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Mathematical modelling 
of SARS‑CoV‑2 variant outbreaks 
reveals their probability 
of extinction
Henrik Schiøler1, Torben Knudsen1, Rasmus Froberg Brøndum2,3, Jakob Stoustrup1 & 
Martin Bøgsted2,3*

When a virus spreads, it may mutate into, e.g., vaccine resistant or fast spreading lineages, as was 
the case for the Danish Cluster-5 mink variant (belonging to the B.1.1.298 lineage), the British B.1.1.7 
lineage, and the South African B.1.351 lineage of the SARS-CoV-2 virus. A way to handle such spreads 
is through a containment strategy, where the population in the affected area is isolated until the 
spread has been stopped. Under such circumstances, it is important to monitor whether the mutated 
virus is extinct via massive testing for the virus sub-type. If successful, the strategy will lead to lower 
and lower numbers of the sub-type, and it will eventually die out. An important question is, for how 
long time one should wait to be sure the sub-type is extinct? We use a hidden Markov model for 
infection spread and an approximation of a two stage sampling scheme to infer the probability of 
extinction. The potential of the method is illustrated via a simulation study. Finally, the model is used 
to assess the Danish containment strategy when SARS-CoV-2 spread from mink to man during the 
summer of 2020, including the Cluster-5 sub-type. In order to avoid further spread and mink being a 
large animal virus reservoir, this situation led to the isolation of seven municipalities in the Northern 
part of the country, the culling of the entire Danish 17 million large mink population, and a bill to 
interim ban Danish mink production until the end of 2021.

Pandemic outbreaks have reentered as a global reality and threat to humanity with the transmission of an 
animal-adapted Corona virus to humans, first detected in Wuhan, China in late 2019, leading to the COVID-19 
pandemic exhibiting frequent severe respiratory problems in humans. Early warnings of a global event were seen 
with SARS and avian flu1,2. In both cases early containment measures proved successful, whereas for SARS-CoV-2 
early containment failed and the strategy transferred to mitigation. This pattern has later been re-observed in 
almost all countries at the early stages of COVID-19 introduction across national borders. Lately, human-animal 
transmission has given rise to grave concerns regarding a re-ignition of the pandemic through resistant muta-
tions cultivated in animal reservoirs3. One such example is the discovery of the Cluster-5 variant in humans 
transferred from farmed mink in the Danish fur industry during the summer of 20204. Cluster-5 belongs to 
the B.1.1.298 lineage and is characterized by 11 amino acid substitutions and four amino acid deletions relative 
to Wuhan-Hu-1. It was indicated that Cluster-5 could be vaccine resistant5. Hence, national and global health 
concerns triggered severe disease containment measures, such as the rapid culling of the entire Danish 17 mil-
lion large stock of mink as well as relatively severe social- and travel-restrictions for seven municipalities in the 
North Denmark Region (approx. 281,000 people). Containment measures were, for various reasons, delayed 
for around four weeks, in which there were no observations of Cluster-5 mutations in a subset of polymerase 
chain reaction (PCR) tested samples subjected to whole genome sequencing (WGS). This has lead to the primary 
objective of the present paper, namely to answer the question: For how long should Cluster-5 be absent from test 
samples before its extinction is sufficiently certain? The answer depends on the epidemiological behaviour of the 
disease during restrictions as well as the testing regime imposed in that period. We aim in this paper to provide a 
Bayesian model-based answer to this question which links epidemiological parameters as well as testing patterns 
and test results to the probability of disease extinction and early detection.
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Various modeling levels exist in epidemiology such as compartment models, aggregate Markov models, 
and individual Markov models6. Whereas the former two, including the well known SIR and SEIR models7, 
are well suited to model the epidemic spread for large populations during mitigation or endemic spread if the 
virus spread reaches steady state8, the latter provides higher precision for small amounts of infected during 
containment. Moreover, the primary objective of the paper is not possible to pursue with deterministic models. 
Other recent investigations have been made to model the early epidemic evolution of SARS-CoV-2, employing 
auto-regressive modeling with a Bayesian approach to parameter estimation9. Such models provide mean value 
predictions but do not give the probabilistic output as requested above. The scale of genomic surveillance needed 
for early detection of newly emerging variants of concern (VoC) has been considered through a model of the 
sampling process including the PCR test quality parameters10. However, in this model, only the output model is 
considered, in contrast to our model, where also the epidemic dynamics are included. Furthermore, results are 
given as expected counts in contrast to the probabilistic results of our approach. A generalized Hidden Markovian 
model framework for epidemic evolution and test has also been employed11. One may consider the model class 
used in this paper as a subset of that model, tailored specifically to early epidemic development, which brings 
about a much required computational tractability even for large populations.

