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Abstract

Cooperative asymmetric catalysis with hydrogen chloride (HCl) and chiral dual-hydrogen-bond 

donors (HBDs) is applied successfully to highly enantioselective Prins cyclization reactions of a 

wide variety of simple alkenyl aldehydes. The optimal chiral catalysts were designed to withstand 

the strongly acidic reaction conditions and induce rate accelerations of 2 orders of magnitude 

over reactions catalyzed by HCl alone. We propose that the combination of strong mineral 

acids and chiral hydrogen-bond-donor catalysts may represent a general strategy for inducing 

enantioselectivity in reactions that require highly acidic conditions.

Graphical Abstract

Reactions catalyzed by Brønsted acids are of central utility in organic chemistry, 

and extensive research efforts have been directed over the past two decades toward 

the development of enantioselective variants.1 Attainment of high levels of absolute 

stereocontrol requires the creation of well-defined and differentiated geometries about the 

protonated electrophile, and fundamentally different approaches have been taken to address 

this challenge. One involves the application of chiral Brønsted acids, and systems based 

on bis-aryloxide ligated phosphoric acids have been deployed with outstanding success, 

particularly in the promotion of reactions involving imine electrophiles.1,2 Extension 

to less basic functional groups such as simple carbonyl and olefin derivatives requires 

catalysts with enhanced Brønsted acidity,3 and effective catalyst platforms have been 

identified including N-triflyl phosphoramides by Yamamoto,4 imidodiphosphorimidates by 

List,5 pentacarboxycyclopentadienes by Lambert,6 and bis(sulfuryl)imides by Berkessel.7 
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Enhanced acidity of chiral Brønsted acid catalysts has also been achieved through the 

introduction of achiral cocatalysts including simple Lewis acids and hydrogen-bond donors.8

An alternative strategy for accessing enantioselective Brønsted acidic catalyst systems has 

relied on the anion binding abilities of chiral dual-hydrogen-bond donors (HBDs).9 Chiral 

urea, thiourea, and squaramide-based catalysts have been shown to impart enantioselectivity 

in reactions catalyzed by both weak10 and strong11 achiral Brønsted acids (Scheme 1A). 

While this cocatalytic strategy has found use in activation of several classes of nitrogenous 

electrophiles including aldimines10,11b and aziridines,11a we recognized the possibility that 

the innate acidity of a strong mineral acid could be leveraged to activate substantially less 

Lewis basic oxygen-centered electrophiles.12 In this regard, our group recently identified 

adventitious hydrogen bromide as an effective cocatalyst in highly enantioselective chiral 

squaramide catalyzed ring-opening reactions of oxetanes.11c We hypothesized that this mode 

of cooperative catalysis could be applied broadly to the activation of other challenging 

classes of electrophiles such as simple carbonyls.3b

We chose to explore the concept of strong Brønsted acid/chiral HBD cocatalysis in 

the context of the addition of alkenes to carbonyl compounds (the Prins reaction), a 

venerable transformation that provides access to stereochemically defined homoallylic 

alcohol products (Scheme 1B).13 Although numerous advances in asymmetric Lewis14 and 

Brønsted15 acid catalysis of Prins and carbonyl-ene reactions have been made, protonation 

of simple aldehyde substrates toward reaction with simple alkenes remains a formidable 

challenge. Highly enantioselective methods operating on such substrates are rare and 

have been limited primarily to 5-membered ring-forming carbonyl-ene reactions.16,17 We 

recognized that enantioselective catalysis of Prins cyclizations could provide complementary 

strategies to access six-membered ring homoallylic alcohol products, for which general 

highly enantioselective methods have not yet been developed.18 Herein, we report highly 

enantioselective chiral HBD/HCl cocatalysis of Prins cyclizations of simple alkenyl 

aldehydes. The successful implementation of cooperativity between simple mineral acids 

and chiral hydrogen-bond donors points to a potentially general approach to enantioselective 

catalysis of organic reactions involving weakly Brønsted basic substrates.

