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Cardiac magnetic resonance enables comprehensive cardiac evaluation; however, intense 
time and labor requirements for data acquisition and processing have discouraged many 
clinicians from using it. We have developed an alternative image-processing algorithm that 
requires minimal user interaction: an ultrafast algorithm that computes left ventricular ejec-
tion fraction (LVEF) by using temporal intensity variation in cine balanced steady-state free 
precession (bSSFP) short-axis images, with or without contrast medium. We evaluated 
the algorithm’s performance against an expert observer’s analysis for segmenting the LV 
cavity in 65 study participants (LVEF range, 12%–70%). In 12 instances, contrast medium 
was administered before cine imaging. Bland-Altman analysis revealed quantitative effects 
of LV basal, midcavity, and apical morphologic variation on the algorithm’s accuracy.

Total computation time for the LV stack was <2.5 seconds. The algorithm accurately 
delineated endocardial boundaries in 1,132 of 1,216 slices (93%). When contours in the ex-
treme basal and apical slices were not adequate, they were replaced with manually drawn 
contours. The Bland-Altman mean differences were <1.2 mL (0.8%) for end-diastolic vol-
ume, <5 mL (6%) for end-systolic volume, and <3% for LVEF. Standard deviation of the 
difference was ≤4.1% of LV volume for all sections except the midcavity in end-systole 
(8.3% of end-systolic volume).

We conclude that temporal intensity variation–based ultrafast LVEF computation is clini-
cally accurate across a range of LV shapes and wall motions and is suitable for postcontrast 
cine SSFP imaging. Our algorithm enables real-time processing of cine bSSFP images on 
a commercial scanner console within 3 seconds in an unobtrusive automated process. 
(Tex Heart Inst J 2021;48(4):e207238)

C ardiovascular disease is the leading cause of death worldwide.1 Impaired myo-
cardial contractile function caused by diminished perfusion or cardiomyopa-
thies can manifest itself as reduced left ventricular ejection fraction (LVEF) 

and lead to heart failure.2 Cardiac magnetic resonance (CMR), the gold standard for 
estimating LVEF, enables clinicians to characterize pathologic tissue and evaluate 
myocardial morphology, perfusion, viability, and global and regional function with ex-
cellent spatial and contrast resolution. However, the intense time and labor required for 
data acquisition and processing have discouraged many clinicians from using CMR.
	 In standard CMR evaluation, LVEF is estimated by analyzing a stack of cine 
balanced steady-state free precession (bSSFP) short-axis (SA) slices during a time-
consuming process. Images of the left ventricle (LV) are acquired on a scanner console, 
and the data are transferred to a remote postprocessing workstation. To determine 
global LV function, a CMR expert must draw myocardial contours on a stack of SA 
slices for the entire LV. Increasingly, at CMR sites, the cine slices are being acquired 
after a contrast agent has been administered, to save time in patients who are undergo-
ing angiography or myocardial viability evaluation.
	 Fluidly integrating data acquisition and postprocessing necessitates a rapid, clini-
cally accurate computational algorithm that is optimally robust for capturing varying 
LV shapes and wall motions, as well as in the presence of contrast medium. However, 
typical LV segmentation algorithms rely on the substantial contrast difference between the 
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myocardium and the blood pool in precontrast images. 
In myocardial viability imaging, advantageous workflow 
involves acquiring bSSFP images after contrast adminis-
tration. In these instances, the blood-to-myocardial con-
trast ratio is substantially diminished, and segmentation 
algorithms that rely solely on spatial contrast may fail. To 
achieve clinical accuracy in the presence of LV variations, 
an optimal algorithm should be driven predominantly by 
data rather than by training-based models. In addition, 
its use should require minimal input from experts, and 
it should have minimal memory requirements and low 
computational costs.
	 We prospectively compared the clinical performance 
of our ultrafast, data-driven LV segmentation algorithm 
against that of a manual LV segmentation process, and 
we report our findings.

