene of
SREBP2 involved in the tau alterations, which contribute to
disturbed cholesterol homeostasis in AD.79,80 Lastly, genetic
mutation analysis concluded that genetic polymorphism
rs11868035 was associated with susceptibility to PD in the
Chinese population.81,82 Thus, the evidence mentioned above
proves the potential link of identified TFs in the progression and
pathogenesis of AD and PD and acts as a specific biomarker for
their therapeutics. However, their potential role in the AD and
PD crosstalk is still missing.
Moreover, HUB genes and TFs were analyzed for their

acetylation signature to understand the involvement of
acetylation and deacetylation processes associated with HUB
genes and TFs in the pathogenesis of AD and PD. Herein,
CDC42 (10), CD44 (11), FGFR1 (11), MYO5A (13),
NUMA1 (14), ARHGEF9 (11), USP5 (14), and NUP93 (15)
were predicted as the most non-histone acetylating substrates
amongHUB proteins, while CREB1 (16) andHINFP (10) were
predicted as non-histone acetylating substrates among TFs
(Figure 4B) (Supplementary Figure 3). Lately, to study the
epigenetic regulation of HUB proteins and TFs, we investigated
histone modification sites found in the coding region of HUB
proteins and TFs implicated with NDDs and identified a range
of sites.83,84 Thus, this raises the possibility that PTMs, namely,
acetylation, deacetylation, ubiquitination, SUMOylation, meth-
ylation, and others, are the primary means of alteration in these
proteins that need further investigation. Further, histone

acetylation signatures are primarily related to the markers of
activity at regulatory elements, namely, promoters and
enhancers.85 Moreover, understanding the specific role of
histone acetylation at different genomic elements has the
potential to improve disease therapeutics by increasing the
target specificity.86 In addition, histone signatures enable us to
understand the biological phenomenon, namely, chromosome
packaging, transcriptional activation, and DNA packaging.
Further, studies demonstrated the correlation between histone
acetylation levels and gene expression in vivo and in vitro studies.
For instance, curcumin, a CREBHAT activity inhibitor, causes a
reduction in acetylation levels of both histone H4 and H3,
whereas HDAC inhibitors, namely, butyric acid and valproic
acid, inhibit the H4 acetylation and CREB1 activity in vivo.87,88

Similarly, Guo et al., 2011, demonstrated that excessive alcohol
exposure decreases CREB-binding protein expression and
acetylation status of both H3 and H4 in the cerebellum of
ethanol-induced rats.89 Similarly, another study identified that
GATA1 displaces GATA2, which is associated with transcrip-
tional repression, and causes a reduction in the histone H3K4
acetylation status.90 In addition, Li and Liu et al. concluded that
HINFP forms a complex with NPAT that recruits the HAT
cofactor TRRAP to facilitate H4 acetylation at the PCSK9
promoter, whereas Gruber et al. concluded that the requirement
for the acetyltransferase activity of HAT1 for proliferation might
point to the HAT1-dependent acetylation of non-histone
substrates, for example, Hinfp, a factor also shown to bind H4
promoters.91,92 Forma et al., 2018, demonstrated that an
increased expression of FOXA1 and FOXC1 was associated
with increased acetylation levels of histone H3, whereas He et al.
concluded that increased FOXC1 protein levels in RAW246.7
cells were associated with altered levels of H3 acetylation.74,93