We shall shortly introduce the development from individual models to compartment models to facilitate the 
transfer of model parameters between them. The model is generic and can therefore be used in other situations 
when pathogen mutations are entered from, e.g., animal reservoirs.

Results
The derivation of the epidemic spread and measurement model was motivated by the spread of mink mutations 
in the North Denmark Region. Before returning to this, we will formulate the model and study its usability and 
robustness by running a number of intervention scenarios. In the following we will consider interventions as a 
combination of restrictions, bringing the reproduction number down, and intensified PCR and WGS sequencing.

Probability of extinction.  Assume a situation where we have observed y infected people carrying a vari-
ant we wish to keep under control and an effective containment strategy of infected people and their immediate 
contacts has been invoked. The question is now:, for how long shall we retain the restrictions to be reasonably 
sure that the virus has not spread? I.e., we want to calculate the following probability

where xk and yk are, respectively, the hidden (true) and observed number of infected people carrying the vari-
ant at time k.

In the Methods section, we have formulated a discrete time hidden Markov model to model this situation 
where the development of the number of infected people, with the specific variant of interest, follows a birth-
death process with death rate (herein recovery rate) γ and net reproduction rate R0 . The net reproduction rate 
is defined as the ratio of the birth rate (herein infection rate) versus the death rate, i.e., R0 = β/γ . We assume a 
two-step testing strategy where nk of the population of size N, are PCR tested and mk of the PCR positive tests 
are WGS tested at time point k.

In the following, we compute a number of scenarios which illustrate how various intervention strategies will 
influence the time until a certain probability of extinction has been reached, given the specific variant has not 
been observed for a given period of time. In all simulations, we assume a constant recovery time of two weeks, i.e. 
γ = 0.5 , a population size of N = 600, 000 , n = 10, 000 tests per week, and an initial number of infected people 
with the specific variant of 11 as well as a flat prior distribution on the number of specific cases. These numbers 
were picked to mimic the Cluster-5 outbreak in the North Denmark Region, where 11 cases were observed in a 
population of size approximately 600,000. Thereafter, we simulated increased restrictions by lowering stepwise 
the reproduction rate, R0 , from 1.5 to 0.5. Finally, we studied increased WGS testing rates of positives between 
1% and 75%.

In Fig. 1, Panel A shows the probability of extinction as a function of the number of weeks for increasing WGS 
ratio and a constant reproduction rate of R0 = 1.0 , and Panel B shows the probability of extinction as function 
of the number of weeks for increasing reproduction rates and constant WGS rate of 0.25. Time to the probability 
of extinction for all scenarios can be seen in Table 1.

From numerical results, we see that an increase in the ratio of WGS tests dramatically lowers the number 
of weeks from 42 to 25 before we can conclude a probability of extinction of 90%. We also noticed a counter-
intuitive non-monotone relationship between reproduction rate and number of weeks until a certain probability 
of extinction has been achieved. To investigate this further, we computed the number of weeks to a 85%, 90%, and 
95% probability of extinction and depicted the number of weeks to extinction against increasing reproduction 
rates, ranging from 0.5 to 2.5, see Fig. 2. From this we notice the maximum of weeks to probability of extinction 
emerging for reproduction rates R0 slightly less than one, and decreasing for higher values. We acknowledge 
the counter-intuitive behaviour that weeks-to-extinction decreases as R0 increases. The behaviour can intui-
tively be explained by the argument that if the epidemic has a high growth rate, it is unrealistic, if it is present, 
that it has not been seen. We can also attribute this effect to the often-experienced counter-intuitive nature of 
a-posterior probabilities, where a-priori probabilities may decrease whereas conditional observation probabili-
ties may increase altogether yielding a non-monotonous a-posterior probability. More specifically, under fast 
epidemic growth the lacking observation of positive cases may contribute higher to the a-posterior probability 
of extinction than it would under a slower growth or decay. I.e., under higher growth, it is more surprising to 
observe zero positives than under lower growth or decay. In other words, if, under fast growth, the variant is not 
extinct, it would be highly unlikely to observe zero positives. This may reflect back onto disease control, since 

p(xk = 0 | y0 = y, y1 = 0, . . . , yk = 0), k = 1, 2, 3, . . . ,
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Figure 1.   Probability of extinction as a function of the number of weeks with no observations of the specific 
variant. Dashed lines indicate probability levels 0.85, 0.90, and 0.95, respectively. (A) Variation of testing regime 
for a constant reproduction rate of R0 = 1 . (B) Variation of restrictions ( R0 ) for a constant WGS testing ratio of 
0.25. The blue curve in upper plot is the same as the yellow curve in the lower plot.