Participants and Methods
The study included 65 participants: 49 patients from our 
CMR clinical schedule who were being evaluated for LV 
dysfunction (35 men and 14 women; mean age, 51 ± 9 yr; 
age range, 17‒83 yr) and 16 asymptomatic volunteers (8 
men and 8 women; mean age, 38 ± 5 yr; age range, 27‒54 
yr). Our Institutional Ethics Committee approved this 
study, and all participants gave written informed consent.
	 Two thirds of the patients were evaluated for myocar-
dial viability, and the others for dilated or hypertrophic 
cardiomyopathy, LV noncompaction, or LV aneurysm. 
In 12 patients evaluated for myocardial viability, images 
were acquired <10 min after 0.2 mmol/kg of gadolini-
um was administered as a contrast agent.

Image Acquisition
Images were acquired with use of an Achieva 1.5T 
scanner (Philips Healthcare), equipped with a 32-ele-
ment phased-array surface coil and vector-cardiographic 
(VCG) gating. All study participants held their breath 
for 10 to 12 heartbeats while non-VCG–gated scout 
images of the thoracic cavity were acquired along the 3 
orthogonal planes. Then, during similar breath-holds, 
images of VCG-gated 2-chamber views, 4-chamber 
views, and 10 to 13 contiguous SA slices covering the 
LV from apex to base were acquired.
	 The repetition time was 3 to 3.2 ms; the echo time, 1.5 
to 1.6 ms; and the flip angle, 55°. The acquired voxel size 
was 1.25‒1.5 × 1.25‒1.5 × 8 mm3, the sensitivity-encod-
ing acceleration factor was 2, and the temporal resolution 
was 40 to 50 ms. Images were stored in Digital Imaging 
and Communications in Medicine (DICOM) standard 
format.

Manual Image Analysis
The DICOM data were transferred to an on-site View-
Forum postprocessing workstation (Philips Healthcare). 
A board-certified cardiac radiologist (BYCC), who had 

7 years of clinical CMR experience and was blinded to 
the algorithmic results, reviewed the SA cine images 
and manually drew the LV myocardial contours, includ-
ing the papillary muscles (PMs) and trabeculae in the 
LV volume. The global LV functional indices of end- 
diastolic volume (EDV), end-systolic volume (ESV), 
and LVEF were then calculated as references for the al-
gorithm’s accuracy. By visually inspecting the cine loop 
of the midcavity slice, the reviewer defined end-diastole 
(ED) and end-systole (ES) as the phases with the largest 
and smallest cavity areas, respectively, and the basal slice 
as that in which at least 50% of the ED blood volume 
was surrounded by ventricular myocardium.3 To study 
anatomic effects on our algorithm’s accuracy, we anno-
tated each slice as basal (from the mitral valve annulus 
to the tips of the PMs at ED), midcavity (the length of 
the PMs), or apical (beyond the PMs to the apex). To 
ensure accurate volumetric and LVEF measurements, 
we included the slice containing the LV outflow tract 
with the basal slice if it encompassed any LV volume.
	 The algorithm-drawn contours were then given to 
the reviewer. For consistent quantitative comparison, he 
inspected the resultant contours for proper shape (in the 
extreme basal slice) and for size (LV volume inscribed 
by the extreme apical LV contour), and he redrew those 
that were clinically unacceptable.