2.6. Potential Lysine Residues for Protein Acetylation.
The correlation between acetylation and HDAC enzymes has
been studied extensively in the past.94−96 For instance, MS-275,
a class I HDAC inhibitor, promotes rapid acetylation of the YB-1
RNA-binding protein at K81,97 whereas the HDAC1 complex is
able to regulate histone H3 acetylation at K18.98 Further, Topuz
et al., 2019, demonstrated that administration of the HDAC
inhibitor, namely, sodium butyrate, increases H2B acetylation at
K5 that leads to increased spatial learning and long-term
memory in the rat hippocampus.99 Similarly, Choi et al., 2017,
demonstrated that increased acetylation of peroxiredoxin 1 at
K197 through HDAC6 inhibition leads to the recovery of Aβ-
induced impaired axonal transport.100 In addition, the role of
SIRT1 in regulating pathogenic tau acetylation at K174 and in
suppressing the spread of tau pathology has been demonstrated
in a mouse model of tauopathy.101 Thus, based on the
abovementioned evidence, we identified acetylation sites and
HDAC enzymes of CREB1 and HINFP through two online
tools, namely, MuSite deep and PSKAcePred. For MuSite Deep,
statistically, a high confidence score relates to the high
probability of lysine acetylation at a particular lysine amino
acid. A score above 0.5 is considered as a high confidence score
and a high probability of lysine acetylation, whereas a score
below 0.2 is considered as a low confidence score where the
probability of lysine acetylation is negligible, and a score
between 0.2 and 0.5 is considered as the site with moderate
probability. Further, for PSKAcePred, a score above 0.7 is
considered a high confidence score and the probability of lysine
acetylation is very high, whereas a score between 0.5 and 0.7 is
considered a moderate confidence score and the probability of
lysine acetylation is relatively less as compared to acetylation at a
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high confidence score lysine site. The CREB1 peptide sequence
(P16220.2) has 15 potential acetylating lysine residues. The
respective acetylation-site prediction scores were determined
with the help of MuSite deep and PSKAcePred, as shown in
Supplementary Table 2. MuSite predicted K330 as an essential
lysine acetylation site with a high confidence score of 0.557.
Similarly, PSKAcePred predicted K94, K292, K303, K304, and
K309 as potential protein acetylation lysine residues with a high
confidence score of 0.872, 0.737, 0.856, 0.924, and 0.994,
respectively. From the protein acetylation-site prediction of
CREB1, it may be concluded that K304, K309, and K330 were
essential for acetylating lysine residues. The type of HDAC
enzymes involved in the deacetylation of CREB1 was predicted
and found that HDAC1, HDAC2, and SIRT7 were important in
CREB1 deacetylation, where HDAC1 was involved in K292
(3.35) deacetylation, HDAC2 involved in K330 (10.67), and
SIRT7 involved in K94 (13.26), K303 (12.54), and K304
(12.90) deacetylation. The results demonstrated that the
binding propensity of SIRT7 and HDAC2 is very low as
compared to the binding propensity of HDAC1. Thus, the
results show that K292 is a critical lysine residue for CREB1
acetylation and deacetylation processes with HDAC1 as its
deacetylating enzyme involved in the pathogenesis of AD and
PD. In addition, Hansen et al., 2019,62 demonstrated the
acetylation of CREB1 at K330 and K136, whereas Paz et al.,
2014, demonstrated that sirtuin 1 directly downregulates the
CREB transcriptional activity by binding and deacetylating
CREB at K136, thereby reducing CREB interaction with
CBP.102 Further, Lu et al., 2003, confirmed the acetylation of
CREB1 at K91, K94, and K136 within the activation domain
through CBP. However, they also concluded that a single
mutation of the putative CBP acetylation sites has no significant
effect on the transactivation potential of CREB.103 Thus, these
pieces of evidence suggest the possibility of CREB1 acetylation
and its binding with HDAC enzymes in the regulation of gene
transcription.
Moreover, HINFP (AAH17234.1) consists of 27 potential

acetylating lysine residues such as K6, K10, K31, K94, K96,
K164, K174, K181, K185, K197, K213, K236, K256, K285,
K294, K301, K330, K335, K346, K352, K366, K367, K371,
K382, K439, K446, and K504, as observed in Supplementary
Table 3. MuSite Deep predicted all 27 sites as potential
acetylating lysine residues with no residue of high confidence
score. However, five sites were predicted as potential acetylation
sites with a moderate score as follows: K6, 0.318; K213, 0.311;
K330, 0.420; K371, 0.354; and K382, 0.269. Thus, predicted
acetylation sites were essential for triggering protein acetylation
results in transcription initiation. Among the predicted
acetylating lysine residues, HDAC6 (K6 and K330), HDAC1
(K382), and SIRT1 (K371) were important deacetylating
residues involved in protein deacetylation, resulting in the
progression of AD and PD. However, the binding score of
HDAC6 (2.74 and 3.84) was predicted higher than HDAC1
(6.53) and SIRT1 (7.01). Similarly, PSKAcePred predicted 15
potential lysine acetylation sites, of which eight sites were
predicted as potential lysine acetylation sites with a high
confidence score: K31, 0.730; K96, 0.766; K174, 0.779; K330,
0.726; K335, 0.930; K367, 0.904; K371, 0.911; and K446, 0.719.
Further, the HDAC enzyme prediction tool predicted that
SIRT1 (K31, 6.51 and K371, 7.01), SIRT2 (K446, 0.95), SIRT7
(K174, 13.26), HDAC1 (K367, 4.23), and HDAC6 (K330, 3.84
and K335, 2.74) were crucial enzymes involved in the regulation
of HINFP deacetylating activity. A comparative analysis of both

