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ABSTRACT

Objective Given the complexities of testing the translational
capability of new artificial intelligence (Al) tools, we aimed

to map the pathways of training/validation/testing in
development process and external validation of Al tools
evaluated in dedicated randomised controlled trials (Al-RCTSs).
Methods We searched for peer-reviewed protocols and
completed AI-RCTs evaluating the clinical effectiveness of

Al tools and identified development and validation studies

of Al tools. We collected detailed information, and evaluated
patterns of development and external validation of Al tools.
Results We found 23 Al-RCTs evaluating the clinical

impact of 18 unique Al tools (2009—-2021). Standard-of-care
interventions were used in the control arms in all but one Al-
RCT. Investigators did not provide access to the software code
of the Al tool in any of the studies. Considering the primary
outcome, the results were in favour of the Al intervention in
82% of the completed Al-RCTs (14 out of 17). We identified
significant variation in the patterns of development, external
validation and clinical evaluation approaches among different
Al tools. A published development study was found only for
10 of the 18 Al tools. Median time from the publication of a
development study to the respective AI-RCT was 1.4 years
(IGR0.2-2.2).

Conclusions We found significant variation in the patterns
of development and validation for Al tools before their
evaluation in dedicated Al-RCTs. Published peer-reviewed
protocols and completed AlI-RCTs were also heterogeneous
in design and reporting. Upcoming guidelines providing
guidance for the development and clinical translation
process aim to improve these aspects.

INTRODUCTION
Artificial intelligence (AI) methods are
playing an increasingly important role

in digital healthcare transformation and
precision medicine, particularly because of
breakthroughs in diagnostic and prognostic
applications developed with deep learning
and other complex machine learning
approaches. Numerous Al tools have been
developed for diverse conditions and settings,
demonstrating favourable diagnostic and
prognostic performance.'™ However, simi-
larly to any other clinical intervention,*®
adoption of Al tools in patient care requires
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What is already known?

» Randomised controlled trials generating the highest
grade of evidence are starting to emerge for Al tools
in medicine (AI-RCTs).

» Even though distinct steps for the development
process of clinical diagnostic and prognostic tools
are established, there is no specific guidance for Al-
based tools and for the conduct of AI-RCTs.

What does this paper add?

» A limited number of AI-RCTs have been completed
and reported.

» AI-RCTs are characterised by heterogenous design
and reporting.

» There is significant variation in the patterns of de-
velopment and validation for Al tools before their
evaluation in AI-RCTs.

» Data that would allow independent replication and
implementation of the Al tools are usually not pro-
vided in the AI-RCTs.

careful evaluation of their external validity
and their impact on downstream interven-
tions and clinical outcomes, beyond perfor-
mance metrics during development and
external validation. The most robust evalu-
ation of any diagnostic or therapeutic inter-
vention may be performed in the setting of
randomised controlled trials (RCTs), which
are now slowly emerging in the Al space.
Even though distinct steps of training, vali-
dation and testing for the development of
Al tools have been described, there are no
standardised recommendations for Al-based
diagnostic and predictive modelling in
biomedicine.” " In addition, overfitting, or
the phenomenon of training an Al model
that is too closely aligned with a limited
training dataset such that it has no general-
isation ability, is often of concern in highly
parameterised Al models. External validation
of Al tools aiming to verify a hyperparameter-
ised model is therefore a critical step in the
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evaluation process. Furthermore, the extrapolation of
model performance from one setting and patient popula-
tion to others is not guaranteed.11 12 Moreover, concerns
have been raised about the transparency of reporting in
the Al literature to facilitate independent replication of
Al tools."

Given the complexities of testing the translational capa-
bility of new Al tools and the lack of coherent recom-
mendations, we aimed to map the current pathways of
training/validation/testing in development process of Al
tools in any medical field and identify external validation
patterns of Al tools considered for evaluation in dedi-
cated RCTs (here mentioned as AI-RCTs).