The cyclization of prenylated salicylaldehyde derivative 1a, which affords access to valuable 

4-chromanol products, was selected as a model reaction.19 While the dual hydrogen-bond 

donor catalyst 4 alone did not catalyze the cyclization of 1a (Table 1, entry 1), the 

inclusion of catalytic hydrogen chloride (8 mol%, as a solution in Et2O) at room temperature 

promoted smooth conversion to homoallylic alcohol product 2a along with tertiary chloride 

product 3a arising from trapping of the presumed tertiary carbocation intermediate (Scheme 

1B). Under these conditions, 2a and 3a were formed in a 3.5:1 ratio with similar 

enantiomeric excess (76% and 74% ee respectively) (Table 1, entry 2). A variety of other 

achiral Brønsted acids were surveyed with catalyst 4 (Table 1, entries 3-6), in all cases 

providing product 2a in diminished levels of both diastereo- and enantioselectivity relative 

to reactions carried out with HCl.20 Weaker Brønsted acids such as benzoic acid and 

diphenyl phosphoric acid failed to provide any measurable level of conversion after 24 hours 

(Table 1, entries 5 and 6). The use of urea catalyst 5 bearing a pyrrole moiety derived from 

trans-1,2 diaminocyclohexane led to improvements in both diastereo- and enantioselectivity 

Kutateladze and Jacobsen Page 2

J Am Chem Soc. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as well as an increase in the 2a:3a ratio (Table 1, entry 7). However, HCl was found to 

promote undesired addition reactions21 between the electron-rich pyrrole of 5 and substrate 

1a, resulting in catalyst decomposition (Table 1, bottom; see SI for details). Introduction 

of an electron-withdrawing ester substituent to attenuate the nucleophilicity of the pyrrole 

led to complete suppression of the undesired addition pathways, with catalyst 6a affording 

a significantly cleaner reaction while also providing products 2a and 3a with enhanced ee 

(Table 1, entry 8). A further improvement in enantioselectivity was achieved with the more 

reactive thiourea analog 6b, which delivered products 2a and 3a both in 98% ee using an 8 

mol% loading of HCl (Table 1, entry 9).

The stoichiometric consumption of HCl in the generation of product 3a resulted in 

limited reaction conversions when 8 mol% loadings of HCl were employed. Increased 

conversion was achieved with higher (30 mol%) loadings of HCl, affording comparable 

enantioselectivity with 10 mol% 6b (Table 1, entry 11). However, lowering the loading of 

6b to 5 mol% with the increased HCl loadings resulted in diminished enantioselectivity, 

presumably due to intervention of a competing racemic HCl-catalyzed background reaction 

(Table 1, entry 12). We surveyed methods for the controlled in situ generation of HCl, 

and found that the use of 30 mol% equimolar combinations of acetyl chloride (AcCl) 

and anhydrous ethanol (EtOH) restored nearly optimal levels of yield and ee with catalyst 

6b (Table 1, entry 13).22 Finally, conversion of tertiary chloride 3a to 2a via potassium 

hexamethyldisilazide (KHMDS)-promoted elimination could be effected as a quench at the 

end of the reaction without the need for initial purification (Table 1, entry 14). Under these 

conditions, 2a was generated as the exclusive product in 82% NMR yield and 95% ee.23

Efforts to further reduce the loading of 6b were met by the observation of decreasing 

enantioselectivity over the course of the reactions (Figure 1A, entries 1-2), suggesting 

the participation of a competitive catalyst deactivation pathway. Indeed, subjecting 6b 
to HCl in the absence of substrate led to the clean formation of heterocycle 8 and the 

corresponding aryl pyrrolidine arising from Edman degradation24,25 (Figure 1B, see SI for 

details). Variation of the arylpyrrolidine catalyst component led to the identification of 

