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Abstract

Ovarian cancer is the deadliest gynecologic malignancy in the United States with most patients 

diagnosed in the advanced stage of the disease. Platinum-based antineoplastic therapeutics 

is indispensable to treating advanced ovarian serous carcinoma. However, patients have 

heterogeneous responses to platinum drugs, and it is difficult to predict these interindividual 

differences before administering medication. In this study, we investigated the tumor proteomic 

profiles and clinical characteristics of 130 ovarian serous carcinoma patients analyzed by the 

Clinical Proteomic Tumor Analysis Consortium (CPTAC), predicted the platinum drug response 

using supervised machine learning methods, and evaluated our prediction models through 

leave-one-out cross-validation. Our data-driven feature selection approach indicated that tumor 

proteomics profiles contain information for predicting binarized platinum response (P < 0.0001). 

We further built a least absolute shrinkage and selection operator (LASSO)-Cox proportional 

hazards model that stratified patients into early relapse and late relapse groups (P = 0.00013). 

The top proteomic features indicative of platinum response were involved in ATP synthesis 
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pathways and Ran GTPase binding. Overall, we demonstrated that proteomic profiles of ovarian 

serous carcinoma patients predicted platinum drug responses as well as provided insights into 

the biological processes influencing the efficacy of platinum-based therapeutics. Our analytical 

approach is also extensible to predicting response to other antineoplastic agents or treatment 

modalities for both ovarian and other cancers.
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INTRODUCTION

Ovarian cancer is the second most common and the deadliest gynecologic malignancy in 

the United States, causing more than 14,200 deaths per year.1 The lifetime risk for ovarian 

cancer is approximately one in 73.2 Early detection has been difficult, as most patients in the 

early stage are either asymptomatic or experience nonspecific symptoms, such as abdominal 

distention, nausea, anorexia, or early satiety.3,4 For this reason, ovarian cancer was once 

called the “silent killer”.5 There is no standard screening test for ovarian cancer to date,6 

and multimodal screening with serum CA 125 and ultrasonography has not been proven to 

decrease mortality.7 As such, more than 75% of patients have tumor outside of their ovaries 

at the time of initial diagnosis.8

Chemotherapy with platinum-based antineoplastic drugs is an indispensible part of treating 

advanced ovarian serous carcinoma. Common platinum drugs for treating this malignancy 

include carboplatin and cisplatin.9 Previous studies demonstrated that these platinum-

containing drugs have very similar modes of action and mechanisms of resistance.10,11 

Despite the initial response to platinum-based therapeutics, some patients experienced 

tumor relapse shortly after treatment. Researchers proposed several mechanisms that render 

ovarian tumor cells resistant to platinum chemotherapy,11,12 such as inactivating the drug 

by glutathione,13 increasing repair of the platinum adducts,14 reducing drug uptake or 

increasing efflux,15 and increasing the tolerance of the platinum adducts.16,17 Clinicians 
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define platinum-free interval (PFI), the interval between the completion of platinum-based 

treatment and the detection of tumor relapse, to quantify the response of platinum treatment 

and stratify patients. Patients with a PFI of less than 6 months are considered platinum 

resistant, and patients with a PFI of more than or equal to 6 months are considered platinum 

sensitive.18,19 This stratification informs treatment strategies for relapsed tumors.20–22

Predicting platinum response is of clinical importance. Previous studies investigated the 

gene expression profiles (using cDNA array)23 and microRNA patterns24 that correlated 

with the response to chemotherapeutic agents. Other studies proposed using the promoter 

methylation status of selected genes25 or serum proteins26 to predict platinum response. 

Although the expression levels of certain proteins or genes were implicated with platinum 

resistance, most of the proposed biomarkers were never validated or cross-validated, and 

there is no large-scale study on how the tumor proteome correlated with platinum response. 

Furthermore, the massive amount of data generated by high-throughput methods posed 

additional challenges in determing the real associations.27

Previous research showed that a combination of protein markers28 could improve the 

accuracy of diagnosing ovarian cancer.29 Integrating the serum levels of CA125, β2-micro-

globulin, transferrin, apolipoprotein A1, transthyretin, and clinical assessments, the OVA1 

immunoassay detected 98.3% of early stage ovarian cancer in postmenopausal patients, 

outperforming clinical assessments alone or any single protein marker.30 This diagnostic 

test is the first FDA-cleared in vitro multivariate index assay of proteomic biomarkers, 

demonstrating the value of protein markers in detecting ovarian cancer.31 However, the 

utility of tissue protein markers in predicting patient responses to chemotherapy remains to 

be established.