MATERIALS AND METHODS

Data source and study selection process

We identified protocols of ongoing AI-RCTs and reports
of completed AI-RCTs that evaluated Al tools compared
with control strategies in a randomised fashion for any
clinical purpose and medical condition. We searched
PubMed for publications in peerreview journals in the
last 20 years (last search on 31 December 2020) using the
following search terms: “artificial intelligence”, “machine
learning”, “neural network”, “deep learning”, “cognitive
computing”, “computer vision” and “natural language
processing”. We did not search for protocols of AI-RCTs
published only in protocol registries since the compliance
with reporting and the provided information has been
shown to be poor compared with peerreviewed proto-
cols or published reports of clinical trials."*"® We consid-
ered only peerreviewed reports of protocols of AI-RCTs
which provided detailed information on the trial design
of our interest. We considered clinical trials in which the
Al tool (algorithm) was either previously developed or
was planned to be developed (trained) as part of the trial
before being evaluated in the RCT. Clinical trial protocols
were included irrespectively of their status (ongoing or
completed). The listed references of eligible studies were
also searched for additional potentially eligible studies.
The detailed search algorithm is provided in online
supplemental box.

Mapping of Al tool development: citation content analysis

For each eligible protocol and report of AI-RCT, we scru-
tinised the cited articles to identify any previous published
study reporting on Al tool development (including
training, validation or testing) or claiming external vali-
dation in an independent population than the one where
the Al tool was initial developed. Each potentially eligible
study identified above, was subsequently evaluated in full-
text to determine whether it describes the development
and/or independent evaluation (external validation)
of the Al tool of interest. Finally, we searched Google
Scholar for articles citing the index development study of
the Al tool or its external validation (if any) in order to
trace other studies of external validation (onnline supple-
mental box).

Data collection

A detailed list of information was gathered from each
eligible protocol and report of completed AI-RCT using
a standardised form which was built and modified, as
required, in an iterative process. We extracted relevant
information from the main manuscript and any online
supplemental material. From each report, we extracted
trial and population characteristics which include: single
versus multicentre trial, geographical location of the
contributing centres, number of arms of randomisa-
tion, level of randomisation (patient or clinicians), total
sample size, power calculation approach, type of control
intervention, underlying medical condition, period of
recruitment, funding source (industry related, non-
industry related, both, none, none reported), follow-up
duration or duration of the intervention, patient-level
data collection through dedicated study personnel or
from electronic health records, strategies for dealing
with missing data; details on the primary outcome(s) of
interest which include: single or composite, continuous
or binary, outcome adjudication method(s); considering
the primary outcome. Among the unique Al tools, we
classified the primary outcomes as therapeutic, diag-
nostic or feasibility outcomes. We documented whether
the results of the completed AI-RCT are in favour to inter-
vention based on the Al tool. We extracted information
on whether researchers provide access to the code based
on which the Al tool was built. We finally assessed the risk
of bias (RoB) in the results of completed AI-RCTs that
compared the effect of the Al tool compared with other
intervention(s) by using the revised Cochrane risk-of-bias
tool for randomised trials RoB 2."

For each study describing the development or external
validation of an index Al tool, we extracted the following
information: year of publication, recruitment period,
geographic area of study population, sample size, clinical
field, and whether the authors provided any information
that would allow the replication of applied coding. We
considered as external validation studies those which
fulfilled at least one the following conditions compared
with the corresponding development study: different
study population, different geographic area, different
recruitment period or different group of investigators
validating the Al tool.

Statistical analysis

We descriptively analysed the protocols and reports of
completed AI-RCTs as a whole and separately. We consid-
ered the protocols of already published AI-RCTs as a
single report with the index trial. The extracted data were
summarised into narrative synthesis and presented in
summary tables in the level of Al tools and in the level
of AI-RCTs. For illustration purposes, we graphically
summarised interconnections of the available develop-
ment (training/validation/testing) studies, external
validation studies and the respective AI-RCTs (either
protocols of reports) for each Al tool of interest. We
visually evaluated the diversity of the distributions of
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peerreviewed development, external validation studies
and the ongoing/published reports of AI-RCTs among
the unique Al tools. We also illustrated the time lags
and differences in sample sizes between different steps
of development (whenever applicable) of an Al tool to
subsequent evaluation in dedicated AI-RCTs. Illustrations
were conducted in R (V.3.4.1; R-Project for Statistical
Computing).