In-Line Image Analysis by Algorithm
The LVEF computation program, written in MATLAB 
R2009a (MathWorks, Inc.), runs as an unobtrusive 
background extension of the acquisition protocol on the 
console of a 1.5T Achieva clinical scanner (Intel Xeon, 
3.2 GHz, 6 GB RAM). The major processing steps are 
LV localization and LV segmentation.
	 Localization. Immediately after images are written to 
the database, the in-line processing tool automatically 
launches. From the displayed diastolic frame of each 
SA slice, the user selects and inputs the most basal and 
apical slices (Fig. 1). The algorithm identif ies the LV 
midcavity slice halfway between the specified slices.
	 Otsu’s method4 is used on an 8-bit histogram of the 
midcavity image (Fig. 2A) to determine an intensity 
threshold for identifying bright-signal regions of blood, 
fat, and fluid (Fig. 2B). Hollow and irregularly shaped 
regions are eliminated on the basis of solidity (area/con-
vex area) and eccentricity (ratio of the distance between 
the foci of the fitted ellipse and its major axis length) of 
the convex hull of the regions (Fig. 2C). The remain-
ing bright regions are ranked according to the combined 
score (N/D), where N is the region’s area normalized to 
the image area, and D is the region’s distance from the 
intersection point of the midcavity slice and the 3-dimen-
sional (3D) line connecting the user-specified basal and 
apical points. The highest-ranked region is labeled the 
region of interest (ROI) (Fig. 2D). The algorithm then 
processes the data, slice by slice, toward the base and apex.
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	 Segmentation. After the center of the LV cavity has 
been identified, the algorithm for LV segmentation pro-
ceeds as follows:
	 1) Individual pixels along 8 radial lines that intersect 
at the center of an identif ied LV region (Fig. 3A) are 
analyzed to create time-intensity profiles, which show 
the variation in intensity over time (Fig. 3B). The mean 
value of the individual time-intensity (TI) profiles is 
then subtracted from the value at each time point to 
generate zero-clamped TI profiles (Fig. 3C).
	 2) Some pixel locations are occupied entirely by blood  
or myocardium throughout the cardiac cycle (Fig. 3B). 
However, some pixels such as those adjoining the en-
docardium may be occupied by blood during early 
and late diastole but by myocardium during systole. 
These transitory pixels have zero-clamped TI profiles 
that show only 2 zero crossovers during the cardiac 
cycle, the first going from a positive to a negative value 
(Fig. 3C). The pixels transition from blood-only to par-
tial volumes (PVs) of blood and myocardium, and then 
to myocardium-only during the ED-to-ES cycle, and in 
reverse during the ES-to-ED cycle.
	 3) Transitory pixels in the cine phases between the 
crossover time points (Fig. 3C) are chiefly myocardium-
only and are classified as blood-myocardium PV pixels. 

The lower and higher signal intensities corresponding 
to half the peak pixel population are recorded in a histo-
gram (Fig. 3D). Gaussian distribution of transitory pix-
els determines the myocardial upper-intensity threshold 
(Fig. 3B).
	 4) After the ROI threshold is established at the upper 
intensity limit, the LV is localized among the blood, 
fat, and fluids by eliminating the regions touching the 
ROI edges and by using solidity and eccentricity criteria 
and 3D geometric constraints on the LV from adjoining 
slices (Fig. 2).5
	 5) A convex hull is fitted to the blood pool (Fig. 4A). 
To prevent concave portions during curve-fitting, sa-
lient points of the convex hull are determined by curva-
ture and spatial proximity to the adjacent corner.
	 6) A piecewise closed Bezier curve of 2nd-order geo-
metric continuity is f itted through the salient points 
of the convex hull (Fig. 4B) to delineate endocardial 
contours for a given slice (Fig. 4C–D).6

	 Basal slices are automatically rejected if the LV seg-
mented area increases abruptly, thus indicating shape 
discontinuity. After all slices are processed, the car-
diac phase halfway between the zero-crossover time 
points is used as the ES phase for automatic LVEF 
reporting.

Fig. 1  For in-line computation of ejection fraction on the cardiac magnetic resonance scanner console, the user clicks inside the left 
ventricle during end-diastole and, in the pop-up window, specifies the basal (green outline) and apical (yellow outline) slices. The  
algorithm computes the region of interest (ROI) for the midcavity slice (cyan outline), then processes one short-axis ROI slice at a 
time to extract endocardial contours for all slices and phases. The main console window displays the resultant contoured slices (the 2 
columns on the right) next to the corresponding original images (the 2 columns on the left).
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Statistical Analysis
Bland-Altman analysis was used to compare the EDV, 
ESV, and LVEF results with those derived manually.7 
The bias (mean difference ± SD) was compared with 
previously obtained corresponding values for inter- and 
intraobserver variability.8 Contours unacceptable to the 
CMR expert were redrawn for analytic consistency. To 
evaluate morphologic effects of PMs and trabeculae on 
variations between the respective results, the SA slices 
were trifurcated into basal, midcavity, and apical sec-
tions. Each was analyzed for volume (mL) and differ-
ence as a percentage of the manually traced volume for 
the entire LV.