2-naphthyl derivative 9, which displayed minimal decreases in enantioselectivity over the 

same timeframe (Figure 1A, entries 3-4).26 In principle, the observed increased robustness 

of reactions catalyzed by 9 can be attributed to either increased catalyst stability to HCl or to 

increased reactivity in the Prins reactions.27 In fact, 6b and 9 were found to undergo Edman 

degradation at identical rates, while 9 catalyzes the Prins cyclization of 1b at twice the rate 

compared to 6b (Figure 1C). Hence, the higher rate of Prins cyclization allows 9 to more 

effectively outcompete Edman degradation, resulting in higher levels of enantioselectivity at 

lower catalyst loadings.28

With optimal hydrogen-bond donor catalyst 9 and conditions for the cyclization of 1a 
in-hand, we evaluated the scope of the newly developed method (Figure 2). A variety of 

electronically and sterically differentiated analogs of 1a were found to undergo smooth 

cyclization and elimination at room temperature to provide chromanols 2b-2h in good 

yields with high diastereoselectivities (≥17:1) and enantioselectivities (95-98% ee). Lower 

but nonetheless significant levels of enantioselectivity were obtained in the cyclization of 
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arylaldehyde derivatives lacking a ring-conjugated oxygen atom, with 1i reacting to form 

product in 81% ee and 1j affording the carbocylic five-membered ring product 2j in 80% ee.

The new method was extended to simple olefinic aldehydes, with the cyclization of aliphatic 

substrates 1k-1o taking place in high ee and moderate-to-good yields. Although products 

2k and 2l were formed with low diastereoselectivities, the trans cyclohexanol products were 

generated in high enantioselectivities (89% and 91% ee respectively), a noteworthy result 

considering that substrates without conformationally biasing disubstitution29 have rarely 

been documented in direct enantioselective Brønsted acid catalyzed additions of alkenes 

to carbonyls.30 In contrast to the benzo-fused products 2a and 2i, the presence or identity 

of a heteroatom linker had negligible effects on stereoselectivity, with oxygen-, nitrogen-, 

and carbon-linked alkenyl aldehydes 2k-2o all affording similar levels of ee and d.r. The 

cyclization of simple alkenyl aldehyde substrates represents a long-standing challenge in 

asymmetric Brønsted/Lewis acid catalysis, so the successful access provided by this method 

to trans-configured six-membered ring products in high enantioselectivities under mild 

reaction conditions is particularly significant.

Substrates 1p and 1q bearing tetrasubstituted alkenyl components also underwent highly 

enantioselective cyclizations, forging congested quaternary stereogenic centers in products 

2p and 2q. Although compounds possessing quaternary centers of this type have been 

synthesized racemically,31 highly enantioselective methods for their preparation are rare.32 

Finally, conjugated enal electrophiles provided access to new allylic alcohol products 2r-2t 
possessing natural product-like features in good enantioselectivity (88-90% ee) and d.r. (≥ 

9:1).33

The chiral thiourea and HCl cocatalyzed Prins reaction was readily adapted to preparative 

synthesis, as demonstrated by the cyclization of 1b conducted on gram scale (Figure 3A). 

The loading of 9 could be reduced to 1 mol% while maintaining a highly enantioselective 

reaction outcome (96% ee), good yield (71%), and a short reaction time (1h). The 

enantiomeric purity of 2b was upgraded to 99% following a single recrystallization.

Thiourea 9 was found to induce substantial rate acceleration in cyclization of substrates 1 
relative to the HCl-catalyzed background reaction. Monitoring the HCl-catalyzed reaction of 

1b in the presence and absence of 2 mol% 9 using in situ infrared spectroscopy revealed 

rate enhancement of approximately two orders of magnitude (93 times) (Figure 3B). The 

observation of such effects with a chiral cocatalyst is reminiscent of ligand-accelerated 

catalysis using transition metals.34 Our current efforts are directed towards elucidating the 

basis of this rate acceleration as well as identifying the mode of stereoinduction across 

multiple substrate classes.