RESULTS

Protocols and completed Al-RCTs

The selection process of eligible protocols and reports of
AI-RCTs is summarised in online supplemental figure 1.
Overall, we identified 23 unique ALLRCTs*™ (6 protocols
and 17 reports of completed AI-RCTS) evaluating the clin-
ical effectiveness of 18 unique Al tools for a variety of condi-
tions (tables 1 and 2, online supplemental file 1). Three
of the completed AI-RCTs™ % * had previously published
protocols.” ** * The identified reports were published
over a 10-year period (2009-2020). Half of the AI-RCTs
were multicentre (52%) and the majority compared the
Al-based intervention to a single control intervention
(87%). The median target sample size reported in the
protocols of AI-RCTs was 298 (IQR 219-850), whereas for
the published AI-RCTs was 214 (IQR 100-437) (table 2,
online supplemental table 1). Power calculations were
available in 18 out of 23 AI-RCTs. The control arms
consisted of standard-of-care interventions in all but one
study in which a sham intervention was used as control.
In one trial, the investigators also considered a historical
control group in addition to the two randomised groups
in the trial.”” Ten AI-RRCTs were funded by non-industry
sponsors and seven trials did not specify the financial
source. The investigators did not specify any strategies
for handling missing data in most AI-RCTs (19 out of 23,
83%). Outcome ascertainment was based on electronic
health records in the minority of the AI-RCTs (4 out of 23,
17%), while in the remaining studies either was unclear
or conventional adjudication methods were applied. A
binary or continuous primary outcome was considered in
7 (30%) and 14 (61%) of the trials. Among the 18 unique
Al tools (table 1), 10 tools were examined for therapeutic
outcomes, 6 for diagnostic and 2 for feasibility. The
results according to the primary outcome favoured the Al
intervention in 82% of the completed AI-RCTs (14 out of
17), with 1 trial claiming lower in-hospital mortality rates
with the Al intervention® (table 2, online supplemental
table 2). None of the AI-RCTs reported their intention to
provide access to the coding of the Al tool. Online supple-
mental table 3 summarises the detailed risk-of-bias judge-
ment for each domain and the overall judgement for
each AI-RCT. Three trials were at low RoB, five trials were
judged to raise ‘some concerns’ and nine to be at ‘high
RoB’, mainly due to the lack of appropriate/complete
reporting related to adherence of intended interventions
and in measurement of the outcome of interest.

Development, external validation and clinical evaluation
pathways of Al tools
We identified considerable dissimilarities in the patterns
of development, external validation and clinical evalua-
tion steps among Al tools (figures 1 and 2, online supple-
mental table 4). A peerreviewed publication describing
the development process was not found for 8 out of the 18
unique Al tools. In 12 AI-RCTs, the study population orig-
inated from the same geographic area and population as
the one where the Al tool was developed in. We were able
to identify at least one external validation study linked
to a trial only in 11 out of the 23 ongoing/completed
AI-RCTs. All of the external validation studies considered
a different recruitment period compared with that in the
development study, but from the same geographical area
in all 11 cases. The number of external validation studies
ranged from 1 to 4 per Al tool (figure 1). Three Al tools
were evaluated in two different AI-RCTs, and one Al tool
was evaluated in three different AI-RCTs with differences
in patient populations and examined outcomes (table 1
and figure 1). Among the Al tools with external valida-
tion studies, in 6 cases the external validation studies
were published at the same time or clearly after the
corresponding AI-RRCT (figure 2). In those six cases, the
external validation studies applied the Al tool in different
populations and/or clinical settings, compared with those
where it was developed and those studied in the AI-RCT.
Among the 17 completed AI-RCTs, the distribution of
the sample sizes and timelines of publications for devel-
opment, external validation and AI-RCT reports is shown
in figures 2 and 3. The sample sizes of the development
studies were larger than the respective external validation
studies and AI-RCTs, whereas external validation studies
and AI-RCTs did not differ in sample sizes. Median time
from publication of a development study to publication
of the respective AI-RCT was 1.4 years (IQR 0.2-2.2). The
time lag between publication of the development studies
to the publication of AI-RCTs varied for different Al
tools, but there was considerable overlap of the timelines
of external validation and AI-RCT publications (table 1,
figure 2, online supplemental tables 1 and 4).