Results
We evaluated a total of 1,216 slices: 494 ED and 433 
ES from the 49 patients, and 158 ED and 131 ES from 
the 16 volunteers. The computation time per slice was 
80 to 120 ms, and the total time per participant was 2 
± 0.2 sec. Algorithmic contours were redrawn in 27 ED 
and 29 ES extreme basal slices, as well as in 13 ED and 
15 ES extreme apical slices, to exclude the outflow tract 
from LV volume and include extremely small apical LV 
sections (volume, <2 mL). The algorithm’s relative per-
formance was also evaluated by region: basal (188 ED 
and 113 ES slices), midcavity (294 ED, 297 ES), and 
apical (170 ED, 154 ES).
	 Examples of comparative manual and computed 
images are shown in Figure 5, and Figure 6 shows ex-
amples of adjusted contours.
	 Table I shows the distribution of the manually traced  
LV volumes. Myocardial hyperenhancement was seen 
in 30% of the patients. The diagnoses were dilated car-
diomyopathy in 25%; systolic dysfunction in 35%; and 
hypertrophic cardiomyopathy, LV noncompaction, or 
LV aneurysm in the rest.
	 We calculated the Bland-Altman bias and the SD 
of the difference between the manual and algorithmic 
contours for the apical, midcavity, and basal regions 
(Table II) and by participant type in the presence or 
absence of contrast administration (Table III).
	 The algorithm underestimated ESV by 7% and, con-
sequently, overestimated LVEF by 4% in patients not 
given contrast medium (Fig. 7). Figure 8 shows repre-
sentative algorithmic contours for postcontrast data.
	 Percentages for EDV, ESV, and LVEF bias were com-
parable for patients with and without contrast. How-
ever, in postcontrast cases, the SD increased by 69% 
in EDV and by 57% in ESV. The ESV was underes-
timated chiefly in the midcavity, where PMs blended 
with endocardium.

Discussion
Our algorithm worked successfully when LV volumes 
ranged from 75 mL to 456 mL at ED and when LVEF 
ranged from 12% to 70%. Results were accurate in 13 
patients with LVEF <36% and in 12 whose images were 
acquired after contrast administration. Thus, determin-
ing myocardial intensity thresholds by using TI profiles 
is a robust method in patients who have reduced wall 
motion or diminished blood-to-myocardial contrast. 
The manual and algorithmic endocardial contours were 
qualitatively similar in ED and were close in ES. Quan-
titatively, the respective volumes were comparable. Bias 
was within typical inter- and intraobserver variability 
(0.05 LVEF) among experienced clinicians.9-12

	 Manually delineating myocardial boundaries with-
in cine bSSFP images takes time and is susceptible to 

Fig. 2  Images represent the algorithmic steps for left ventricular 
localization in a patient with significant pericardial effusion and a 
dilated left ventricle (Sample 1) and a patient with substantial epi-
cardial fat (Sample 2). A) An 8-bit histogram is used to determine 
an intensity threshold to identify B) bright-signal regions. C) Con-
cave and irregularly shaped regions have been eliminated, and 
the remaining regions have been ranked according to combined 
spatial proximity and area. D) In midcavity slices, the left ventricle 
is the highest-ranked region of interest; 3-dimensional geometric 
continuity constraints are used for the remaining slices.5

Sample 1 Sample 2

A

B

C

D
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human error. Developing an automated algorithm to 
perform this task has challenged investigators for nearly 
2 decades.13-15 Segmentation methods proposed for ex-
tracting LV functional indices have ranged from sim-
ple signal intensity–based approaches to sophisticated 
model-based algorithms.10,11,16-43 In general, LV volume 
analysis involves 1) basic signal processing to classify 
intensity and compute energy derived for features in 
the image (for example, edges), and 2) advanced math-
ematical modeling that uses shape-motion constraints to 
minimize the computed energy. However, myocardium 
and the fine structures projecting from it have similar 
signal intensities, and experts include these structures in 
the endocardial contour to estimate LV function and 
analyze wall motion. Computationally intensive models 
can account for these geometric considerations but are 
sensitive to initial placement and assumptions under-
lying spatiotemporal behavior. Left ventricular dilation 
or cavity obliteration in hypertrophic cardiomyopathy 
violates these assumptions, often necessitating contour 
correction. Previously, in-line algorithms with delays of 
10 to 15 seconds per slice were implemented fully44 or 
partially45 in CMR reconstruction. In unsupervised ap-
proaches, LV coverage in ED starts from the most basal 