Table 1.   Weeks to thresholds for various testing and restriction strategies.

WGS ratio R0 Prob < 0.85 Prob < 0.90 Prob < 0.95

0.01

0.50

0.75

1.00

1.25 26 30 35

1.50 16 18 21

0.25

0.50 39 40 42

0.75 41 44 49

1.00 41 46 54

1.25 23 26 30

1.50 15 17 20

0.5

0.50 28 30 32

0.75 34 36 40

1.00 32 35 41

1.25 21 23 27

1.50 15 16 19

0.75

0.50 26 27 30

0.75 30 32 36

1.00 27 30 35

1.25 20 22 25

1.50 14 16 18
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tightened restrictions may indeed prolong the period until probable extinction even when decreasing reproduc-
tion number across the R0 = 1 boundary. Of course, any reduction in R0 would increase extinction likelihood 
(a-priori probability), but decision makers need to be aware of the former effect, when deciding to end, e.g., a 
lock down period. We have in the Supplementary Information, provided a simple example showing the same 
counter-intuitive effect.

We are aware that it is impossible to set all parameters for a given situation. We have therefore made an 
online Shiny App which can be used to compute the interested reader’s own scenarios, please refer to the Code 
availability section.

Analysis of the cluster‑5 extinction in Denmark.  Denmark has a total population of 5.8 million and is 
divided into 98 municipalities which are organized in five administrative regions. The North Denmark Region 
has 590,000 inhabitants and contains the 11 most northern municipalities, see the coloured municipalities in 
Fig. 3. All population statistics are from December 31, 2020 and have been fetched from the Statbank of Statistics 
Denmark. For further details see the Data availability section.

The Cluster-5 variant was only observed in the two most northern municipalities Hjørring and Frederikshavn, 
shown in red in Fig. 3. The Figure also shows the seven municipalities covered by the Danish Government’s 
lock-down (in red and blue), amounting to 281,000 inhabitants.

During a period of 4 weeks from mid August 2020 to mid September 2020 (week no. 35–38), respectively 3, 
3, 1, and 4, Cluster-5 observations were made. The public was warned by the authorities against the potential 
vaccine resistant Cluster-5 variant on November 6, 2020, and it was decided by the authorities to cull the entire 
17 million large Danish mink population and lock-down seven municipalities in the North Denmark Region to 
hinder further spread of the variant. The lock-down was planned to run from November 9, 2020, till December 
7, 2020, i.e. week 46 to 49. However, due to low infection rates and heavy political pressure the strict restrictions 
were removed after only two weeks, i.e. at the beginning of week 47. One of the persisting questions from the 
Danish press and political opposition has been whether Cluster-5 was extinct with a reasonably high probability. 
In the following, we will try to shed light on this question.

We compare the two situations: planned and actually realized, which apart from the shortened period of 
intervention mainly differs in the number of WGS tests actually conducted. From publicly available data, we 
could only get access to week-by-week summary statistics for the entire North Denmark Region. Data from the 
Cluster-5 outbreak until the end of 2020 can be seen in Table 2. The Data have been obtained from the official 
Danish Epidemiological Report, for further details see the Data availability section.

We used a population size of 281,000 and divided the number of PCR tests, WGS tests and positives by two, 
as the locked-downed municipalities correspond to approx. half of the population. Further we set the recovery 
rate to 0.5 (i.e., two weeks) and the reproduction number before intervention to 1.2.

During intervention, the plan was to test the entire population of the municipalities over a 4-week period as 
well as WGS testing all positive samples.The number of PCR tests were therefore set to 281,000/4 = 70250 PCR 
tests per week. If we assume a positive pct. of 1.5%, we get 1100 positive tests. The test capacity was up to 5000 a 
week, so we assume all 1100 would be WGS tested during intervention according to the plan. These assumptions 
are off-course too optimistic as the viral load and quality can be too low for sequencing. However, this could be 
seen as an upper limit on the performance. The reproduction number of the new variant can either be worse, 
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Figure 2.   Weeks to extinction as function of the reproduction rate, R0.
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Figure 3.   Status for the municipalities in the North Denmark Region following the lock-down order on 
November 6, 2020. The order was imposed in municipalities with observations of Cluster-5 (red), as well 
as surrounding municipalities with a high concentration of mink farms (blue). The remaining coloured 
municipalities belong to the North Denmark Region, but was not locked down. The remaining municipalities in 
Denmark are coloured white.