the acetylation prediction tools and the type of deacetylating
enzyme reflected that K330 and K371 were crucial proteins
acetylating lysine residues with HDAC6 and SIRT1 as their
interacting partners. However, the confidence score of SIRT1 is
lower than that of HDAC6, while the confidence of K330 is
higher than that of K371. Thus, it will be concluded that K330
interacts with HDAC6 to carry out HINFP deacetylation in AD
and PD progression. Further, until now, no proteomic study has
investigated the implementation of acetylation sites and HDAC
binding residues in the activation domain of HINFP. However,
mounting evidence suggests that HAT1, an acetyltransferase
binding toHINFP promoters, has a specific stimulatory effect on
H4 gene transcription. In addition, the authors concluded that
HAT1 promotes the accumulation of newly synthesized H4
dimers without affecting the levels of histones embedded in the
nucleosome.92 Another study concluded that HINFP forms a
functional complex with NPAT that recruits the HAT cofactor
TRRAP to facilitate the histone 4 acetylation at the PCSK9
promoter.91 Thus, this in silico analysis could be a milestone in
providing an avenue for identifying crucial acetylation or
deacetylation patterns of CREB1 and HINFP to minimize AD
and PD progression (Table 4).

2.7. Glutamic Acid and Leucine Predominately
Conserved Residues at Protein Acetylation Sites. The
predicted protein acetylation sites were analyzed for the
conserved lysine residues, which could be crucial for lysine
selectivity and specificity for the acetylation process and binding
of deacetylating enzymes. CREB1 has 15 potential lysine
residues represented by 16220.2, while HINFP has 27 potential
lysine residues represented by AAH17234.1. The multiple
sequence alignment (MSA) analysis of predicted lysine residues
for acetylation revealed the conservation of negatively charged
glutamic acid (E) and neutrally charged leucine (L), methionine
(M), valine (V), and glutamine (Q) in close association with the
positively charged lysine residue, as shown in Figure 5A. These
conserved residues provided a suitable environment and
favorable conditions for associated potential lysine residues for
the acetylation process, thus imparting lysine selectivity and
specificity for the acetylation and deacetylation. However,
further investigations are required to determine the potential of
conserved residues in the acetylation and deacetylation
processes of CREB1 and HINFP. However, glutamic acid is
most prominent compared to other conserved amino acids as it
decreases the overall positive charge of lysine and imparts a
negative charge to the lysine site, which will promote acetylation

Table 4. List of Common Crucial Lysine Residues in CREB1
and HINFP

CREB1

lysine residue interactor

K94 SIRT7
K292 HDAC1
K303 SIRT7
K304 SIRT7

HINFP
K31 SIRT1
K174 SIRT7
K330 HDAC6
K335 HDAC6
K367 HDAC1
K371 SIRT1
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and deacetylation reactions. For instance, Nguyen et al., 2016,
concluded that glutamine triggers acetylation-dependent

degradation of glutamine synthetase, whereas Son et al., 2020,
demonstrated that leucine regulates autophagy through

