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There are now more than five U.S. Food and Drug Ad-
ministration–approved algorithms for mammographic 

interpretation, primarily to be used as clinical decision sup-
port systems (1). Research has demonstrated that these ma-
chine learning (ML) computer-aided detection (CAD) al-
gorithms can reach and even exceed clinician performance, 
providing an independent definitive output (ie, case-level 
decision) on two-dimensional standard-view mammogram 
(ie, mediolateral oblique and craniocaudal) data (Fig 1) 
(2,3). This could allow for ML stand-alone CAD and com-
puter-aided diagnosis (CADx), or, when ML algorithms 
are set at a high sensitivity, for the automated case-based 
computer-aided triage (CADt) of mammograms within 
the screen reading workflow (4).

Many countries have implemented breast screening 
to detect cancer at an earlier stage, albeit with differ-
ing screening processes, such as single reading in the 
United States and double reading in many European 
countries, with screening starting at varied ages (40–50 
years) and differing intervals between screening (annual, 
biennial, and triennial) (5–8). Mammography remains 
the most common imaging modality used, although its 
cost-effectiveness is debated because of false-positive 
findings, overdiagnosis, and false-negative findings (ie, 
interval cancers) (9,10). Human readers—for example, 
radiologists and reporting radiographers in the United 
Kingdom—are under increasing pressure because of in-
creasing workloads, demands from busy clinics, strict 

Background:  Advances in computer processing and improvements in data availability have led to the development of machine learn-
ing (ML) techniques for mammographic imaging.

Purpose:  To evaluate the reported performance of stand-alone ML applications for screening mammography workflow.

Materials and Methods:  Ovid Embase, Ovid Medline, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science lit-
erature databases were searched for relevant studies published from January 2012 to September 2020. The study was registered with 
the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42019156016). Stand-alone tech-
nology was defined as a ML algorithm that can be used independently of a human reader. Studies were quality assessed using the 
Quality Assessment of Diagnostic Accuracy Studies 2 and the Prediction Model Risk of Bias Assessment Tool, and reporting was 
evaluated using the Checklist for Artificial Intelligence in Medical Imaging. A primary meta-analysis included the top-performing 
algorithm and corresponding reader performance from which pooled summary estimates for the area under the receiver operating 
characteristic curve (AUC) were calculated using a bivariate model. 

Results:  Fourteen articles were included, which detailed 15 studies for stand-alone detection (n = 8) and triage (n = 7). Triage stud-
ies reported that 17%–91% of normal mammograms identified could be read by adapted screening, while “missing” an estimated 
0%–7% of cancers. In total, an estimated 185 252 cases from three countries with more than 39 readers were included in the pri-
mary meta-analysis. The pooled sensitivity, specificity, and AUC was 75.4% (95% CI: 65.6, 83.2; P = .11), 90.6% (95% CI: 82.9, 
95.0; P = .40), and 0.89 (95% CI: 0.84, 0.98), respectively, for algorithms, and 73.0% (95% CI: 60.7, 82.6), 88.6% (95% CI: 
72.4, 95.8), and 0.85 (95% CI: 0.78, 0.97), respectively, for readers.

Conclusion:  Machine learning (ML) algorithms that demonstrate a stand-alone application in mammographic screening 
workflows achieve or even exceed human reader detection performance and improve efficiency. However, this evidence is from a 
small number of retrospective studies. Therefore, further rigorous independent external prospective testing of ML algorithms to 
assess performance at preassigned thresholds is required to support these claims.
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we evaluated the application of stand-alone ML algorithms (ie, 
CADt) used in breast cancer screening for mammography inter-
pretation and the impact of ML algorithms if adopted into clini-
cal practice. Furthermore, we aimed to identify areas of bias and 
gaps in the reported evidence. Appendix E1 (online) contains a 
glossary of terms.

Materials and Methods
This systematic review and meta-analysis was reported in ac-
cordance with the Preferred Reporting Items for a Systematic 
Review and Meta-Analysis of Diagnostic Test Accuracy Stud-
ies guidance (18). The review protocol was registered with the 
PROSPERO International Prospective Register of Systematic 
Reviews (protocol no. CRD42019156016) (Appendix E2 [on-
line]). Data generated or analyzed during the study are available 
from the corresponding author by request.

Literature Search
Digital literature databases, including Ovid Embase, Ovid 
Medline, Scopus, Web of Science, and the Cochrane Cen-
tral Register of Controlled Trials, were searched from January 
2012 to September 2020, with the final search conducted on 
September 3, 2020, to include the advancements in ML algo-
rithms for medical image interpretation and increased mam-
mographic data availability (2,19). Hand searches of included 
article references, a gray literature search of computer science 
databases (ie, DBLP computer science bibliography, Associa-
tion for Computing Machinery Digital Library, and Institute 
of Electrical and Electronics Engineers Xplore Digital Library), 
and a search of arXiv, a preprint literature database, were also 
conducted for the same time period. The search strategy is de-
tailed in Appendix E3 (online).

Study Selection
To limit bias, all publication types and all study designs were 
included, with no language restriction or data set age limit ap-
plied. Eligibility criteria included women imaged with mam-
mography for screening or diagnosis of breast cancer and a 
ML algorithm applied as stand-alone workflow application 
(ie, CAD and CADx or CADt) with sufficient information re-
ported for the performance of stand-alone ML algorithms and 
reader performance, or the simulated impact on reader per-
formance and workflow to allow for comparison. Any ground 
truth (eg, histopathologic findings) was accepted. Because data 
are available at multiple levels (Fig 1), we included algorithms 
only if they provided an interpretation at the case or examina-
tion level to enable comparison with clinician performance as 
reported in screening programs.

Two independent reviewers undertook the initial title and ab-
stract screening (S.E.H., a physician with 2 years of experience, 
and then E.P.V.L., C.M.L., or Y.R.I., all medical students) with 
discordance arbitration by a third reviewer (E.P.V.L., C.M.L., or 
Y.R.I.), with independent full text review (S.E.H. and R.W., a 
radiologist with 11 years’ experience) and discordance arbitra-
tion by a third reviewer (F.J.G., a senior radiologist with more 
than 30 years of experience).

screening program targets, and staff shortages (11). Alterna-
tives to double reading of mammograms are being sought to 
further alleviate pressure, including single reading using CAD 
prompts, stand-alone ML algorithms with a second reader, or 
CADt with various reader combinations (2).