In this study, we analyzed proteins associated with platinum response using liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), predicted individual platinum 

response using robust machine learning models, and discovered proteins and biological 

processes associated with platinum response. These results contribute to precision 

medicine32 by building an accurate prediction model for individual chemotherapy responses 

for ovarian serous carcinoma patients.

MATERIALS AND METHODS

Proteomic Profiling Using LC-MS/MS

Proteomic profiles of 130 ovarian serous carcinoma patients were analyzed by The Cancer 

Genome Atlas (TCGA) Clinical Proteomic Tumor Analysis Consortium (CPTAC). In short, 

tumor tissues were collected from newly diagnosed patients with ovarian serous carcinoma 

who were undergoing surgical resection. No cases received chemotherapy or radiotherapy 

before surgery. Samples were processed and profiled using LC-MS/MS analysis by TCGA 

CPTAC. In short, proteins from the tumor tissues were extracted and digested by trypsin. 

4-Plex iTRAQ (isobaric tag for relative and absolute quantitation) labeling was performed 

on the peptides, and peptide fractionation was conducted by basic reversed-phase liquid 

chromatography (bRPLC). Phosphopeptides were enriched by immobilized metal affinity 

chromatography (IMAC). Liquid chromatography-tandem mass spectrometry using a high-
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resolution and high-accuracy Orbitrap mass spectrometer was employed to perform the 

proteome and phosphoproteome analyses. Peptide identification was conducted through 

database searching, and the identified peptides were assembled into proteins. iTRAQ 

reporter ion intensities were computed for protein quantitation. This method has been 

shown to successfully profile abundant proteins in the tumor tissue samples but may miss 

proteins at low picomolar concentrations. Detailed descriptions of the experimental and data 

processing method were described in the TCGA CPTAC paper.33

The abundance of each protein was treated as a feature in the subsequent data analysis. All 

of the raw proteomics data are deposited to the CPTAC Data Coordinating Center (https://

cptac-data-portal.georgetown.edu).

Determining Platinum Response Status of Ovarian Serous Carcinoma Patients

Using the conventional definition, we define platinum-free interval (PFI) as the interval 

between the completion date of platinum treatment to the date of detection of relapse. For 

patients who are alive and without relapse, we define PFI to be the interval between the 

completion date of platinum treatment and the date of the last follow-up. A patient was 

defined to be platinum resistant if her PFI was less than six months and the tumor had 

progressed or recurred. Patients with PFI six months or greater were defined as platinum 

sensitive. If a patient had been followed-up for less than six months after completion of 

platinum treatment and did not have tumor relapse at the last contact, it would be too early 

to determine her true platinum response status, and the associated data was excluded from 

analyses. There were 95 platinum sensitive patients and 35 platinum resistant patients in our 

data set. Detailed clinical profiles of the patients are shown in Table S-1.

Identifying Differentially Expressed Proteins between Platinum-Sensitive and -Resistant 
Patients

For each protein, mean fold change between platinum-sensitive and -resistant groups were 

calculated. Proteins with extreme fold change (fold changes greater than the 99th percentile 

or less than the 1st percentile of all fold change values) were identified, and the Wilcoxon 

rank-sum test was used to determine the significance of protein expression differences. 

The Benjamini-Hochberg method was used to correct for multiple hypothesis tests with a 

corrected P-value of less than 0.05 deemed as significant. All analysis was conducted with R 

version 3.2, and heatmaps were generated using the NMF package in R.

GO Analysis and Network Analyses

GO analysis and network analysis were performed to investigate the biological implications 

of proteins significantly associated with platinum response. STRING version 10 was used 

to perform network analysis as well as GO and KEGG pathway enrichment analyses. For 

network analysis, the highest confidence threshold (0.9) was applied, and 20 additional 

nodes were added to visualize the indirect protein-protein interactions. For GO and KEGG 

pathway enrichment analyses, a hypergeometric test was performed, and the Benjamini-

Hochberg method was used to correct for the multiple hypothesis test. Significance level was 

set to 0.05 for the corrected P-values.
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Supervised Machine Learning Methods for Binarized Platinum Response Prediction

For platinum response from proteomics features to be predicted, multiple supervised 

machine learning algorithms were utilized and compared, including bootstrap aggregating 

(bagging), random forests, support vector machines (with radial or polynomial kernels), 

and naïve Bayes classifiers. The platinum response status was binarized into two classes, 

where “1” indicate platinum sensitive and “0” platinum resistant. For reducing the risk of 

overfitting, only the selected proteins based on literature review were used to build the 

models. All models were built and evaluated with R version 3.2 (with R packages rpart, 

party, randomForest, ipred, and e1071).