In summary, we have developed a highly enantioselective Prins cyclization of alkenyl 

aldehydes catalyzed by the combination of hydrogen chloride and chiral hydrogen-bond 

donors. The catalytic method displays broad substrate scope, providing valuable chromanol 

derivatives and related natural product-like compounds in high levels of ee. Given the ability 

of dual hydrogen bond donors to recognize anions with widely varying steric and electronic 
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properties,35 we anticipate general application of the cooperative action of strong Brønsted 

acids and chiral HBDs in asymmetric catalysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Optimization of HBD aryl pyrrolidine. aDetermined from crude reaction mixtures using 1H 

NMR spectroscopy with mesitylene internal standard. bDetermined by GC analysis using a 

chiral stationary phase.
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Figure 2. 
Catalytic enantioselective Prins cyclization reactions. Reactions were carried out using 0.3 

mmol of substrates 1, except for substrates 1k and 1l which were carried out on 0.1 

mmol scale. Isolated yields are reported, except where noted. d.r. determined using 1H 

NMR spectroscopy of crude reaction mixtures. Reported ee values correspond to the major 

trans products. The absolute stereochemical configuration of 2c was determined via X-ray 

crystallographic analysis. All stereochemistry of products 2 is inferred from this result. a10 

mol% 9 used, bNMR yield of trans diastereomer, cNMR yield of diastereomeric mixture, 
disolated yield of trans diastereomer, eisolated yield of diastereomeric mixture, f15 mol% 

AcCl, EtOH used.
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Figure 3. 
(A) Gram-scale synthesis of 2b. (B) Rate acceleration using catalyst 9 in reaction of 1b.

Kutateladze and Jacobsen Page 11

J Am Chem Soc. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
(A) Cocatalytic strategy in activation of nitrogenous electrophiles (B) Application of 

Brønsted acid and HBD cocatalysis to enantioselective Prins cyclization reactions.
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Table 1.

Optimization of HBD catalyst structure and reaction conditions
a

entry HX
(mol%)

HBD
(mol%)

conversion

(%)
b

yield

(%)
b d.r. 2a

b
2a : 3a

b ee 2a

(%)
c

ee 3a

(%)
c

1 — 4 (10) n.r. n.r. — — — —

2 HCl (8) 4 (10) 33 28 10 : 1 3.5 : 1 76 74

3 MsOH (8) 4 (10) 100 trace — — — —

4 TsOH H2O (8) 4 (10) 87 30 4 : 1 — 31 —

5 BzOH (8) 4 (10) n.r. n.r. — — — —

6 HOP(O)(OPh)2 (8) 4 (10) n.r. n.r. — — — —

7 HCl (8) 5 (10) 41 32 22 : 1 6.5 : 1 89 77

8 HCl (8) 6a (10) 45 44 23 : 1 4.4 : 1 96 95

9 HCl (8) 6b (10) 34 32 49 : 1 3.0 : 1 98 98

10 HCl (8) 7 (10) 35 25 12 : 1 2.4 : 1 87 89

11 HCl (30) 6b (10) 96 94 > 50 : 1 3.1 : 1 96 98

12 HCl (30) 6b (5) 88 85 30 : 1 3.1 : 1 92 94

13 AcCl + EtOH (30) 6b (5) 93 91 38 : 1 3.0 : 1 95 97

14
d AcCl + EtOH (30) 6b (5) — 82 36 : 1 — 95 —

J Am Chem Soc. Author manuscript; available in PMC 2022 December 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kutateladze and Jacobsen Page 14

entry HX
(mol%)

HBD
(mol%)

conversion

(%)
b

yield

(%)
b d.r. 2a

b
2a : 3a

b ee 2a

(%)
c

ee 3a

(%)
c

a
Conducted using 0.08 mmol of 1a with Brønsted acid cocatalysts delivered as solutions in Et2O.

b
Determined from crude reaction mixtures using 1H NMR spectroscopy with mesitylene internal standard. Yield refers to the combined yield of 

products trans/cis 2a and 3a except for entry 14.

c
Determined by GC analysis using a chiral stationary phase. n.r. = no reaction.

d
Reaction was quenched by the addition of 60 mol% KHMDS.
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