Studies investigating the use of traditional CAD mammog-
raphy systems demonstrated no significant improvement in 
reader performance, and although sensitivity was similar to that 
of double reading, given the increase in recall rates, these systems 
were deemed not cost-effective (12,13). Additional limitations 
of traditional CAD systems include high rates of false-positive 
prompts, limited reproducibility of prompts, increased reading 
time, and a CAD preference for calcification detection over soft-
tissue masses and architectural distortion (14,15). Traditional 
CAD systems were trained using handcrafted features extracted 
from human delineations. The latest ML methods can use pre-
trained deep learning networks and automatically delineated 
cancer regions by means of iterative interactive software to rely 
upon learned features, and they have the potential to overcome 
the limitations of traditional CAD systems. However, how these 
new ML systems should be used in real-time workflows is still 
unclear. One route could be to improve efficiency of the work-
flow by operating as stand-alone systems. Although the perfor-
mance expected by such stand-alone ML applications in a screen-
ing workflow is yet to be agreed upon, a system should meet a 
“clinically relevant threshold” (16). In general, recall rates should 
not be increased because of the huge impact on workload, thus 
algorithms with a lower specificity would require human inter-
vention to reduce recalls (16,17). Therefore, making a definitive 
decision on whether current systems reach the standard required 
for routine workflow use is challenging.

We conducted a systematic review and meta-analysis to inves-
tigate whether or not ML algorithms (ie, CAD and CADx) are 
as sensitive and specific as radiologists in detecting breast cancer 
in patients undergoing screening mammography. In addition, 

Abbreviations
AUC = area under the receiver operating characteristic curve, CAD = 
computer-aided detection, CADt = computer-aided triage, CADx = 
computer-aided diagnosis, ML = machine learning 

Summary
Retrospective studies demonstrate the performance of stand-alone 
machine learning applications in screening mammography can reach 
reader performance and can provide a mechanism for case triage, 
which merits investigation with prospective studies.

Key Results
	N Seven retrospective studies suggested that machine learning (ML) 

could be used to reduce the number of mammography examina-
tions read by radiologists by 17%291% while “missing” 0%27% 
of cancers.

	N A meta-analysis of five retrospective mammography breast cancer 
detection studies with 185 252 cases demonstrated a higher area 
under the receiver operating characteristic curve (AUC) for ML 
(AUC = .89) compared to readers (AUC = .85).

	N The mean Checklist for Artificial Intelligence in Medical Imaging 
score was 30 of 42 (71%); ML model explainability methods were 
underreported.
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Data Extraction
A predesigned data extraction spreadsheet was used by the re-
viewers (S.E.H. and R.W.) and checked by a third reviewer 
(A.I.A.R., a computer scientist with 4 years of experience). 
Results were only extracted for studies where algorithm perfor-
mance was compared with readers or the impact on reader work-
flow and performance was reported. If studies reported multiple 
stand-alone algorithms, results for all algorithms were extracted 
(Appendix E4 [online]).

Meta-Analysis Protocol
For the meta-analysis, CAD and CADx algorithm performance 
was evaluated by adapting the method described in Liu et al 
(19). The primary meta-analysis compared the best-perform-
ing algorithm of each study, at the test stage using screening 
mammography data, with the performance of readers. Details 
of the primary meta-analysis study selection are available in 
Appendix E5 (online). The secondary meta-analysis extended 
the primary meta-analysis and compared the performance of 
all reported algorithms and readers in all stand-alone CAD and 
CADx studies, which used external data sets for addressing the 
generalization capabilities of the techniques, with no limita-
tions of ground truth.

Quality Assessment
Risk of bias and quality assessment of all included studies took 
place using Quality Assessment of Diagnostic Accuracy Studies 2 
(20,21) and Prediction Model Risk of Bias Assessment Tool (22) 
by two reviewers (S.E.H. and R.W.), with discussion between 
reviewers to resolve discordance. Signaling questions for Qual-
ity Assessment of Diagnostic Accuracy Studies 2 were adapted 
for ML studies. Prediction Model Risk of Bias Assessment Tool 
questions were adapted using the technique in Nagendran et al 

(23). However, as our review focused on mammography ML, 
applicability was assessed in all fields except the predictor field.

The Checklist for Artificial Intelligence in Medical Imag-
ing (24) was used by two reviewers (S.E.H. and A.I.A.R.), with 
discussion between reviewers to resolve discordance. An overall 
reporting score for all parameters was generated as well as for 
eight key fields identified, and common areas underreported 
were documented.

Statistical Analysis
All statistical analyses were implemented in R software (ver-
sion 4.0.3, R Project for Statistical Computing) (25) using the 
“mada” (26) and “boot” (27) packages. Normal and benign ex-
aminations were combined, and 2 3 2 contingency tables were 
created by calculating true-positive, true-negative, false-positive, 
and false-negative findings from the reported data set character-
istics and sensitivity and specificity provided, ensuring there was 
an integer, or whole, number of cases. The heterogeneity of the 
included studies in the quantitative analysis was measured using 
the I2 and Cochrane Q tests, where high heterogeneity was de-
fined by I2 greater than 50% and P , .05 for Cochrane Q test. 
The estimated pooled sensitivity, specificity, and the area under 
the receiver operating characteristic curve (AUC) were calculated 
for both readers and ML algorithms using a bivariate random ef-
fects model by Reitsma et al (28) with 95% CIs. Bootstrapping 
with 100 iterations was used to generate 95% CIs for the AUC, 
and a t test was used to compare the ML algorithm and reader 
sensitivity and specificity, with P , .05 indicating a statistically 
significant difference. Summary receiver operating characteristic 
plots were constructed for both primary and secondary analyses 
for pooled reader and ML algorithm performance.

Figure 1:  Diagrams show multitime (left) and multiview (right) point data produced with two-dimensional standard view mammography. Data can be analyzed at 
different levels.
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Results

Study Selection and Data Extraction
A Preferred Reporting Items for a Systematic Review and Meta-
Analysis diagram (Fig 2) demonstrates the study inclusion pro-
cess. The search of electronic literature databases and computer 

science databases returned 7629 records. Removal of duplicates 
resulted in 4318 records. After the screening of titles and ab-
stracts, 4286 records were excluded, the remaining 32 full texts 
were reviewed, and 14 articles were included in the qualitative 
review. References of included studies can be found in Appendix 
E6 (online).