Evaluation of Prediction Models for Binarized Platinum Response

For the performance of the two-class (platinum-resistant and -sensitive) classifiers to be 

evaluated, leave-one-out cross-validation was employed. For each previously reported gene 

or protein associated with platinum response,34–36 its prediction value for binarized platinum 

response was assessed by the random forest importance measure (derived from R package 

FSelector) in the training set. The top four protein candidates with the highest random forest 

importance scores in the training set were included in the statistical models. Samples in 

the training set were used to estimate all parameters of the prediction models. After the 

models were built and all parameters were finalized, the proteomics data of the held-out test 

case were input into the prediction models, and the predicted platinum status generated was 

compared against the true response information. The performance of each binary classifier 

was evaluated using area under receiver operator characteristic curves (AUC). For ensuring 

the robustness of our machine learning approach, this process was repeated 20 times. We 

employed the Wilcoxon rank-sum test to evaluate the differences in AUCs between our 

classifiers and the null classifier.

LASSO-Cox Proportional Hazards Model for Platinum Response Stratification

In addition to predicting the binarized platinum response status (platinum-resistant or 

-sensitive), a Cox proportional hazards model37 was utilized to exploit the more nuanced 

interindividual difference in the raw PFI data. The Cox-proportional hazards model assumed 

that the differences in some protein expression levels were related to the different rates 

of tumor recurrence observed in our patients and associated the time passed before tumor 

recurrence with the abundance of proteins. With the aim of regularizing the coefficients 

in the model and avoiding overfitting, a least absolute shrinkage and selection operator 

(LASSO)-Cox model (R package glmnet)38 was used to select the most predictive 

proteomic features in the training set, and the lambda value in the resulting formula was 

selected as the value that gave the smallest mean cross-validation error in the training data. 

For each patient, a relapse index (RI) was calculated as a linear combination of selected 

protein abundance values using the resulting LASSO-Cox model.

Evaluation of LASSO-Cox Proportional Hazards Models

For accommodating the relatively small sample size, performances of the LASSO-Cox 

proportional hazards models were assessed by leave-one-out cross-validation. As described 

above, models were built and proteins were selected using the training data. After the 
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parameters were optimized through cross-validation on the training data, the relapse index 

was first calculated for each patient in the training set, and then the median relapse index 

(median RI) in the training set was used as the threshold to stratify patients in the test set 

into the early or late relapse group. If the relapse index of a test case was greater than the 

median RI (which indicated that this patient has a higher risk of relapse), this patient was 

categorized as a member of the early relapse group; otherwise, the patient was grouped into 

the late relapse group. The probability of relapse at each time point for each relapse group 

was evaluated and compared. The differences between the platinum-free interval of early 

and late relapse groups were evaluated by log-rank test with the alpha-level set at 0.05. The 

process of parameter initialization, model building, and model evaluation was also repeated 

20 times to ensure the robustness of the prediction models.

RESULTS

Patient Characteristics

To predict response to therapy, as described in Zhang et al.,33 we examined the proteomic 

profiles of excisional tumor samples from 130 ovarian serous adenocarcinoma patients 

prior to chemotherapy and radiotherapy. The clinical characteristics of the patients are 

summarized in Table 1. A total of 3,584 proteins were profiled across the different patients; 

the abundance of each protein serves as a raw feature that can be used to establish the 

prediction models of platinum response either individually or in combination.

Patients with Similar Platinum Responses Shared Certain Proteomic Signatures

We first attempted to identify proteins whose abundance levels were associated with 

platinum response in ovarian serous carcinoma patients. Overall, the global proteomic 

profiles did not predict clinical platinum response (Figure S-1). By examining the 

distribution of the fold difference between the two platinum responses groups, we selected 

a subset of proteins differentially expressed in patients with different platinum responses. 

In this subset of proteins, patients with platinum resistance formed clusters in the protein 

abundance heatmap (Figure 1A). However, no single protein showed more than 2-fold 

difference when comparing platinum-sensitive patients with platinum-resistant ones, and 

the associations between raw expression levels of proteins and platinum response did not 

perfectly distinguish patients with different platinum responses. Thus, single protein markers 

might not be sufficient for providing robust prediction of platinum status; integrating the 

expression levels of multiple proteins is necessary to achieve accurate prediction models.

Twenty-Four Proteins Were Significantly Differentially Expressed in Tumors with Different 
Responses to Platinum-Containing Chemotherapy

We next investigated the proteins associated with different clinical platinum responses 

in ovarian serous carcinoma. After multiple test correction by the Benjamini-Hochberg 

method, 24 proteins still showed statistically significant differences in their abundance levels 

between the two clinically defined platinum response groups. Fourteen of the proteins in 

the list, including KRT19, KRT4, and ACTN4, were higher in abundance in the resistance 

group, whereas the other 10, including RANBP1, IGLL5, and TPMT, were higher in 

the platinum-sensitive group. The expression levels of the most dysregulated proteins are 
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visualized in Figure 1B, and the expression levels of all 24 proteins are summarized in Table 

S-2.