Figure 5. (A)Multiple sequence analysis of potential acetylation/deacetylation lysine residues by taking 21 window sizes. 21 window size was taken by
lysine at the center with ten amino acids on both sides. (B) Proposed action of mechanism or the signaling transduction pathway in CREB1- and
HINFP-mediated neurodegeneration.
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acetylation of the mTORC1.104,105 Moreover, the role of
methionine involvement in lysine acetylation is not studied so
far in AD and PD, but yet at the same time demonstrated the
potential relationship between methionine and lysine acetyla-
tion in other neurological defects. For instance, Chiki et al.,
2021, concluded that the presence of oxidation of methionine at
position 8 and acetylation at K6 resulted in the dramatic
inhibition of Httex1 fibrilization.106 Thus, these studies correlate
with our results and suggest that glutamic acid (E), leucine (L),
methionine (M), valine (V), and glutamine (Q) could be critical
amino acid residues in acetylation and HDAC binding.
Further, structural information of CREB reveals that it

consists of 11 exons and three isoforms that are produced
through alternative splicing.107 Primary structure studies of
CREB identified the presence of four functional domains,
namely, Q1 basal transcriptional activity domain, kinase
inducible domain, a glutamine-rich region, and basic region/
leucine zipper domain.108 Thus, this relates to the importance of
glutamine in the structural activity of CREB1. Similarly,
structural information of HINFP confirms that the interaction
of HINFP produced TF with methyl-CpG-binding protein-2, a
component of the HDAC complex, and plays an important role
in transcription repression. Sekimata et al., 2004, demonstrated
that HINFP, through its DNA-binding activity, acts as a
sequence-specific (conserved CGGAC core) transcriptional
repressor,109 whereas Medina et al. concluded that the PSCR
motif is required for the activation of histone H4 gene
transcription and promotes its binding with DNA.110 Further,
the study revealed the presence of acetylated H4 histone in the
binding activity of HINFP to USF and GAL4-AH.111 In
addition, a study concluded that lysine residues control the
conformational dynamics of proteins.112 Thus, it is equally
important to identify the structural features of CREB1 and
HINFP that were involved in the acetylation mechanism. Thus,
the potential and possible acetylation lysine residues were
analyzed for their structural selectivity for lysine recognition
pattern and potential deacetylating enzyme attachment, as
discussed in Supplementary Table 4. The structural pattern of
the putative deacetylating enzyme attachment binding to
potential acetylation or deacetylation lysine residues revealed
the presence of α-helix, strand, and coil region in the CREB1 and
HINFP peptide. However, an in-depth analysis of the structural
configuration of CREB1 and HINFP revealed that the helix
region is predominant over the strand/coil region in the
acetylation of CREB1. A study byMaltsev et al., 2012, concluded
the involvement of the helical structure in the acetylation
process, where acetylation increases α-helicity of the first six
residues of α-synuclein.113 Similarly, the coil region is dominant
over the helix/strand region in the potential lysine acetylation of
HINFP. The results correlate with the study by Kulemzina et al.,
2016, which concluded that lysine acetylation promotes
interactions between Smc coiled coils that are required for
cohesion ring assembly.114 Further, the results were analyzed
precisely and revealed the involvement of structural selectivity in
the acetylation and deacetylation of CREB1 and HINFP. In
addition, the results also provide an avenue of helix and coil
regions in the acetylation of predicted lysine residues of CREB1
and HINFP, respectively (Figure 5B). However, due to limited
structural information of CREB1 and HINFP and the potential
effect of acetylation on CREB1 and HINFP structural changes,
these results need to be verified in vitro.

3. MATERIALS AND METHODS

3.1. Data Collection and Identification of Differentially
Expressed Genes (DEGs). The microarray gene expression
datasets for AD (GSE1297115 and GSE28146116) and PD
(GSE7621117 and GSE19587118) were obtained from the
NCBI-GEO database (https://www.ncbi.nlm.nih.gov/geo/
),119 irrespective of the population. The datasets were analyzed
in an R-environment for data normalization and data
preprocessing. Further, Limma was used to identify DEGs in
both AD and PD compared to controls. The p-value < 0.05 and
ILog 2FcI > 1.1 was regarded as cutoff criteria to screen for
significant DEGs. The significance for the selection of Log 2Fc is
that the expression is slightly more than twice for both
upregulated and downregulated genes. The BioMart data-
mining tool (https://m.ensembl.org/info/data/biomart/index.
html)120 was applied to convert probe symbols into gene
symbols. Lastly, Venn analysis was performed using the online
tool called Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/)121 to identify common DEGs from the four datasets.