Figure 2:  Flowchart of Preferred Reporting Items for Systematic Review and Meta-Analysis for Diagnostic Test Accuracy for studies included in identifica-
tion, de-duplication, screening, and data-extraction stages of review. ACM = Association for Computing Machinery, CAD = computer-aided detection, 
CADt = computer-aided triage, CADx = computer-aided diagnosis, IEEE = Institute of Electrical and Electronics Engineers, ML = machine learning, WOS = 
Web of Science. * = Studies could have been excluded for multiple reasons.
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From the included 14 articles, eight studies reported a 
stand-alone CAD and CADx algorithm performance, and 
seven studies reported the use of a CADt system. One 

article reported on both stand-alone CAD and CADx and 
CADt. Five studies for stand-alone CAD and CADx pro-
vided enough information to be included in the primary 

Table 1: CADt Algorithm Details and Results 

Images Evaluated, 
Study, and Year

Machine 
Learning 
Technique

Triage  
Task

Sample Size 
Development 
Images

Internal or 
External 
Testing

Test  
Threshold

Test No. 
of Readers 
and Years 
of Reader 
Experience

Test Reader 
Country and 
Format

Test 
Validation 
Method

Percentage 
of Normal 
Cases Tri-
aged and 
Workload 
Reduction Result

Screening mam-
mograms

  Yala et al,  
2019 (39)*

DL:  
ResNet-18

Triage of 
normal 
cases 

Total = 
238 117 
(63 852 
cases); 
training = 
212 276 
(56 831 
cases); 
validation 
= 25 841 
(7021 
cases)

Internal “Minimum 
prob-
ability 
score of a 
radiologist 
TP as-
sessment 
on the 
validation 
set”

23 readers, 
1–31 
years of 
experi-
ence

U.S., single Hold-out 
method

Normal 
cases 
triaged = 
19.3%

Missed cancers = 
1.1%; sensitiv-
ity: 90.1% 
(172 of 191; 
95% CI: 86.0, 
94.3); specific-
ity: 94.2% 
(24,814 of 
26,349; 95% 
CI: 94.0, 94.6)

  McKinney  
et al, 2020  
(41)

DL:  
ensemble 
ResNet  
(V2 50  
and V1 
50), Mo-
bileNetV2, 
and  
RetinaNet

Triage of 
normal 
cases 

Training in 
U.K. = 
13 918 
cases; 
validation 
= 62 866 
cases; train-
ing in U.S. 
= 55.0% 
of 22 225 
cases; 
validation 
= 15.0% 
of 22 225 
cases

Internal and 
external†

NPV in 
U.K. = 
99.9%; 
NPV in 
the U.S. = 
99.9%

U.K., 51 
readers 
with 5 to 
more than 
20 years 
of experi-
ence; 
U.S., 
1–30 
years of 
experi-
ence

U.K., double; 
U.S., 
single

Hold-out 
method

Normal 
cases 
triaged: 
U.K. = 
41.0%; 
U.S. = 
35.0%

U.S. reader 
study ML vs 
reader: change 
in AUC (Δ) 
10.115 (95% 
CI: 0.06, 
0.18), P < 
.001; U.S. and 
U.K. data set 
performance; 
FP reduction 
= 5.7% and 
1.2%; FN 
reduction = 
9.4% and 
2.7%

  Balta  
et al, 2020  
(49)‡

DL: unclear, 
architecture 
commercial 
system, 
Transpara 
(version 
1.6.0)†

Triage of 
normal 
cases to 
single 
reading†

Unclear, 
commercial 
system was 
directly 
used†

Internal and 
external†

7 Six readers Germany, 
double

External 
valida-
tion

Workload 
reduc-
tion = 
32.6%

Missed cancers = 
0.0%; ML de-
creased recall 
rate = 11.8% 
(P , .001); 
PPV = 10.5% 
(P , .001)

  Dembrower  
et al, 2020 
 (48)§ 

DL: unclear, 
architecture 
commercial 
system, Lu-
nit (version 
5.5.0)†

Triage of 
normal 
cases

Training = 
170 230 
examina-
tions

External NA NA Sweden, 
double

External 
valida-
tion

Normal 
cases 
triaged 
.60.0%

Missed cancers 
at 60.0%, 
70.0%, 
80.0%, 0.0%, 
0.3% (95% 
CI: 0.0, 4.3) 
and 2.6% 
(95% CI: 1.1, 
5.4)

Screening mam-
mograms used 
from recalled  
screening  
cases

Table 1 (continues)
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Images Evaluated, 
Study, and Year

Machine 
Learning 
Technique

Triage  
Task

Sample Size 
Development 
Images

Internal or 
External 
Testing

Test  
Threshold

Test No. 
of Readers 
and Years 
of Reader 
Experience

Test Reader 
Country and 
Format

Test 
Validation 
Method

Percentage 
of Normal 
Cases Tri-
aged and 
Workload 
Reduction Result

  Kyono et al, 
2018 (46)

DL: 
Inception-
ResNetV2  
and  
multi-task 
learning

Triage for 
all cases†

Training = 
90.0% 
of cases; 
validation 
= 10.0% 
of cases; 
100.0% = 
7162 cases

Internal Least 
patients 
seen by 
radiologist 
without 
adversely 
affecting 
radiolo-
gist’s FPR 
or FNR‡

Details 
provided 
in Kyono 
et al, 
2019 
(40)†

Single multi-
reader†

Hold-out 
method

Workload 
reduc-
tion = 
42.8%

Cohen k = 0.716; 
F1 statistical 
test score = 
0.757; TP = 
120; TN = 
803; FP = 41; 
FN = 36

  Kyono et al, 
2019 (40)

DL: 
Inception-
ResNetV2  
and  
multitask 
learning†

Triage of 
normal 
cases

Unclear, 
training = 
5060 cases 
plus eight 
of 10-fold 
training 
plus one 
of 10-fold 
validation 
of 2000 
cases†

Internal NPV 
.99.0%

.30 readers 
with more 
than 2 
years of 
experi-
ence

Single multi-
reader†

10-fold CV Normal 
cases 
triaged 
= 34.0% 
(95% 
CI: 25.0, 
43.0); 
Low 
preva-
lence = 
91.0% 
(95% 
CI: 88.0, 
94.0)

NPV ,99.0%†

Screening  
and  
diagnostic 
mammograms: 
Rodriguez-Ruiz 
et al, 2019 
(38)†

DL: unclear, 
architecture 
commercial 
system, 
Transpara 
(version 
1.4.0)†

Triage of 
normal 
cases

Unclear, data 
partition 
for train-
ing and 
validation 
of 189 000 
examina-
tions†

Internal and 
external†

5, 2 101 readers 
(U.S. = 
52.0% 
and 
Europe = 
48.0%), 
further 
details 
provided 
in Rodri-
guez-Ruiz 
et al, 
2019 
(37)

Single multi-
reader

External 
valida-
tion

Normal 
cases 
triaged 
thresh-
old of 5 
= 47.0%; 
normal 
cases 
triaged 
threshold 
of 2 = 
17.0%

At the threshold 
of 5, missed 
cancers = 
7.0; at the 
threshold of 2, 
missed cancers 
=1.0

Note.—Algorithm performance is compared with reader performance for all included studies. Data partition level is at patient level. All 
studies are retrospective. AUC = area under the receiver operating characteristic curve, CADt = computer-aided triage, CV = cross-vali-
dation, DL = deep learning, FN = false-negative, FNR = false-negative rate, FP = false-positive, FPR = false-positive rate, ML = machine 
learning, NA = not available, NPV = negative predictive value, PPV = positive predictive value, N = true-negative, TP = true-positive, U.K. 
= United Kingdom, U.S. = United States.
* Code available at https://github.com/yala/OncoNet_public. 
† Indicates caveat or another reported format. 