Table 2.   Weekly test data.

Week PCR Infected WGS Pct. WGS Cluster5

35 22539 49 25 51 3

36 23758 67 27 40 3

37 29823 233 43 18 1

38 40681 331 74 22 4

39 39789 292 80 27 0

40 28621 260 40 15 0

41 29177 295 47 16 0

42 23125 329 138 42 0

43 36456 679 39 6 0

44 52099 819 177 22 0

45 64493 588 216 37 0

46 93577 485 308 64 0

47 95742 357 246 69 0

48 46120 267 170 64 0

49 33153 387 64 17 0

50 51438 964 104 11 0

51 81265 1422 344 24 0

52 61935 1303 362 28 0

53 57121 1222 270 22 0
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neutral, or improved compared to the original variant. In this example, we assume that the net effects of a changed 
reproduction number and lock-down leads to a reproduction rate of 1.0 during lock-down.

The week-to-week assessment of the probability of extinction from the Cluster-5 outbreak in week 35 till the 
planned lock-down is depicted in Fig. 4. One sees how the probability of extinction develops under the planned 
intervention strategy and what was realized. We see the probability was 0.22 before the intervention and 0.37 
when the restrictions were lifted and 0.52 if the restrictions had been lifted December 3, 2020.

Discussion
Using Bayes filtering of a hidden Markov model with realistic parameters based on the Cluster-5 variant case 
from Denmark, we were able to quantify the impact of interventions on the certainty of extinction of deleterious 
SARS-CoV-2 variants. We found counter-intuitively that imposing restrictions in general increases the time to 
certainty of variant extinction, wherefore restrictions should be supplemented by a massive testing strategy. For 
the Danish case, we concluded a low probability of extinction when the restrictions were lifted at the beginning 
of week 46. However, at the time of writing (March 1, 2021), the variant has not emerged, so the probability 
of extinction is now well above 95%. However, one should be aware that the calculations are based on rough 
estimates. The calculations could be made much more exact, if we have had access to the detailed recordings 
from the Danish authorities.

Although, the use of birth-death processes to model the extinction of species is not new, we have not been able 
to find previous research with an attempt to calculate the probability of extinction based on hidden information 
about the birth-death process12.

The work provides a simple and fast computational framework. This implies a number of scenarios, including 
sensitivity analyses that can quickly be computed. The simplified model used here is ideal for the initial outbreak 
of a new variant of concern, whereas other model frameworks such as compartment model (SIR, SEIR) are more 
well suited later in the epidemic evolution, i.e. when some variant is wider spread.

In conclusion, we hope this tools will be useful for decision makers when deciding upon intervention strate-
gies, that effectively balance restrictions and test strategies.

Methods
In order to formulate the hidden Markov model, we use the notation in Box 1.
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Figure 4.   Probability of extinction for planned and realized interventions.
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Box 1: mathematical notation. 

•	Population characteristics

•	N population size
•	xk number of infected with the specific variant
•	x′k number of infected with a non-specific variant
•	x′′k = xk + x′k total number of infected

•	PCR test statistics

•	nk sample size of the PCR test
•	zk number of samples with the specific variant
•	z′k number of samples with a non-specific variant

•	WGS test statistics

•	mk sample size of the WGS test ( ≤ nk)
•	pk = mk/(zk + z′k) ratio of WGS tested out of positive PCR tests
•	yk number of samples with the specific variant

•	Epidemic parameters

•	β infection rate
•	γ recovery rate
•	R0 = β/γ net reproduction rate

The epidemic model.  We first consider the elementary infection dynamics between two persons P1 and 
P2 of which P1 is infected and P2 is susceptible. Consider an infinitesimal time interval [t, t + dt] where P1 and 
P2 are within infection range. Modelling the infection state of P2 as a two-state Continuous Time Markov Chain 
(CTMC), yields the probability of P1 infecting P2 within [t, t + dt] , to be b dt , where b is a disease characteristic 
constant.

Consider then a susceptible individual P interacting with a population, comprising x infected of a population 
size N. If it is assumed that P on the average finds L others within his/her range of infection then the average 
probability of P being infected within [t, t + dt] is bL x

N dt.
Consider next S susceptible individuals each interacting with a population, comprising x infected of a popula-

tion size N. Then the probability of 1 out of the susceptible individuals being infected in [t, t + dt] is approximately

This leads to the following differential equation governing the evolution of expectations

comprising the infection rate equation of the SIR model. When an exposed state is inserted between susceptible 
and infected states, (2) would yield the rate of transfers between susceptible and exposed states.