3.2. Protein−Protein Interaction Network Analysis
and Visualization. The interrelation between different DEGs
of AD and PD was obtained from STRING database version
11.0 (https://string-db.org/).122 The search criteria in the
STRING database are limited to a confidence score of 0.5. The
obtained networks were imported into Cytoscape software
version 3.8.0 (https://cytoscape.org/)123 for protein data
integration, PPI network visualization, and PPI network analysis.
Subsequently, node degree, number of edges, clustering
coefficient, network homogeneity, shortest path length, and
network density of AD and PD PPI networks were calculated.

3.3. PPI Network Clustering and Identification of HUB
Proteins. The AD and PD networks were merged using a
network merging tool of Cytoscape based on two methods,
namely, network union and network intersection. Afterward,
network clustering was performed through molecular complex
detection (MCODE) (http://apps.cytoscape.org/apps/
mcode)124 plugin of Cytoscape software. The clusters so
formed were analyzed and visualized on different parameters
such as the number of proteins (nodes) and physical interactions
between them (Edges), network clustering coefficient, charac-
teristics of path length, network centralization and homogeneity,
and network density. The clusters of all PPI networks were
statistically analyzed and ranked separately based on node
degree. Lastly, the HUB proteins were identified using
CytoHubba (http://apps.cytoscape.org/apps/cytohubba)125

through default parameters. Subsequently, the HUB proteins
were mapped from all PPI network clusters individually, which
include AD, PD, and AD−PD union PPI networks.

3.4. Functional Enrichment and Pathway Analysis of
HUB Proteins. HUB protein overrepresentation was per-
formed through the bioinformatics resource EnrichR (http://
amp.pharm.mssm.edu/Enrichr/)126 and QuickGO (https://
www.ebi.ac.uk/QuickGO/)127 to identify the molecular func-
tion, biological process, and cellular function. Further, pathway
analysis of HUB proteins was carried out using freely accessible
online databases and tools such as the REACTOME database
(https://reactome.org/)128 and FunRich version 3.1.3 (http://
funrich.org/).129 For statistical assessment of GO analysis and
pathway analysis, a p-value less than 0.05 was considered
significant, and a fold-enrichment value was considered. Here,
the p-value reflects the chance of observing “n” number of genes
in a gene list annotated to a specific term, whereas fold
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Figure 6. Literature validation of the involvement of HDAC interaction with CREB1 and HINFP. HDAC inhibitors cause a decrease in HDAC
activity, followed by the increased acetylation status of CREB1, andHINFP causes positive transcriptional regulation. Increased transcriptional activity
causes an increase in the transcription of memory-associated genes, and Bcl-2 expression leads to an increase in cognitive function and memory
function. The increased acetylation status of CREB1 and HINFP causes INPP5D and TUBB4B activation, which decreases neuronal cell death and
leads to neuroprotection.
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enrichment of a term was designated as overrepresented
compared to the background, where overrepresentation is
denoted as positive fold enrichment.
3.5. HUB Proteins−Transcription Factors (TFs) Inter-

action and Prediction of Protein Subcellular Local-
ization. The subcellular localization of HUB genes was
calculated to understand the mechanism of action of protein
and its associated functions using CELLO version 2.5:
subCELlular LOcalization predictor (http://cello.life.nctu.edu.
tw/).130 To identify the TFs that control the HUB proteins at a
transcriptional level, TF-target interactions were obtained from
JASPAR version 8 (http://jaspar.genereg.net/)131 and an
interaction network between TFs and HUB proteins was
created using NetworkAnalyst tool version 3.0 (https://www.
networkanalyst.ca/home.xhtml).132

3.6. Identification of Histone Lysine Signatures and
Prediction of Protein Deacetylating Enzymes. Based on
the previous experimental studies, it was evident that acetylation
signatures were associated with the pathogenesis of AD and PD
by altering gene expression patterns. Thus, we used the
Epigenomics Roadmap CHIP-seq dataset, which is an inbuilt
feature of EnrichR for their potential acetylation marks of HUB
proteins. Moreover, acetylation sites in CREB1 and HINFP
have been predicted through machine learning algorithm-based,
freely accessible online tools such as MuSite Deep (https://
www.musite.net/)133 and PSKAcePred (http://bioinfo.ncu.
edu.cn/inquiries_PSKAcePred.aspx).134 Lastly, the type of
deacetylating enzyme associated with CREB and HINFP was
predicted with the help of a freely accessible online web server
named Deep-PLA (http://deeppla.cancerbio.info/index.
html).135