‡ Code available at https://screenpoint-medical.com/in-practice/.
§ Code available at https://www.lunit.io.

Table 1 (continued): CADt Algorithm Details and Results

meta-analysis and six studies for the secondary meta-analy-
sis (algorithm [n = 17] and reader [n = 15]).

The included articles were published between 2017 and 
2020, with three of 14 articles (21%) published on a pre-
print platform (ie, arXiv). A total of 16 algorithms, includ-
ing 12 unique algorithms, were included in this review, 
with two algorithms reported multiple times using different 
versions.

All included studies were conducted retrospectively. 
Generalizability was demonstrated in four studies where al-
gorithms were tested on data sets from a different country to 
the training data set. All data sets used for reader compari-
son testing were private. Eight of 14 articles (57%) evalu-
ated algorithms on external data sets only, with a further 
two of 14 articles (14%) using both internal and external 
datasets. Cancer prevalence within testing data sets varied 
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from 0.6% to 50.0%, and the total testing data set size 
ranged from 240 examinations to 113 663 cases (ie, cohort 
size was simulated using bootstrapping). The comparator 
of readers ranged in number (four to 101 readers), expe-
rience (1–44 years), and specialization (general or breast) 

for all studies. The algorithms code was available in nine of 
14 articles (64%). Commonly used architectures included 
ResNet, RetinaNet, and MobileNet, which are all a type 
of convolutional neural network. This included algorithms 
that were commercially available in six of 14 articles (43%) 

Table 2: CADt Test Set Data Characteristics of All Included Studies

Images 
Evaluated, 
Study, and 
Year

Database 
Used

Internal 
or Exter-
nal Data

Country No. of 
Centers

Study 
Years

No. of 
Images

No. of 
Cancer 
Images

Vendor Screening 
or Di-
agnostic 
Mammo-
grams

Patient Age 
(y)

Breast 
Density

Ground 
Truth

Screening 
mammo-
grams

  Yala et al, 
2019 
(39)

Private Internal U.S. 1 2009–
2016

26 540; 
7176 
cases

191 ex-
amina-
tions; 
187 
cases, 
2.6% 
of 
cases

Hologic Screening 57.8 6 10.9*Yes HP and 
FU, .1 
year

  McKin-
ney 
et al, 
2020 
(41)

OPTI-
MAM 
(private) 
and 
North-
western 
Memo-
rial 
Hospital 
(private)

Internal U.K. and 
U.S.

2 in U.K. 
and 1 in 
U.S.

U.K.: 
2012–
2015; 
U.S.: 
2001–
2018

U.K.: 
25 856 
cases; 
U.S.: 
3097 
cases†

U.K.: 
414 
cases, 
1.6% 
of 
cases; 
U.S.: 
686 
cases, 
22.2% 
of 
cases†

Hologic, 
GE, 
and 
Sie-
mens

Screening NA Yes, U.S. 
only†

HP and 
FU, .1 
year

  Balta 
et al, 
2020 
(49)

Private External† Germany1 2018 17 895 
exami-
nations

114 
cases; 
0.6% 
of 
cases

Hologic 
and 
Sie-
mens

Screening NA NA HP, no FU

  Dem-
brower 
et al, 
2020 
(48)

CSAW 
(private)

External Sweden 1 2009–
2015

7364 
cases; 
simu-
lated 
75 534 
cases

547 
cases; 
0.7% 
of 
cases

Hologic Screening Range, 40–
74; 53.6 
(15.4)‡

Yes HP and 
FU .2 
years

Screening 
mam-
mograms 
used 
from 
recalled 
screening 
cases

Table 2 (continues)
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Images 
Evaluated, 
Study, and 
Year

Database 
Used

Internal 
or Exter-
nal Data

Country No. of 
Centers

Study 
Years

No. of 
Images

No. of 
Cancer 
Images

Vendor Screening 
or Di-
agnostic 
Mammo-
grams

Patient Age 
(y)

Breast 
Density

Ground 
Truth

  Kyono 
et al, 
2018 
(46)

TOMMY 
(private)

Internal U.K. 6 NA 1000 
cases

156 of 
cases; 
15.6% 
of 
cases

NA Screening 
(re-
called 
for 
assess-
ment 
and 
family 
histo-
ry)

Range, 
40–73

Yes HP and 
review 
by three 
read-
ers of 
2D and 
DBT 
images

  Kyono 
et al, 
2019 
(40)

TOMMY 
(private)

Internal U.K. 6 NA Unclear, 
1/10-
fold of 
2000 
cases†

300 
cases; 
15.0% 
of 
cases

NA Screening 
(re-
called 
for 
assess-
ment 
and 
family 
histo-
ry)

Range, 
40–73

Yes HP and 
review 
by three 
read-
ers of 
2D and 
DBT 
images

Screening 
and di-
agnostic 
mammo-
grams: 
Rodri-
guez-
Ruiz 
et al, 
2019 
(38)

Private External Seven 
coun-
tries, 
fur-
ther 
details 
pro-
vided 
in 
Rodri-
guez-
Ruiz 
et al, 
2019 
(37)

NA NA 2654 
exami-
nations

653 ex-
amina-
tions; 
24.6% 
of ex-
amina-
tions

GE, Ho-
logic, 
Sectra, 
and 
Sie-
mens

Both 
(50.0% 
screen-
ing, 
50.0% 
clini-
cal)

Details pro-
vided in 
Rodriguez-
Ruiz et al, 
2019 (37)

NA HP and 
FU 1 
year

Note.—All test data were full-field digital mammograms, and all test data were processed. This information was not available for Balta et al 
(49) and Dembrower et al (48). CADt = computer-aided triage, CSAW = Cohort of Screen-Aged Women, DBT = digital breast tomosyn-
thesis, FU = follow-up, HP = histopathologic findings, NA = not available, OPTIMAM = OPTIMAM Mammography Image Database, 
TOMMY = Tomosynthesis with Digital Mammography, 2D = two-dimensional, U.K. = United Kingdom, U.S. = United States.
* Numbers are means 6 standard deviations.
† Indicates caveat or another reported format.
‡ Numbers are medians, with interquartile ranges in parentheses.