Oxidative Phosphorylation Pathways and Ran GTPase Binding Function Were Highly 
Associated with Differentially Expressed Proteins

Network analysis revealed that proteins associated with platinum response had indirect 

protein-protein interactions (Figure 2). For instance, RANBP1 and ACTN4 interacted with 

RAN-related proteins and alpha-actinins, respectively, and these two modules of proteins 

both interact with Ubiquitin C (UBC), which is associated with protein degradation, DNA 

repair, cell cycle regulation, as well as regulation of other cell signaling pathways. In 

addition, KRT4, KRT19, and BCAT1 also had interaction links with UBC. In contrast, 

NDUFA4 formed a small interaction module with other NADH dehydrogenase (NDUFA2 

and NDUFA6) and proteins involved in ATP synthesis (ATP5L and UQCR10).

Pathway analysis revealed that these proteins were highly enriched in mineral absorption, 

oxidative phosphorylation, and RNA transport pathways (Table 2). GO analysis also showed 

significant enrichment in Ran GTPase binding, cellular response to zinc ion, and biological 

processes involving ATP synthesis and metabolism (Table 3).

Machine Learning Models Predicted Binarized Platinum Response Status in Ovarian 
Serous Carcinoma Patients

With an aim to build a robust prediction model for patients’ binarized platinum response 

(platinum-sensitive or -resistant), we utilized machine learning methods to integrate the 

expression levels of a panel of proteins into an accurate classifier for patients’ platinum 

responses. Previous studies revealed that protein expression or gene expression levels of 

ACTN4, RANBP1, and KRT19 were associated with platinum response.34–36 However, 

the utility of combining the abundances of these proteins was not explored. To build an 

unbiased and robust multivariate model for platinum response, we calculated the random 

forest importance score for every protein in the training set, selected the top proteins, and 

built our classifiers with the training set. After all parameters in the models were finalized, 

we evaluated their performance on the held-out test cases. We determined the predicted 

probability of platinum resistance and calculated the number of true positives and negatives 

as a function of the probability threshold to obtain receiver operating characteristic curves. 

Our results showed that when combining the expression levels of the top proteins (the top 

proteins in different cross-validation folds varied slightly but in most folds they include 

RANBP1, KRT19, ACTN4, or SNAP29), we attained good prediction performance in the 

test set. The areas under the curves for different classifiers varied slightly but are generally at 

the level of 0.58–0.64 (Figure 3). Although these classifiers only weakly predicted binarized 

platinum response status, the performance is significantly better than random predictors (P 
= 7.96 × 10−9 for random forest with conditional inference trees, P = 2.10 × 10−7 for SVM 

with Gaussian kernel, P = 8.01 × 10−9 for SVM with polynomial kernel, P = 4.68 × 10−10 

for naïve Bayes classifiers, P = 7.99 × 10−9 for Breiman’s random forest, and P = 7.99 

× 10−9 for bagging). These results demonstrated that the expression levels of a panel of 

proteins provide information to the platinum response status in ovarian serous carcinoma 

patients. The fact that the prediction is not always accurate may indicate insufficiency in 
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protein markers, tumor heterogeneity, or the arbitrariness of setting six month PFI as the 

threshold for platinum response, which is the most common practice in clinical settings.39–42

LASSO-Cox Proportional Hazards Model Successfully Predicted the Observed Platinum-
Free Interval

To better correlate the diversity of platinum drug responses in ovarian cancer patients, we 

also modeled the platinum-free interval as a function of protein expression levels with a 

Cox proportional hazards model, and used L1 regularization to optimize for the number of 

proteins included in the model and to avoid overfitting. Applying our LASSO-Cox model, 

we selected 10–13 proteomic features based on cross-validation on the training set and 

derived a prognostic index for each patient using the expression levels of the selected 

proteins. On the basis of the distribution of prognostic indices of patients in the training set, 

we used the median prognostic index in the training set to stratify patients in the test set into 

two predicted relapse groups. Cross-validation revealed that patients in the two predicted 

groups differed significantly in their PFI (P = 0.00013 ± 0.00012) with a median PFI of 14 

months in the late relapse group and a median PFI of 7.5 months in the early relapse group 

(Figure 4). This indicated that the combination of protein markers also predicted the length 

of time before relapse in ovarian serous carcinoma patients.