DISCUSSION

Large scale real-world data collected from electronic-
health records have allowed the development of diag-
nostic and prognostic tools based on machine learning
approaches.*®”* Evaluations of the clinical impact of
such tools in dedicated RCTs are now starting to emerge
in the literature. Our empirical assessment of the liter-
ature identified significant variation in the patterns of
Al tool development (training, validation, testing) and
external (independent) validation leading up to their
evaluation in dedicated AI-RCTs. In this early phase of
novel AI-RCTs, trials are characterised by heterogeneous
design and reporting. Data that would allow independent
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Table 2 Characteristics of peer-reviewed protocols and completed RCTs evaluating artificial intelligence tools

Al-RCTs Protocols of AI-RCTs Completed Al-RCTs

Characteristics (n=23) (n=6) (n=17)
No of centres, n (%)

Single 11 (48) 1(17) 10 (59)

Multicentre 12 (52) 5 (83) 7 (41)
Geographic area, n (%)

Asia 8 (35) 2 (33) 6 (35)

Europe 5(22) 1(17) 4 (24)

North America 9 (39) 3 (50) 6 (35)

Other 14) 0(0) 1(6)
Arms of randomisation, n (%)

Two 20 (87) 5(83) 15 (88)

Three 3(13) 1(17) 2(12)
Level of randomisation, n (%)

Patients 22 (96) 6 (100) 16 (94)

Clinicians 14) 0(0) 1(6)
Sample size

Median (IQR) 214 (108-571) 298 (219-830) 214 (100-437)

Min 20 100 20

Max 22641 18000 22641
Power calculations, n (%)

Yes 18 (78) 6 (100) 12 (71)

No 5 (22) 0 (0) 5 (29)
Type of control intervention, n (%)

Standard of care 22 (96) 6 (100) 16 (94)

Sham procedure 14) 0(0) 1(6)
Funding source, n (%)

Industry related 4(17) 1(17) 3(18)

Non-industry related 10 (43) 4 (66) 6 (35)

None reported 7 (30) 1(17) 6 (35)

None 2 (9 0(0) 2(12)
Data sources, n (%)

Dedicated personnel 5(22) 2 (33) 3 (18)

Dedicated personnel and EHR 4 (17) 2 (33) 2(12)

EHR 4(17) 2 (33) 2(12)

Not applicable 4 (17) 0(0) 4 (23)

Not specified 6 (27) 0(0) 6 (35)
Strategies for missing data, n (%)

Specified 4(17) 4 (67) 0)

Not specified 19 (83) 2 (33) 17 (100)
Primary outcome(s), n (%)

Binary 7 (30) 0(0) 7 (41)

Binary and continuous 1(4) 0(0) 1(6)

Categorical 14) 1(17) 0(0)

Continuous 14 (61) 5 (83) 9 (53)
Primary outcome favours Al tool, n (%)

Continued
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Table 2 Continued

Al-RCTs Protocols of AI-RCTs Completed AI-RCTs

Characteristics (n=23) (n=6) (n=17)

Yes 13 (57) 0 (0) 13 (76)

No 29 0 (0) 2(12)

Not applicable 8 (34) 6 (100) 2 (12)
Different geographic area of study population in development study and Al-RCT, n (%)

Yes 3 (14) 1(17) 2(12)

No 12 (52) 1(17) 11 (65)

Not applicable* 8 (34) 4 (66) 4 (23)
External validation of Al tool, n (%)

Yes 11 (48) 2 (33) 9 (53)

No 12 (52) 4 (67) 8 (47)

Different geographic areat 0 (0) 0(0) 0 (0)

Different time periodt 11 (48) 2 (33) 9 (53)

*The respective development study was not identified.
tCompared with the development study.

Al-RCTs, artificial intelligence randomised controlled trials; EHR, electronic health records.

replication and implementation of Al tools were not avail-
able in any of the AI-RCTs.

There is growing recognition that Al tools need to be
held to the same rigorous standard of evidence as other
diagnostic and therapeutic tools in medicine with stan-
dardised reporting.”>”* The recently published extensions
of the COSNORT and Standard Protocol Items: Recom-
mendations for Interventional Trials (SPIRIT) statements
for RCTs of Al-based interventions (namely Consolidated
Standards of Reporting Trials (CONSORT)-AI"® and
SPIRIT-AI)*” are beginning to provide such a framework.

