Skip to main content
. Author manuscript; available in PMC: 2022 Dec 8.
Published in final edited form as: J Am Chem Soc. 2021 Nov 23;143(48):20077–20083. doi: 10.1021/jacs.1c10890

Table 1.

Optimization of HBD catalyst structure and reaction conditionsa

graphic file with name nihms-1764158-t0006.jpg
entry HX
(mol%)
HBD
(mol%)
conversion
(%)b
yield
(%)b
d.r. 2ab 2a : 3ab ee 2a
(%)c
ee 3a
(%)c
1 4 (10) n.r. n.r.
2 HCl (8) 4 (10) 33 28 10 : 1 3.5 : 1 76 74
3 MsOH (8) 4 (10) 100 trace
4 TsOH H2O (8) 4 (10) 87 30 4 : 1 31
5 BzOH (8) 4 (10) n.r. n.r.
6 HOP(O)(OPh)2 (8) 4 (10) n.r. n.r.
7 HCl (8) 5 (10) 41 32 22 : 1 6.5 : 1 89 77
8 HCl (8) 6a (10) 45 44 23 : 1 4.4 : 1 96 95
9 HCl (8) 6b (10) 34 32 49 : 1 3.0 : 1 98 98
10 HCl (8) 7 (10) 35 25 12 : 1 2.4 : 1 87 89
11 HCl (30) 6b (10) 96 94 > 50 : 1 3.1 : 1 96 98
12 HCl (30) 6b (5) 88 85 30 : 1 3.1 : 1 92 94
13 AcCl + EtOH (30) 6b (5) 93 91 38 : 1 3.0 : 1 95 97
14d AcCl + EtOH (30) 6b (5) 82 36 : 1 95
graphic file with name nihms-1764158-t0007.jpg
a

Conducted using 0.08 mmol of 1a with Brønsted acid cocatalysts delivered as solutions in Et2O.

b

Determined from crude reaction mixtures using 1H NMR spectroscopy with mesitylene internal standard. Yield refers to the combined yield of products trans/cis 2a and 3a except for entry 14.

c

Determined by GC analysis using a chiral stationary phase. n.r. = no reaction.

d

Reaction was quenched by the addition of 60 mol% KHMDS.