DISCUSSION

Clinical response to platinum-based chemotherapy is a major determinant of the survival 

outcomes for ovarian serous carcinoma patients. We utilized LC-MS/MS analysis to 

quantify proteins from the tumor tissue, established prediction models for platinum 

response through machine learning methods, and provided insights into the biological 

mechanisms correlated with the efficacy of platinum drugs. Our results showed that tissue 

expression levels of 24 proteins are highly associated with platinum response and revealed 

the biological processes underpinning platinum resistance. In addition, we successfully 

predicted the binarized platinum response by utilizing a panel of proteomic markers and 

characterized the nuanced difference in PFIs by the relapse indices derived from the 

abundances of selected proteins.

Enrichment analysis demonstrated that several proteins involved in Ran (Ras-related nuclear 

protein) GTPase binding were associated with platinum response. Ran GTPase binding 

is the most enriched molecular function on our protein list. It plays a significant role in 

the control of DNA synthesis and cell cycle progression. Studies also suggested that Ran 

could be a key factor in regulating microtubule polymerization during mitosis. Previous 

studies showed that platinum-based antineoplastic drugs release platinum-containing ions 

when dissolved in water. These ions could bind to nucleotide bases, causing DNA to 

cross-link,43,44 which inhibits the transcription and duplication of DNA. Thus, Ran GTPase 

binding function might be involved in modulating DNA synthesis in the tumor cells treated 

by platinum drugs. In addition, decreased RANBP1 expression in platinum-resistant tumor 

might facilitate DNA replication and cell proliferation, causing tumor relapse despite 

platinum-based chemotherapy. Moreover, results also revealed that ATP synthesis and 

biological processes related to the electron transport chain were highly associated with 

Yu et al. Page 8

J Proteome Res. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the dysregulated proteins, suggesting a novel role for altered metabolism in developing 

platinum resistance. Our bioinformatics analysis generated insights into the mechanisms 

of chemotherapy resistance, which might inspire ways to increase drug sensitivity by 

combination chemotherapy.

Investigating individual proteins associated with platinum resistance also suggested 

the molecular mechanisms by which ovarian serous carcinoma interacts with 

chemotherapeutics. For instance, we found that increased ACTN4 and KRT19 protein 

expression is associated with resistance to platinum-based drugs. ACTN4 is an isoform 

of nonmuscular α-actinin, which is concentrated in the cytoplasm and enhances cell 

motility by bundling the actin cytoskeleton. This isoform is also thought to be involved 

in metastatic processes.45 A higher copy number of this gene was associated with resistance 

to first-line chemotherapies and poor survival outcome in ovarian clear cell carcinoma.34 

KRT19 is a member of type I cytokeratins,46 which are involved in cell adhesion, spreading, 

locomotion, and potentially tumor invasion and metastasis processes.47 KRT19 protein is 

highly expressed in a number of malignancies, including breast cancer, endometrial cancer, 

lung cancer, ovarian cancer, pancreatic cancer, thyroid cancer, and urothelial cancer.48,49 

Upregulation of KRT19 was also associated with increased invasion, invadopodia formation, 

early postoperative recurrence,50 as well as resistance to doxorubicin, 5-fluorouracil, and 

sorafenib in human hepatocellular carcinoma.51 It is possible that KRT19 is associated 

with invasion, and thus, clinically undetectable microinvasion might contribute to resistance 

and lethality. KRT20, another related cytokeratin, is also highly expressed in platinum-

resistant tumor samples and is implicated in the development of bladder cancer,52 gastric 

cancer,53 and colorectal cancer.54 Further research is needed to identify the exact molecular 

mechanism linking this cytokeratin to platinum chemoresistance in ovarian carcinoma.

We also identified proteins with lower expression levels in platinum-resistant patients and 

their roles in chemoresistance. As an illustration, RANBP1, a protein that forms a complex 

with Ran, showed a lower abundance level in platinum-resistant patients. RANBP1 not only 

participated in the Ran pathway but also formed a complex that controls the transport of 

proteins and nucleic acids into the nucleus.55 Thus, its downregulation could potentially 

affect the binding of platinum drugs to DNA in the nucleus, thus contributing to the 

development of platinum resistance. Dysregulation of RANBP1 was also associated with 

activation of apoptosis and taxol sensitivity in several cancer cell lines.56,57 We discovered 

that, although the protein expression level of RANBP1 was associated with platinum 

resistance in ovarian serous carcinoma, the prediction value of this single protein was 

modest. However, when combined with other proteins, we were able to build a robust panel 

of markers for platinum status.