VN I
ne=1 ne=i n=i n=1
n=1 n=1 ne=2 ne=2
# Prolocolsicompleted  A-RCT
= # Dovelopment
f / #*  Extorral validation
¥ ¢ 8 3

Mo shudy available

Figure 1 Patterns of pathways of development (training,
validation and/or testing), external validation and clinical
evaluation of artificial intelligence tools in ongoing and
completed clinical trials (n=23). In network level, each circle
corresponds to an individual study (green, blue, and red for
development, external validation and Al-RCTs, respectively).
The number below each network represents the number of
unique Al tools having identified with the respective pattern
(network) of studies. For example, the first network of the top
row corresponds to a unique Al tool for which a development
study (green circle), four external validation studies (blue
circles), and two Al-RCTs (red circles) were found. AlI-RCTs,
artificial intelligence randomised controlled trials.

Among the items mandated by these documents, investi-
gators in AI-RCT have to provide better clarity around the
intended use of the Al intervention, descriptions how the
Al intervention can be integrated into the trial setting,
and the setting expectations that investigators make the
Al intervention and/or its code assessable. Although
most of the studies included in the current review were
published before these guidelines, the marked heteroge-
neity in current reporting underscore the urgency of this
call and provide a standard for the ongoing evaluation of
these kinds of studies.

RCTs remain the cornerstone of evaluation of diag-
nostic or therapeutic interventions proposed for clinical
use, and this should be no less true for Al interventions.
While the experience with the clinical application of Al
tools is still early, the evaluation standards of these tools
should follow well established norms. Al has demon-
strated great promise in transforming many aspects of
patient care and healthcare delivery, but the rigorous
evaluation standards has lagged for Al tools. Despite
numerous published Al applications in medicine,"™ in
this empirical assessment we have found that a very small
fraction has so far undergone evaluation in dedicated
clinical trials. We identified significant variation of model
development processes leading up to the AI-RCTs. After
initial development of an Al tool, at least one external
validation study for that particular tool was found for only
11 out of the 23 AI-RCTs. Furthermore, the AI-RCTs were
almost always conducted in the same geographic areas as
their respective development studies. Thus, the AI-RCTs
in this empirical assessment often failed to provide
sufficient information regarding the generalisability
and external validity of the Al tools. When considering
the application of Al tools in the real world, a ‘table of

Siontis GCM, et al. BMJ Health Care Inform 2021;28:¢100466. doi:10.1136/bmjhci-2021-100466 9
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Figure 2 Timelines of publications and sample sizes of development (training, validation and/or testing), external validation
studies and completed AlI-RCTs (n=17). Each circle corresponds to a unique study (development (training, validation, testing)
studies in green, external validation studies in blue, and AI-RCTs in red). Due to the wide range of studies’ sample sizes, the

values are displaying in logarithmic (log, ) scale. AI-RCTs, artificial intelligence randomised controlled trials.
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Figure 3 Violin plots showing in comparison the

distributions of sample sizes (A) and years of publication (B)
of development (training, validation and/or testing), external
validation studies and completed Al-RCTs (n=17). Al-RCT,

artificial intelligence randomised controlled trials.

ingredients’ accompanying the Al tool could be of value.
Such a label would include information on how the tool
was developed and whether it has been externally vali-
dated, including the specific populations, demographic
profiles, racial mix, inpatient versus outpatient settings,
and other key details. This would allow a potential user
to determine whether the Al tool is applicable to their
patient or population of interest and whether any devia-
tions in diagnostic or prognostic performance are to be
expected.

Along these lines, as with any type of RCT, the choice
of primary outcomes in AI-RCTs is also important to
consider. Improvement in therapeutic efficacy outcomes
with direct patient relevance may be the ultimate crite-
rion of value of an Al tool, but these may also be the most
difficult to demonstrate improvements for. The number
of studies in each of the three outcome classes in our
study (therapeutic, diagnostic, feasibility) was too small
to reach conclusions about differences in the probability
of statistically significant results between classes. It should
also be noted that for diagnostic Al tools, diagnostic
performance outcomes that align with the scope of the
intervention would be appropriate. However, interpreta-
tion of such findings should account for likely dilution
of any effect when translating differences in diagnostic
outcomes to downstream clinical outcomes.”® Ultimately,
investigation of patient-centric outcomes, should remain
a priority whenever possible.