3.7. Prediction of Conserved Lysine Residues and
Structural Features for HDAC’s Binding. The conserved
sequence was predicted using a multiple sequence alignment
(MSA) of 21 window size of lysine site residues that includes 10
residues on both the left and the right end and containing a
lysine acetylating site in the middle for both CREB1 and HINFP
using ClustalW MSA tool (https://www.genome.jp/tools-bin/
clustalw).136 Additionally, the structural selectivity of lysine
acetylating sites has been predicted with the help of PSIPRED:
protein structure prediction server (http://bioinf.cs.ucl.ac.uk/
psipred/).137 Subsequently, the secondary structure of the
protein has been correlated with their respective protein
acetylating sites.

4. CONCLUSIONS
In conclusion, the present study focuses on the crosstalk
between AD and PD at the molecular level. Through this study,
we identified the relationship between DEGs, HUB proteins,
TFs, acetylation, and HDAC enzymes in the shared patho-
genesis of AD and PD. Our findings highlighted the crucial role
of CDC42, TUBB4B, and FGFR1 in the AD and PD crosstalk
through Gap junction (TUBB4B), GnRH signaling pathway
(CDC42), and Rap1 signaling pathway (CDC42 and FGFR1).
In addition, the present study identified the potential TFs that
regulate the expression of HUB proteins at the transcriptional
level through biological network analysis. Our analysis identified
FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and
SREBF1 as potential TFs that regulate the activity of HUB
proteins shared between AD and PD. Our bioinformatic analysis
also revealed the effect of subcellular localization of HUB
proteins and TFs in the AD and PD crosstalk. Lately, the study
identified the 15 potential lysine residues and 27 potential lysine

residues in CREB1 andHINFP, respectively. The study revealed
that among 15 possible lysine residues of CREB1, only four
lysine residues, namely, K91, K94, K136, and K330, had been
studied in the past, while K123, K155, K285, K292, K303, K304,
K305, K309, K323, K333, and K339 have been reported first
time for their role in the acetylation process. Similarly, among
HINFP, all 27 lysine residues have been reported for the first
time. Further, the in silico analysis of CREB1 and HINFP
revealed the importance of HDAC1 for its deacetylation activity
at K292 of CREB1 and HDAC6 for its deacetylation activity at
K330 of HINFP. This will provide a way to study the role of
acetylation and HDAC enzymes in the transcriptional activity of
CREB1 and HINFP in the AD and PD crosstalk. Further, the
computational analysis identified the importance of negatively
charged glutamic acid (E) and neutrally charged leucine (L),
methionine (M), valine (V), and glutamine (Q) amino acid
residues in the acetylation mechanism of CREB1 and HINFP in
the AD and PD crosstalk. The study also highlighted the
importance of the helix region over the strand/coil region in the
acetylation of CREB1. Similarly, the coil region is dominant over
the helix/strand region in the potential lysine acetylation of
HINFP. Thus, this study highlighted the importance of two
prominent biological pathways for the progression of AD and
PD simultaneously, such as HDAC1-CREB1-TUBB4B/
CDC42/CD44 and HDAC6-HINFP-TUBB4B/CDC42/
CD44 (Figure 6). Further studies are required to generate the
potential treatments targeting the abovementioned biological
pathways to treat the adverse effects of AD and PD. Further, the
current study is associated with some sort of limitation as the
study uses only microarray data, which is not as comprehensive
as transcriptomics data analysis. Thus, there is a growing need to
simultaneously analyze the different types of AD and PD
datasets, namely, microarray data, epigenetic data, and RNA
data, to extract the novel biomarkers involved in disease
pathology. Further, there should be a greater number of control
as well as disease samples to conclude a general discussion. In
addition, samples from different tissues could be more beneficial
in understanding the molecular mechanism and role of HDAC
in AD and PD simultaneously. In the current study, using
Bioinformatics tools, we identified that CREB1 and HINFP are
putative targets in the pathogenesis of AD and PD
simultaneously; however, the different datasets with a large
number of samples and wet lab experimentation are absolutely
necessary to establish the molecular signature and validate the
role of CREB1 and HINFP in AD and PD.
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