We further identified a few proteins previously unknown to be correlated with platinum 

resistance in cancer. For instance, the abundance of the TPMT protein is significant 

higher in the platinum-sensitive group. TPMT is an enzyme that metabolizes thiopurine 

chemotherapeutic agents, such as 6-mercaptopurine. Previous studies identified the 

correlation between the genetic polymorphisms of the gene encoding this protein and 

variations in sensitivity and toxicity to thiopurine drugs within individuals.58 However, the 

association between TPMT and platinum drug response was not described.59 In addition, 
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lactate dehydrogenase A-like 6A (LDHAL6A) is highly expressed in platinum-resistant 

patients and also participates in sulfur amino acid metabolism.60 The connection between 

LDHAL6A and platinum response was not previously recognized. Thus, overall these 

proteins point to potential mechanisms affecting patient’s platinum response and can be 

used for prediction purposes. However, we need to validate the prediction values of these 

newly characterized proteins in other cohorts.

A combination of proteins is better than a single biomarker in predicting the platinum-free 

interval of ovarian cancer patients. This might be due to the fact that there are multiple 

mechanisms of developing drug resistance to platinum drugs11,12 and/or that individual 

effects of the identified proteins are modest. As an illustration, in addition to halting DNA 

duplication by cross-linking, one study suggests that cross-linked adducts generated by 

platinum drugs may activate several signal transduction pathways, resulting in apoptosis.61 

Several other mechanisms of actions, such as inducing cytotoxic effects by binding to 

proteins, have also been proposed.62 As such, a variety of proteins would be affected by 

the chemotherapeutic agent, and any single biomarker might not reflect the entirety of drug 

actions. However, a panel of biomarkers captures the diverse biological pathways associated 

with platinum resistance and thus better predicts the response of such chemotherapy.

One limitation of this study is that the LC-MS/MS method employed by CPTAC could 

not identify proteins with very low abundance. As the concentration of clinically important 

proteins could be in the low picomolar range,63 proteins not quantified by our method 

might provide additional information for platinum response prediction. Another limitation 

is that the number of platinum resistant patients is relatively small (n = 35), and several 

patients participating in the CPTAC analysis had missing platinum response. Because of 

the limited sample size, we used very stringent criteria to select the proteins, regularize 

the models, and avoid overfitting. Nonetheless, because of the small sample size, proteins 

with moderate correlations with platinum response might not be identified. Future studies 

with larger cohorts might be able to identify such proteins and further validate the statistical 

models described here.

In summary, through deep proteomics profiling and applying tailored data mining 

approaches, we successfully established novel prediction models of platinum-based 

chemotherapy response for ovarian serous carcinoma patients and provided insights into the 

biological processes influencing the drug efficacy. Our analytical pipeline is likely extensible 

to determine the interindividual variability of the response to other antineoplastic agents or 

treatment modalities. This approach can also be extended to other types of cancers. Such 

studies are expected to contribute to precision medicine and better guide treatment for these 

deadly diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Protein expression levels were associated with platinum response of ovarian serous 

carcinoma patients. (A) Patients with similar platinum responses shared certain proteomic 

signatures. In this heatmap, each row is a patient, and each column is a protein. Hierarchical 

clustering results showed that platinum-resistant patients formed clusters, indicating that 

these protein signatures are correlated with platinum status of ovarian serous carcinoma 

patients. (B) Log expression levels of proteins associated with platinum response status. 

Abundance levels of 24 proteins, including KRT19, KRT4, ACTN4, RANBP1, IGLL5, 
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and TPMT, were strongly associated with the clinical platinum response in ovarian serous 

carcinoma patients.
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Figure 2. 
Protein-protein interaction network revealed that proteins indicative of platinum response 

were significantly enriched in Ran-GTPase binding, ATP synthesis pathways, and regulation 

mechanisms of the cell cycle. The top proteins associated with platinum response were 

shown in color, and their interacting proteins were shown in gray.

Yu et al. Page 17

J Proteome Res. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Receiver operating characteristic (ROC) curve for platinum response prediction. Integrating 

the abundance levels of the top protein features identified in the training set, random forests, 

support vector machines, bagging, and naïve Bayes classifiers weakly predicted patients 

with different platinum responses on leave-one-out cross-validation with areas under the 

curves of approximately 0.58—0.64. These classifiers are significantly better than a null 

classifier (P = 7.96 × 10−9 for random forest with conditional inference trees, P = 2.10 × 

10−7 for SVM with Gaussian kernel, P = 8.01 × 10−9 for SVM with polynomial kernel, P = 

4.68 × 10−10 for naïve Bayes classifiers, P = 7.99 × 10−9 for Breiman’s random forest, and 

P = 7.99 × 10−9 for bagging). The black line indicates the performance of the null classifier. 