slice, and in ES, the most basal slice is presumptively one 
slice below that in ED.44 Instead of relying on the con-
trast-diminished intensity difference between the blood 
pool and myocardium alone, we use a priori knowledge 
of intensity variation in pixels near the endocardium—a 
minimally assumptive, data-driven approach.
	 When PMs were well isolated from the endocardium 
during ED, the SD for our algorithmic volume esti-
mates in all LV sections was ≤4%, with minimal bias 
(< ‒0.4%). Accuracy was lowest for the midcavity in 
ES, when the PMs blended with the myocardium (bias, 
6%; SD, 8.3%). A remaining challenge is to extract ac-
ceptable endocardial contours when the outflow tract 
intrudes into the basal slices, especially when a CMR 
expert draws the semilunar contours.

Initial Efficacy of the 
Algorithm’s Main Design Elements
The distinctive signal intensity of pixels adjoining the 
endocardium enables better threshold determination 
in ES phases than does global signal intensity, espe-
cially in postcontrast images. Although using intensity 
alone cannot isolate PMs from endocardium during 
complete blending at ES, geometric constraint to avoid 

Fig. 3  Images show steps for classifying partial-volume (PV) pixels. A) On individual pixels along 8 radial lines centered on the identified 
left ventricular (LV) region, B) time-intensity (TI) profiles are created. In A, the red dot shows the blood-only pixels. In B, the red line indi-
cates their TI profile; the magenta line, that of myocardium-only pixels (magenta dot in A); and the blue line, that of transitory pixels (blue 
dot in A). The blue line shows signal changes as the pixels cycle from blood to PV blood-myocardium, myocardium, PV myocardium-
blood, and blood again. C) Zero-clamped TI profiles of the pixels depicted in A are shown; the mean intensity during the cardiac cycle is 
subtracted from intensity at each time point. The transitory pixels between the crossover time points are PV (blood-myocardium) pixels 
(between arrows in C). D) Histogram shows overlaid distributions of blood pool (red), myocardium (magenta), and PV myocardium-blood 
(blue). Gaussian distribution of transitory pixels determines the myocardial upper-intensity threshold (green line in B).
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sharp concave indentations achieves endocardial con-
tours similar to manual contours by forcing the contour 
through most convex boundary points.
	 Our algorithm’s low computational cost enables real-
time LVEF estimation, generation of LV time-volume 
curves, and further wall-motion analysis. Optimizing 
the process in C or C++ can increase speed. Before and 
after replacing unacceptable basal contours, we observed 
a 1.8% change in bias and a 1.7% change in SD for 
LVEF, indicating that underestimated EDV and ESV 
cause further overestimation of LVEF. In future ver-
sions, contours can be written as an editable overlay for 
rapid correction or removal.
	 The algorithm requires minimal user interaction—a 
CMR technician need only specify the basal and apical 
slices on the scanner console. This user-driven approach 
enables LVEF estimation, even from the stack of SA 
slices that span the ventricles as well as the atria, as is 
often done when evaluating congenital heart disease.
	 The analysis protocol seamlessly retrieves, processes, 
and saves the images to the patient’s database, display-
ing the computed LVEF. The algorithm loads into 
memory only the first cardiac phase of the central SA 
slice (treated as ED) to localize the LV and constrain the 
ROI,12 thus minimizing memory competition with rou-
tine scanner operation. Of note, we found no effects on 
the spectrometer or reconstruction control of the host, 

Fig. 4  Images illustrate algorithmic delineation of endocardial 
contours. The convex hull is fitted to the resultant images after 
the myocardial upper-intensity threshold is applied (blue dots 
correspond to corners of the polygon). A) The curvature and the 
spatial proximity to the adjacent corner are used on blue points 
to select salient points of the convex hull. B) A piecewise closed 
Bezier curve of 2nd-order geometric continuity is fitted through 
the salient points. Corresponding endocardial contours (green 
outline) are shown for C) end-diastole and D) end-systole.