The optimal process for the clinical evaluation of Al
tools, ranging from model development to AI-RCTs to real-
world implementation, is not yet well defined. Dedicated
guidelines on the development, reporting and bridging
the development-to-implementation gap of Al tools for
prognosis or diagnosis, namely Transparent Reporting of

10
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a multivariable prediction model for Individual Prognosis
or Diagnosis-Al (TRIPOD-AI) % Prediction model Risk Of
Bias ASsessment Tool-AI (PROBAST-AI),% Developmental
and Exploratory Clinical Investigation of Decision-Al
(DECIDE-AI),” Standards for Reporting of Diagnostic
Accuracy Studies-Al (STARD-AT),®" Quality Assessment of
Diagnostic Accuracy Studies-Al (QUADAS-AI),* will be
available soon. The heterogeneity in development, vali-
dation and reporting in the existing Al literature that we
found in this study might be largely attributable to the
lack of consensus on research practices and reporting
standards in this space. The translational process from
development to clinical evaluation of Al tools is in the
early phase of a broader scrutiny of Al in various medical
disciplines. The upcoming guideline documents are
likely to enhance the reliability, replicability, validity and
generalisability of this literature.

Furthermore, it is unknown whether all Al tools neces-
sitate testing in traditional, large-scale AI-RRCTs.%® Well-
powered, large RCTs that are likely to provide conclusive
results are costly, resource intensive and take a long time
to complete. Therefore, a clinical evaluation model
that routinely requires RCTs may not represent a real-
istic expectation for the majority of Al tools. However,
the ongoing digital transformation in healthcare allows
researchers to simplify time-consuming and costly steps of
traditional RCTs and to improve efficiency. For example,
patient recruitment, follow-up and outcome ascer-
tainment may be performed via nationwide linkage to
centralised electronic health records. Natural language
processing tools may allow automated screening for
patient eligibility and collection of information of
patient characteristics and outcomes. Existing web-based,
patientfacing portals that are the norm for most health-
care institutions may allow a fully virtual consent process
for recruitment. for outcomes’ ascertainment. The exten-
sions of the COSNORT and SPIRIT statements for RCTs
of Albased interventions (namely CONSORT-AI® and
SPIRIT-AI)®” underscore these concepts for facilitating a
novel model of AI-RCT.

Limitations

Our empirical evaluation has limitations. First, a number
of potentially eligible ongoing trials have not been
included, since we summarised peer-reviewed protocols
and final reports of AI-RCTs published in PubMed, whereas
trials registered in online registries were not considered.
However, as has been previously shown,'*"® * registered
protocols often suffer from incomplete reporting, lack of
compliance with the conditions for registration and out-
of-date information, which would not have allowed us to
appropriately characterise the Al tools and their respec-
tive development pathways. Second, as part of this evalua-
tion we did not consider a control group of trials (ie, trials
evaluating the clinical impact of traditional diagnostic
or prognostic tools). However, such trials could not be
directly comparable to the AI-RCTs due to fundamental
differences in studied interventions and populations.

Third, we were not able to comparatively assess the
discriminatory performance of the Al tools across the
distinct steps of training/validation/testing and external
validation, since such performance metrics were neither
systematically nor uniformly reported.

Conclusion

In conclusion, we have found that evaluation of Al tools
in dedicated RCTSs is still infrequent. There is significant
variation in patterns of development and validation for
Al tools before their evaluation in RCTs. Published peer-
reviewed protocols and completed AI-RCTs also varied in
design and reporting. Most AI-RCTs do not test the Al
tools in geographical areas outside of those where the
tools were developed, therefore generalisability remains
largely unaddressed. As Al applications are increasingly
reported throughout medicine, there is a clear need for
structured evaluation of their impact on patients with
a focus on effectiveness and safety outcomes, but also
costs and patient-centred care, before their large-scale
deployment.”” The upcoming guidelines for Al tools
aim to guide researchers and fill the translational gaps
in the conduct and reporting of development and trans-
lation steps. All steps in the translation pathway of these
tools should serve the development of meaningful and
impactful Al tools without compromise under the pres-
sure of innovation.
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