Table 2 (continued): CADt Test Set Data Characteristics of All Included Studies

or where code was available in a public repository in three 
of 14 articles (21%).

Independent CADt studies reported that between 17% 
and 91% of normal mammograms could be identified, while 
missing 0%–7% of cancers (Tables 1, 2). For CAD and CADx 
tasks, eight studies reported the algorithms’ AUCs between 
0.69 and 0.96 (Tables 3, 4).

Quality Assessment
The Prediction Model Risk of Bias Assessment Tool and Qual-
ity Assessment of Diagnostic Accuracy Studies 2 tools were 
applied to all included articles in this review, and summary 
results of assessments are shown in Figure 3 and in Appendix 
E7 (online). Applying both tools identified a high risk of bias 
for analysis, as well as high bias and applicability concerns for 
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the index test, participants, and patient selection (Fig 3). Rea-
sons for high bias and applicability include eight of 14 articles 
(57%) with cancer-enriched cohorts, five of 14 articles (36%) 
that tested the algorithm on an internal data set, and three of 
14 articles (21%) that did not preset the algorithm threshold 
in CADt studies. According to the Prediction Model Risk of 
Bias Assessment Tool assessment, articles were reported to have 
an overall low (7%), unclear (7%), and high (86%) risk of bias.

Critical appraisal of the reporting quality in the 14 in-
cluded articles using the 42 parameters of the Checklist 
for Artificial Intelligence in Medical Imaging, found scores 
ranging from 22 to 34, with a mean total score of 30 of 42 
(71%). The points most commonly underreported included 
robustness or sensitivity analysis, methods for explainability 
or interpretability, and protocol registration. Methods for 

explainability (eg, saliency maps) to provide transparency 
of the algorithm’s deduction were reported in three articles. 
Only 50% of articles reported all eight key fields (Fig 4).

Statistical Analysis
Low heterogeneity was found for both algorithms and read-
ers in the primary and secondary analyses (I2 = 0.0%–0.6%; 
Cochrane Q test P = .45–.78).

An estimated 185 252 cases from three countries with more 
than 39 readers were included in the primary meta-analysis. The 
pooled summary estimates for sensitivity, specificity, and AUC 
were 75.4% (95% CI: 65.6, 83.2), 90.6% (95% CI: 82.9, 95.0), 
and 0.89 (95% CI: 0.84, 0.98), respectively, for ML algorithms. 
For readers, the pooled sensitivity, specificity, and AUC were 
73.0% (95% CI: 60.7, 82.6), 88.6% (95% CI: 72.4, 95.8), and 

Table 3: CAD and CADx Algorithm Details and Results

Images Evalu-
ated, Study, 
and Year

Machine 
Learning 
Technique

No. of 
Development 
Images

Internal or 
External 
Testing

Test No. 
of Readers 
and Years 
of Reader 
Experience

Test Reader 
Country and 
Format

Test Valida-
tion Method

AUC of ML 
vs Reader

Sensitivity of 
ML vs Reader 
(%)

Specificity of 
ML vs Reader 
(%)

Screening 
mammo-
grams

  Geras et al, 
2017 
(47)*

DL: Custom-
ized CNN

Training = 
721 186 
(164 224 
examina-
tions); 
validation 
= 108 276 
(24 552 
examina-
tions)

Internal Four  
readers

Single multi-
reader

Hold-out 
method

macro AUC 
= 0.688 vs 
0.704

NA NA

  Lotter et al, 
2019 
(45)

DL: 
ResNet-50 
and Reti-
naNet

97 769 cases Internal and 
external†

Five readers, 
2–15 
years of 
experience

Single multi-
reader

External vali-
dation and 
bootstrap-
ping

Test 1 ML: 
0.95 (95% 
CI: 0.92, 
0.97); test 
2 ML: 
0.77 (95% 
CI: 0.71, 
0.82)‡

Test 1: 114.2 
(95% CI: 
9.2, 18.5; 
P , .001); 
ML vs 
reader test 
2: 117.5 
(95% CI: 
6.0, 26.2; P 
, .001) ML 
vs reader‡

Test 1: 124.0 
(95% CI: 
17.4, 30.4; 
P , .001); 
ML vs 
reader test 
2: 116.2 
(95% CI: 
7.3, 24.6; 
P , .001) 
ML vs 
reader‡

  Rodriguez-
Ruiz 
et al, 
2019 
(44)§

DL: unclear, 
archi-
tecture 
commer-
cial system, 
Transpara 
(version 
1.3.0)‡

Unclear data 
partition 
for train-
ing and 
validation 
of 18 000 
examina-
tions†

Internal and 
external†

14 read-
ers, 11 
specialists 
with 3–25 
years of 
experience

Single multi-
reader

External 
validation

0.89 vs 0.87 
(P = .33)

83.0 (95% CI: 
81.0, 85.0), 
reader only†

77.0 (95% 
CI: 75.0, 
79.0), 
reader 
only†

Table 3 (continues)
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Images Evalu-
ated, Study, 
and Year

Machine 
Learning 
Technique

No. of 
Development 
Images

Internal or 
External 
Testing

Test No. 
of Readers 
and Years 
of Reader 
Experience

Test Reader 
Country and 
Format

Test Valida-
tion Method

AUC of ML 
vs Reader

Sensitivity of 
ML vs Reader 
(%)

Specificity of 
ML vs Reader 
(%)

  McKinney 
et al, 
2020 
(41)

DL: ensemble 
ResNet 
(V2 50 
and V1 
50), Mo-
bileNetV2, 
and Reti-
naNet

U.K.: 
training 
(13 918 
cases); 
validation 
(62 866 
cases); 
U.S.: train-
ing (55.0% 
of 22 225 
cases); 
validation 
(15.0% 
of 22 225 
cases)

Internal and 
external†

U.K.: 51 
readers, 5 
to more 
than 20 
years of 
experi-
ence; 
U.S.: 
1–30 
years of 
experi-
ence; U.S. 
reader 
study, six 
readers, 
4–15 
years of 
experience