CIT: conditional inference trees.
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Figure 4. 
Proteomic signatures informed the platinum-free interval of patients. A LASSO-Cox 

proportional hazards model stratified ovarian serous carcinoma patients in the test set into 

two predicted relapse groups with a statistically significant difference in their platinum free 

interval (P = 0.00013 ± 0.00012).
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Table 1.

Clinical Characteristics of Ovarian Serous Carcinoma Patients under Study

characteristic summary

number of patients 130

age (mean ± SD) 60.8 ± 11.6 years

Histology Type

 serous 130 (100%)

Tumor Stage

 I 2 (1.54%)

 II 8 (6.15%)

 III 96 (73.85%)

 IV 24 (18.46%)

Grade

 G1 0 (0%)

 G2 21 (16.15%)

 G3 107 (82.31%)

 GX 2 (1.54%)

overall platinum free interval (mean ± SD) 7.99 ± 14.21 months

Platinum Status

 platinum sensitive 95 (73.08%)

  PFI in platinum-sensitive patients 3.05 ± 1.83 months

 platinum resistant 35 (26.92%)

  PFI in platinum-resistant patients 19.39 ± 18.64 months

Vital Status

 alive 57 (43.85%)

 dead 73 (56.15%)
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Table 2.

KEGG Pathway Enrichments for Proteins Associated with Platinum Response in Ovarian Serous Carcinoma

ID term number of genes corrected P-value

4978 mineral absorption 4 4.88 × 10−04

190 oxidative phosphorylation 5 4.88 × 10−04

5012 Parkinson’s disease 5 4.88 × 10−04

3013 RNA transport 5 4.88 × 10−04

4520 adherens junction 4 4.88 × 10−04

5146 amoebiasis 4 1.95 × 10−03

4670 leukocyte transendothelial migration 4 2.31 × 10−03

4932 nonalcoholic fatty liver disease (NAFLD) 4 5.60 × 10−03

5010 Alzheimer’s disease 4 7.58 × 10−03

5412 arrhythmogenic right ventricular cardiomyopathy (ARVC) 3 8.27 × 10−03

5203 viral carcinogenesis 4 8.27 × 10−03

5016 Huntington’s disease 4 8.27 × 10−03

4510 focal adhesion 4 1.16 × 10−02

4810 regulation of actin cytoskeleton 4 1.20 × 10−02

5322 systemic lupus erythematosus 3 1.35 × 10−02

5166 HTLV-I infection 4 2.08 × 10−02

4530 tight junction 3 2.84 × 10−02
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Table 3.

Gene Ontology (GO) Enrichments for Proteins Associated with Platinum Response in Ovarian Serous 

Carcinoma

biological processes

Gene Ontology ID term number of genes corrected P-value

GO:0071294 cellular response to zinc ion 4 9.61 × 10−05

GO:0075733 intracellular transport of virus 4 1.28 × 10−03

GO:0046794 transport of virus 4 1.28 × 10−03

GO:1902579 multiorganism localization 4 1.28 × 10−03

GO:0044766 multiorganism transport 4 1.28 × 10−03

GO:0010043 response to zinc ion 4 1.53 × 10−03

GO:0015980 energy derivation by oxidation of organic compounds 7 1.83 × 10−03

GO:0016032 viral process 9 2.92 × 10−03

GO:0044764 multiorganism cellular process 9 2.92 × 10−03

GO:0006091 generation of precursor metabolites and energy 7 3.08 × 10−03

GO:0022900 electron transport chain 5 3.08 × 10−03

GO:0022904 respiratory electron transport chain 5 3.08 × 10−03

GO:1902396 protein localization to tight junction 2 3.23 × 10−03

GO:0044419 interspecies interaction between organisms 9 3.90 × 10−03

GO:0044403 symbiosis, encompassing mutualism through parasitism 9 3.90 × 10−03

GO:0042773 ATP synthesis coupled electron transport 4 3.90 × 10−03

GO:0042775 mitochondrial ATP synthesis coupled electron transport 4 3.90 × 10−03

GO:0006119 oxidative phosphorylation 4 6.26 × 10−03

GO:0045333 cellular respiration 5 6.26 × 10−03

GO:0000056 ribosomal small subunit export from nucleus 2 6.45 × 10−03

GO:0051649 establishment of localization in cell 12 7.57 × 10−03

GO:0002576 platelet degranulation 4 9.69 × 10−03

GO:0000055 ribosomal large subunit export from nucleus 2 9.69 × 10−03

GO:0051764 actin cross-link formation 2 9.69 × 10−03

GO:0036018 cellular response to erythropoietin 2 9.69 × 10−03

GO:0055114 oxidation—reduction process 9 9.69 × 10−03

GO:0034333 adherens junction assembly 3 9.69 × 10−03

GO:0007010 cytoskeleton organization 8 1.19 × 10−02

GO:0071248 cellular response to metal ion 4 1.64 × 10−02

GO:0000054 ribosomal subunit export from nucleus 2 1.87 × 10−02

GO:0071426 ribonucleoprotein complex export from nucleus 2 1.87 × 10−02

GO:0046034 ATP metabolic process 4 1.98 × 10−02

GO:0071241 cellular response to inorganic substance 4 2.21 × 10−02

GO:0019058 viral life cycle 5 2.48 × 10−02

GO:0051641 cellular localization 12 2.55 × 10−02
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GO:0009205 purine ribonucleoside triphosphate metabolic process 4 2.72 × 10−02