Fig. 5  Images show manual (magenta) and computed (green) 
left ventricular contours in A) end-diastole and B) end-systole.

Fig. 6  Images show manual adjustments (magenta) to the 
algorithmic contours (white) for A) a basal slice with outflow tract 
and B), C) extreme apical slices.
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and data acquisition was uninterrupted. In our clinic, 
we have already developed other in-line postprocessing 
tools, such as an M-mode display to enable viewing of 
delayed septal-lateral wall motion.46

Study Limitations
This study had limitations. First, the inclusion of all 
consenting participants created a study population 
with heterogeneous clinical indications, so we plan 
to test the algorithm specifically in patients who have 
atrial f ibrillation, hypertrophic cardiomyopathy, or 
dilated cardiomyopathy. Second, MATLAB precludes 
users from editing contours on the scanner itself. Fi-
nally, we relied on previously reported inter- and in-
traobserver variability in EDV, ESV, and LVEF when 

determining clinically acceptable bias. Although there 
is no reason to believe that these numbers will differ 
signif icantly, repeated contouring by our expert re-
viewer and additional contouring by another reviewer 
would have provided observer variability specific to our 
study population.

Conclusion
Our cost-effective algorithm for LV segmentation en-
ables clinically accurate computation of global LV func-
tional indices (EDV, ESV, and LVEF), with or without 
contrast administration. The real-time process is com-
pleted in <3 seconds on a CMR scanner console as an 
automated, unobtrusive extension of data acquisition.

TABLE I. Manually Traced Left Ventricular Volumetric Indices in 16 Volunteers and 49 Patients

End-Diastolic Volume (mL) End-Systolic Volume (mL) Ejection Fraction (%)

Distribution Volunteers Patients Volunteers Patients Volunteers Patients

Minimum 118 75 48 30 49 12

1st Quartile 152 143 61 66 53 37

Median 185 175 75 81 56 53

3rd Quartile 203 211 93 127 62 59

Maximum 271 456 121 387 70 66

TABLE II. Bland-Altman Analysis Comparing Manual and Algorithmic Contours by Slice Location

End-Diastolic Volume (mL, %) End-Systolic Volume (mL, %) Ejection Fraction (%)

 Apical Mid Basal Total Apical Mid Basal Total Actual Computed*

Bias 0.2, 0 –0.3, 0 –1.5, –0.4 –1.2, –0.8 1.5, 1.3 4.5, 6 –0.3, –0.2 4, 5.2 –3 –5.4

SDD 3.9, 1.6 8, 4 5.1, 2.8 14.7, 7.4 3.9, 3.8 7.8, 8.3 3.6, 4.1 12.3, 13.5 4.4 5

Mid = midcavity; SDD = standard deviation of the difference 
 

*Computed after area was set to zero to reject unacceptable contours 
 

Data are presented as mL and percent error (percentage of total left ventricular volume calculated manually). Bias is the mean 
difference.

TABLE III. Bland-Altman Analysis Comparing Manual and Algorithmic Contours by Participant Type and Con-
trast Status

Volunteers Patients, No Contrast Patients, Contrast

 
EDV 
(mL, %)

ESV 
(mL, %)

EF 
(%)

EDV 
(mL, %)

ESV 
(mL, %)

EF 
(%)

EDV 
(mL, %)

ESV 
(mL, %)

EF 
(%)

Bias 3, 1.7 4.3, 5.9 –2 –2.7, –1.2 5.7, 7.1 –4.1 –4.8, –3.1 –1.5, –1.8 –0.8

SDD 2.8, 1.4 6.7, 9.3 3.8 12.7, 7 11.5, 12.3 4 25.9, 11.8 18.4, 19.3 5.5

EDV = end-diastolic volume; EF = ejection fraction; ESV = end-systolic volume; SDD = standard deviation of the difference 
 

Data are presented as mL and percent error (percentage of total left ventricular volume calculated manually). Bias is the mean difference.
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