U.K.: double; 
U.S.: 
single; 
reader 
study: 
single 
multi-
reader

Hold-out 
method 
and 
external 
validation

ML U.K.: 
AUC = 
0.89 (95% 
CI: 0.87, 
0.91); 
U.S. (with 
training 
for U.K. 
and U.S.): 
AUC = 
0.81 (95% 
CI: 0.79, 
0.83); 
U.K. train-
ing only: 
AUC = 
0.76 (95% 
CI: 0.73, 
0.78);‡ 
reader 
study ML 
vs reader: 
change in 
AUC = 
10.115 
(95% CI: 
0.06, 0.18; 
P , .001)

18.1 (P , 
.001); ML 
improve-
ment vs 
reader 
(minimum 
and maxi-
mum range, 
0.0–9.4)‡

13.5 (P = 
.02); ML 
improve-
ment vs 
reader 
(mini-
mum and 
maximum 
range, 
3.4–5.7)‡

  Schaffter 
et al, 
2020 
(43)||

DL: Ensem-
ble CEM 
(eight 
networks, 
includ-
ing VGG 
and Faster 
R-CNN); 
DL: 
custom-
ized VGG 
network

KPW (59 923 
cases and 
100 974 
examina-
tions), 
DDSM, 
and other 
data sets 
(eg, OPTI-
MAM)

External U.S. screen-
ing read-
ers and 
Sweden 
screening 
readers

U.S.: single; 
Sweden: 
double 
(reported 
single first 
reader)†

Hold-out 
method 
and 
external 
validation

KPW CEM 
= .90; top-
performing 
model = 
0.86; KI 
CEM = 
0.92;‡ top-
performing 
model = 
0.90

KPW reader 
sensitivity 
= 85.9;† KI 
first reader = 
77.1; reader 
consensus = 
83.9†‡

KPW CEM = 
76.1; top-
performing 
model = 
66.3 vs 
90.5; KI 
CEM = 
92.5;‡ top-
performing 
model = 
88.0 and 
81.2 vs 
first reader 
= 96.7;†‡ 
reader 
consensus 
= 98.5

Table 3 (continued): CAD and CADx Algorithm Details and Results

0.85 (95% CI: 0.78, 0.97), respectively (Fig 5). The differences in 
sensitivity and specificity were not statistically significant (P = .11 
and .40, respectively). Algorithm performance thresholds were set 
at the reported reader sensitivity and specificity in four studies.

When including all available results from CAD and 
CADx studies conducted using external data sets that pro-
vided a direct comparison between ML algorithms and 
readers for a secondary meta-analysis, the pooled sensitivity, 

Table 3 (continues)
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specificity, and AUC were 80.4% (95% CI: 75.5, 84.6), 
82.1% (95% CI: 72.7, 88.8), and 0.86 (95% CI: 0.84, 
0.90), respectively, for algorithms. For readers, the pooled 
sensitivity, specificity, and AUC were 78.5% (95% CI: 73.8, 
82.5), 82.6% (95% CI: 69.2, 90.9), and 0.84 (95% CI: 
0.81, 0.88), respectively (Fig 5). The differences in sensitiv-
ity and specificity were not statistically significant (P = .70 
and .73, respectively). Summary Tables E1–E5 (online) and 

additional information are available in Appendixes E8–E11 
(online) with associated Figures E1–E4 (online).

Discussion
We found the performance of mammography screening algo-
rithms is reaching equivalence to readers in stand-alone com-
puter-aided detection and computer-aided diagnosis tasks. 
Comparing our results to two recently published reader per-

Images Evalu-
ated, Study, 
and Year

Machine 
Learning 
Technique

No. of 
Development 
Images

Internal or 
External 
Testing

Test No. 
of Readers 
and Years 
of Reader 
Experience

Test Reader 
Country and 
Format

Test Valida-
tion Method

AUC of ML 
vs Reader

Sensitivity of 
ML vs Reader 
(%)

Specificity of 
ML vs Reader 
(%)

  Salim et al, 
2020 
(29)

DL: 
ResNet-34; 
Mo-
bileNet; 
unknown

752 000; 
239 000; 
112 000

External Sweden 
screening 
readers: 
25 first 
readers 
and 20 
second 
readers

Sweden, 
double

External vali-
dation and 
bootstrap-
ping

0.96; 0.92; 
0.92

ML: 81.9 (P 
= .03, P = 
.11); 67.0; 
67.4 vs first 
reader = 
77.4; reader 
consensus = 
85.0‡

ML: 96.6, 
96.6, and 
96.7 vs 
first reader 
= 96.6; 
reader 
consensus= 
98.5‡

Screening and 
diagnostic 
mam-
mograms: 
Rodriguez-
Ruiz et al, 
2019 (37)§

DL: unclear, 
archi-
tecture 
commer-
cial system, 
Transpara 
(version 
1.4.0)†

Unclear data 
partition 
for train-
ing and 
validation 
of 189 000 
examina-
tions†

Internal and 
external†

101 readers: 
95 readers 
for sensi-
tivity and 
specific-
ity (1–44 
years of 
experi-
ence)†

Single multi-
reader

External 
validation

0.84 (95% 
CI: 0.82, 
0.86) vs 
0.81 (95% 
CI: 0.79, 
0.84)‡

75.0–86.0 vs 
76.0–84.0‡

49.0–79.0‡, 
clinician 
specificity†

Mammogra-
phy and 
US used for 
screening: 
Kim et al, 
2019 (42)#

DL: 
ResNet-34; 
commer-
cial system, 
Lunit

Total: 
166 968 
examina-
tions; 
training: 
152 693 
examina-
tions; 
validation: 
14 275 
examina-
tions

Internal and 
external†

14 readers, 
seven 
special-
ists (.6 
months of 
experi-
ence)

Single multi-
reader

External 
validation

0.94 (95% 
CI: 0.92, 
0.97) vs 
0.81 (95% 
CI: 0.77, 
0.85; P , 
.001)

88.8 vs 75.3 (P 
, .001)

81.9 vs 72.0 
(P = .002)

Note.—Algorithm performance is compared with reader performance for all included studies. Task is stand-alone artificial intelligence 
detection and diagnosis. The artificial intelligence decision is made at the per-case level. All testing is retrospective. AUC = area under the 
receiver operating characteristic curve, CAD = computer-aided detection, CADx = computer-aided diagnosis, CEM = Challenge Ensemble 
Method, CNN = convolutional neural network, DL = deep learning, DDSM = Digital Database for Screening Mammography, KI = Karo-
linska Institute, KPW = Kaiser Permanente Washington, NA = not available, OPTIMAM = OPTIMAM Mammography Image Database, 
U.K. = United Kingdom, U.S. = United States.
* Code available at https://github.com/nyukat/BIRADS_classifier.
† Indicates caveat or other reported format.
‡ Indicates the results of studies included in the primary meta-analysis.
§ Code available at https://screenpoint-medical.com/in-practice/.
|| Code available at https://github.com/Sage-Bionetworks/DigitalMammographyEnsemble.
# Code available at https://www.lunit.io.