GO:0043297 apical junction assembly 3 2.72 × 10−02

GO:1902414 protein localization to cell junction 2 2.86 × 10−02

GO:0071166 ribonucleoprotein complex localization 2 2.86 × 10−02

GO:0006120 mitochondrial electron transport, NADH to ubiquinone 3 2.89 × 10−02

GO:0009199 ribonucleoside triphosphate metabolic process 4 2.93 × 10−02

GO:0009144 purine nucleoside triphosphate metabolic process 4 2.95 × 10−02

GO:0044765 single-organism transport 13 3.96 × 10−02

GO:0009141 nucleoside triphosphate metabolic process 4 3.99 × 10−02

GO:0009167 purine ribonucleoside monophosphate metabolic process 4 3.99 × 10−02

molecular functions

Gene Ontology ID term number of genes corrected P-value

GO:0008536 Ran GTPase binding 3 4.02 × 10−02

cellular components

Gene Ontology ID term number of genes corrected P-value

GO:0031967 organelle envelope 13 5.31 × 10−06

GO:0031975 envelope 13 5.31 × 10−06

GO:0005635 nuclear envelope 8 7.72 × 10−05

GO:0070062 extracellular exosome 18 7.72 × 10−05

GO:0043230 extracellular organelle 18 7.72 × 10−05

GO:0065010 extracellular membrane-bounded organelle 18 7.72 × 10−05

GO:0031143 pseudopodium 3 4.20 × 10−04

GO:0031988 membrane-bounded vesicle 18 6.78 × 10−04

GO:0005643 nuclear pore 4 6.78 × 10−04

GO:0044421 extracellular region part 18 1.12 × 10−03

GO:0005746 mitochondrial respiratory chain 4 1.12 × 10−03

GO:0046930 pore complex 4 1.29 × 10−03

GO:0005829 cytosol 16 1.58 × 10−03

GO:0070469 respiratory chain 4 1.58 × 10−03

GO:1990204 oxidoreductase complex 4 1.58 × 10−03

GO:0031982 vesicle 17 2.48 × 10−03

GO:0043227 membrane-bounded organelle 30 2.91 × 10−03

GO:0030018 Z disc 4 2.91 × 10−03

GO:0031674 I band 4 4.46 × 10−03

GO:0005747 mitochondrial respiratory chain complex I 3 5.48 × 10−03

GO:0031093 platelet alpha granule lumen 3 6.68 × 10−03

GO:0005576 extracellular region 18 6.68 × 10−03

GO:0032991 macromolecular complex 17 8.98 × 10−03

GO:0012505 endomembrane system 15 1.05 × 10−02

GO:0044430 cytoskeletal part 9 1.05 × 10−02
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GO:0044455 mitochondrial membrane part 4 1.07 × 10−02

GO:0034774 secretory granule lumen 3 1.09 × 10−02

GO:0030017 sarcomere 4 1.10 × 10−02

GO:0031091 platelet alpha granule 3 1.13 × 10−02

GO:0005916 fascia adherens 2 1.24 × 10−02

GO:0044449 contractile fiber part 4 1.33 × 10−02

GO:0030863 cortical cytoskeleton 3 1.49 × 10−02

GO:0030016 myofibril 4 1.49 × 10−02

GO:0043292 contractile fiber 4 1.71 × 10−02

GO:0043234 protein complex 15 1.72 × 10−02

GO:0060205 cytoplasmic membrane-bounded vesicle lumen 3 1.72 × 10−02

GO:0031983 vesicle lumen 3 1.73 × 10−02

GO:0070069 cytochrome complex 2 1.73 × 10−02

GO:0005856 cytoskeleton 10 2.00 × 10−02

GO:0043034 costamere 2 2.07 × 10−02

GO:0048471 perinuclear region of cytoplasm 6 2.16 × 10−02

GO:0044448 cell cortex part 3 2.89 × 10−02

GO:0005743 mitochondrial inner membrane 5 3.68 × 10−02

GO:0031965 nuclear membrane 4 3.74 × 10−02
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