Table 3 (continued): CAD and CADx Algorithm Details and Results
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Table 4: CAD and CADx Test Set Data Characteristics of All Included Studies

Images 
Evaluated, 
Study, and 
Year

Database 
Used

Internal or 
External 
Data

Country No. of 
Centers

Year of 
Studies

No. of 
Images

No. of 
Cancer 
Images

Vendor Screening 
or Di-
agnostic 
Mammo-
grams

Patient 
Age (y)

Breast 
Density

Ground 
Truth

Screening 
mam-
mo-
grams

  Geras 
et al, 
2017 
(47)

New York 
Uni-
versity 
(private)

Internal U.S. 5 2010–
2016

500 ex-
amina-
tions

NA NA Screening Range, 
19–99; 
57.2 6 
11.6*

NA BI-RADS 
score: 
0, 1, 
and 2†

  Lotter 
et al, 
2019 
(45)

Private External U.S. 1 2011–
2014

Test 1: 
index 
cases, 
285 
exami-
nations; 
Test 2: 
pre-
index 
cases 
12–24 
months 
previ-
ously, 
274 
exami-
nations

Test 1: 
131 
exami-
nations, 
46.0% 
of 
exami-
nations; 
Test 
2: 120 
exami-
nations, 
43.8% 
of ex-
amina-
tions

NA Screening NA NA HP and 
FU .1 
year

  Rodri-
guez-
Ruiz 
et al, 
2019 
(44)

Private External U.K. and 
Europe

1 in U.S. 
and 
1 in 
Europe

U.S.: 
2013–
2017; 
Europe: 
2014–
2015

240 ex-
amina-
tions

100 
exami-
nations, 
41.7% 
of ex-
amina-
tions

Hologic 
and Sie-
mens

Screening Range, 
39–89; 
mean, 
61.0

Yes HP and 
FU .1 
year

  McKin-
ney 
et al, 
2020 
(41)

OPTI-
MAM 
(private)  
and  
North-
western 
Memo-
rial  
Hospital  
(private)

Internal 
and ex-
ternal†

U.S. and 
U.K.

2 in U.K. 
and 1 
in U.S.

U.K.: 
2012–
2015; 
U.S.: 
2001–
2018

U.K.: 
25 856 
cases; 
U.S.: 
3097 
cases; 
U.S. 
reader: 
500 
cases†

U.K.: 414 
cases, 
1.6% of 
cases; 
U.S.: 
686 
cases, 
22.2% 
of cases; 
U.S. 
reader 
study: 
125 
cases; 
25.0% 
of cases†

GE, Ho-
logic, 
and 
Siemens

Screening NA Yes, U.S. 
only†

HP and 
FU .1 
year

Table 4 (continues)
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Images 
Evaluated, 
Study, and 
Year

Database 
Used

Internal or 
External 
Data

Country No. of 
Centers

Year of 
Studies

No. of 
Images

No. of 
Cancer 
Images

Vendor Screening 
or Di-
agnostic 
Mammo-
grams

Patient 
Age (y)

Breast 
Density

Ground 
Truth

  Schaff-
ter 
et al, 
2020 
(43)

KPW 
(private) 
and KI 
(private)

Internal 
and ex-
ternal†

U.S. and 
Sweden

1 in KPW 
and 2 
in KI

KPW: 
NA; 
KI: 
2008–
2012

KPW: 
25 657 
cases, 
43 257 
exami-
nations; 
KI: 
68 008 
cases, 
166 578 
exami-
nations†

KPW: 283 
cases, 
1.1% of 
cases; 
KI: 780 
cases, 
1.1% of 
cases

NA Screening KPW: 
range, 
40–74, 
58.4 6 
9.7;* 
KI: 
range, 
40–74, 
53.3 6 
9.4*

NA HP and 
FU .1 
year

  Salim 
et al, 
2020 
(29)

CSAW 
(private)

External Sweden 1 2008–
2015

8805 
cases, 
113 663 
exami-
nations 
simu-
lated†

739 cases, 
0.7% of 
simu-
lated 
cases†

Hologic Screening Range, 
40–74; 
median, 
54.5

Yes HP and 
FU .2 
years

Screening 
and di-
agnostic 
mam-
mo-
grams: 
Rodri-
guez-
Ruiz 
et al, 
2019 
(37)

Private External Sweden, 
U.K., 
Neth-
erlands, 
U.S., 
Italy, 
Spain, 
and  
Austria

NA NA 2652 
exami-
nations, 
2389 
exami-
nations 
for 
sensitiv-
ity and 
specific-
ity†

653 
exami-
nations, 
24.6% 
of 
exami-
nations; 
610 
exami-
nations, 
24.6% 
of ex-
amina-
tions

GE, Ho-
logic, 
Sectra, 
and Sie-
mens

Both 
(some 
uni-
lateral 
only)†

30–92 Yes HP and 
FU .1 
year

Mammog-
raphy 
and US 
used for 
screen-
ing: 
Kim 
et al, 
2019 
(42)

Private External† South 
Korea

2 2009–
2018

320 ex-
amina-
tions

160 
exami-
nations, 
50.0% 
of ex-
amina-
tions

GE and 
Hologic

Screening 
(includ-
ing 
US)†

53.2 6 
10·0*

Yes Mammog-
raphy 
and US 
detect-
ed plus 
HP†

Note.—All test data were full-field digital mammograms, and all test data were processed. This information was not available for Kim et al 
(42).  
BI-RADS = Breast Imaging Reporting and Data System, CSAW = Cohort of Screen-Aged Women, FU = follow-up, HP = histopathologic 
findings, KI = Karolinska Institute, KPW = Kaiser Permanente Washington, NA = not available, OPTIMAM = OPTIMAM Mammogra-
phy Image Database, U.K. = United Kingdom, U.S. = United States.
* Numbers are means 6 standard deviations.
† Indicates caveat or other reported format.
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Figure 3:  Stacked bar charts show summary results of included articles assessed with (A) Prediction Model Risk of Bias Assessment Tool and (B) Qual-
ity Assessment of Diagnostic Accuracy Studies 2 assessment. For 14 included articles, each category is represented as percentage of number of articles that 
have high, low, or unclear levels of bias and applicability.

Figure 4:  Stacked bar chart of Checklist for Artificial Intelligence in Medical Imaging (CLAIM) assessment. Results for 14 articles included in this review 
across eight key categories identified from checklist are shown. Score of 1 was given if complete information was provided, and score of 0 was given where 
no information was provided. X-axis indicates percentage of articles in review that included information about eight key categories detailed in y-axis.
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formance studies demonstrated that although the pooled sen-
sitivity of algorithms (75.4%) was higher than that of pooled 
readers (73.0%) and single reading in Sweden (73.0%) (8), 
it was inferior to both single reading in the United States 
(86.9%) (6) and double reading with consensus in Sweden 
(85.0%) (8). The pooled specificity of algorithms (90.6%) 
was superior to pooled readers (88.6%) and single reading 
in the United States (88.9%) (6) but was inferior to both 
single (96.0%) and double reading with consensus in Sweden 
(98.0%) (8). Therefore, further improvements are needed to 
make sure machine learning systems meet the “clinically rele-
vant thresholds” of current reader performance and screening 
program targets. Our findings were similar to a systematic re-
view and meta-analysis comparing deep learning applications 
across all medical imaging to health care professionals, who 
came to a similar conclusion and highlighted the importance 
of continued external testing (19).

Algorithms are also performing tasks not feasible by readers 
such as high-volume normal case triage, with no detrimental 
change when reader performance was extrapolated in an adapted 
screening workflow (ie, using machine-only reading of cases as-
signed to be normal as an alternative to single or double reading) 
(2). However, the acceptable “miss” rate for a system, similar to 
the interval cancer targets, should be agreed upon and specified 
for machine-only reading of normal mammograms before clini-
cal adoption. The biggest barrier may be public understanding of 
the concept of acceptable “misses.”

No prospective studies have yet been reported, many studies 
are still conducted with retrospective internal testing, and few 
studies are conducted by an independent party where multiple 
algorithms are cross-compared using external data sets (29). 
In addition, most of the studies used enriched cancer cohorts 
for testing, which do not include the class imbalance of can-
cers to healthy controls in screening. Thus, these data sets may 

Figure 5:  (A, B) Summary receiver operating characteristic (sROC) curves in (A) five studies for included algorithm and (B) reader 
results reported for top-performing machine learning algorithm tested on external data set, compared with reader performance for computer-
aided detection and computer-aided diagnosis applications, with a ground truth of more than 1 year follow-up and histopathologic findings 
(primary meta-analysis). (C, D) Summary receiver operating characteristic (sROC) curves for (C) 17 algorithm-reported results and (D) 15 
reader-reported results from included studies for computer-aided detection and computer-aided diagnosis applications tested externally 
(secondary meta-analysis). Line represents summary receiver operating characteristic curve, oval represents 95% CIs, circle represents sum-
mary estimate, and crosses represent individual results.
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not provide a realistic representation from which to infer model 
performance in clinical implementation limiting generalizability, 
clinical applicability, and feasibility of workflow translation. Our 
findings highlight the need for well-designed prospective ran-
domized and nonrandomized controlled trials to be conducted 
across different breast screening programs. These prospective 
studies should include representative case proportions to rep-
licate the class imbalance in screening, with readers of varying 
experience interacting with ML algorithm outputs within the 
clinical workflow. This will allow for performance to be assessed 
as well as technologic feasibility, reading time, reader acceptabil-
ity, and effect on reader performance (17). Prospective studies 
investigating ML applications for mammographic screening are 
currently underway in the United Kingdom, Norway, Sweden, 
China, and Russia, with results pending (30–32).

Most articles were from 2019 onward, reflecting the expo-
nential growth in publications since major milestones such as 
the ImageNet (33) and the Digital Mammography Dialogue for 
Reverse Engineering Assessment and Methods (3,34) challenges. 
Although the computer codes were available in 64% of articles, 
only 21% of code was available on an open-source platform. 
However, the provision of code alone does not result in a de-
ployable model, including training weights and the threshold at 
which the algorithm performance was determined, thus limiting 
reproducibility and transparency (35,36). Large data sets were 
used for testing, but the majority of these are private, which lim-
its the ability to replicate results.

Two commonly used tools for bias assessment found a high 
risk of bias due to cancer-enriched cohorts and use of internal 
data sets as well as the algorithm threshold in triage studies 
not being preset. Therefore, these results may not be applicable 
and generalizable to all breast screening populations (21). We 
applied a specific artificial intelligence medical imaging report-
ing guideline, the Checklist for Artificial Intelligence in Medi-
cal Imaging, to critically appraise artificial intelligence medical 
imaging literature. It should be noted that the Checklist for 
Artificial Intelligence in Medical Imaging was published after 
more than half of the articles in this review were published. 
Therefore, we have not presented the results of each individual 
study but have used this as a foundation to find underreported 
areas within the current literature, as well as to confirm the ap-
plicability of the Checklist for Artificial Intelligence in Medical 
Imaging for ML mammography studies (24).

The meta-analysis was limited by both the small number 
of eligible studies and because the contingency tables were 
constructed using reported sensitivity, specificity, total cases, 
and malignant cases to provide estimated integers, or whole 
numbers, for calculating true-positive, true-negative, false-
positive, and false-negative findings. The primary meta-anal-
ysis included studies where reader performance did not reach 
the level reported in national screening standards; therefore, 
it is possible that the relative improved performance of ML 
algorithms is overestimated, and the performance of readers 
is underestimated as part of this analysis. The primary analysis 
also used only the highest-performing (ie, based on test perfor-
mance) algorithm if multiple algorithms were tested and there-
fore may be slightly biased toward the selected algorithms. The 

secondary meta-analysis incorporated multiple algorithms and 
readers from the same study, in the same population, which 
could potentially lead to overrepresentation. Therefore, the 
results from the meta-analysis should be interpreted with cau-
tion. Last, for the secondary meta-analysis, both screening and 
diagnostic mammograms were included in studies, including 
one study in which women were screened with mammography 
and US, both of which would have an impact on the expected 
performance metrics.

There is a growing evidence base that stand-alone machine 
learning (ML) performance is comparable to reader performance 
and that ML can undertake triage tasks at a volume and speed 
not feasible for human readers. Although only retrospective trials 
have been conducted, the potential for algorithms to perform at 
the level of or even exceed the performance of a reader within the 
real-time breast screening workflow is realistic. However, further 
robust prospective data are critical to understanding where algo-
rithm thresholds are set and are required to examine the interac-
tion between human readers and algorithms, as well as the effect 
on reader performance and patient outcomes over time.
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