Considering instead of expectations, a probability distribution over the actual number of infected I, (1) leads 
to

and with the Bayes law of total probability

yielding

Leading to the differential equation

(1)bL
Sx

N
dt = β

Sx

N
dt.

(2)
d

dt
E(x) = E

(

β
Sx

N

)

≈ β
E(S)E(x)

N

P(x(t + dt) = k|x(t) = k − 1) = β
S(k − 1)

N
dt

P(x(t + dt) = k) =P(x(t + dt) = k|x(t) = k − 1)P(x(t) = k − 1)+ P(x(t + dt) = k|x(t) = k)P(x(t) = k)

=β
S(k − 1)

N
dtP(x(t) = k − 1)+ (1− β

Sk

N
dt)P(x(t) = k)

P(x(t + dt) = k)− P(x(t) = k)

dt
= β

S(k − 1)

N
P(x(t) = (k − 1))− β

Sk

N
P(x(t) = k).
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For the early development of an outbreak S ≈ N . This yields the infection dynamics

Adding the effect of recovery, we obtain

where γ is the individual recovery rate. This can altogether be summarized by the CTMC depicted in Fig. 5.
Thus, the number of infected people under the epidemic can be modelled as a continuous time Markov chain 

(CTMC) {xt , t ≥ 0} , with state space X = {0, 1, 2, . . . ,N} and infinitesimal generator Q, where Q is a matrix 
with elements, for i, j ∈ {1, 2, 3, . . . ,N},

We can now model the daily number of infected in the population as a discretely sampled CTMC 
{x(n), n = 0, 1, 2, . . . } , with state space X = {0, 1, 2, . . . ,N} and transition probabilities

where P0 = (p(x0 = 0), p(x0 = 1), . . . , p(x0 = N)) is the initial distribution of x0 and Hxk−1,xk is the xk−1, xk’th 
element of the matrix H = exp(Q dT) , with dT being the sampling period.

The presence of the transmitted virus among humans is first detected through an initial sample of test results 
y0 . Therefore the initial conditions for the Bayes filter may be found from

In most cases, if there is no initial evidence for x0 , then we may (using the principle of maximum entropy) a 
priory assume x0 is uniformly distributed over some interval, e.g, {0, ..,N} (coined uniform in the accompany-
ing R-script). Another possibility is to choose x0 to have any truncated discrete distribution with support on 
the set {0, 1, 2, . . . ,N} , e.g. the Poisson distribution (coined Poisson distribution in the accompanying R-script). 

d

dt
P(x(t) = k) = β

S(k − 1)

N
P(x(t) = k − 1)− β

Sk

N
P(x(t) = k)

d

dt
P(x(t) = k) = β(k − 1)P(x(t) = k − 1)− βkP(x(t) = k)

d

dt
P(x(t) = k) =β(k − 1)P(x(t) = k − 1)− (γ + β)kP(x(t) = k)+ γ (k + 1)P(x(t) = k + 1)

qij =











iβ j = i + 1
iγ j = i − 1
−i(γ + β) j = i
0 Otherwise.

x0 ∼ P0

p(xk|x1:(k−1)) =Hxk−1,xk , k = 1, 2, 3, 4, . . . ,

(3)p(x0|y0) =
p(y0|x0)p(x0)

p(y0)
.

Figure 5.   Continuous Time Markov Chain for Cluster-5 infected.

Figure 6.   Dependency structure of Bayesian filter.
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Finally, if we know exactly the initial number of infected, we can choose this number to have probability one. 
The conditional distribution p(y0|x0) in Eq. (3) can be calculated by the approximations outlined in The obser-
vational model section.

In summary, we can illustrate the dependency structure of the Hidden Markov model in Fig. 6.

The observation model.  Normally, the epidemic model is unobserved, but each day a number of people 
are tested for infection, and yet a number of the positive samples are sequenced to classify samples into variants. 
From the sequenced samples, the number of a given variant is recorded. Assuming the number of the PCR and 
WGS sample sizes, nk and mk , are known, the sequential sampling scheme can be formulated as a hierarchical 
model, in the following way:

Notice that (4) and (5) are two and one dimensional hypergeometric distributions, respectively. In order to let 
this be well-defined, we implicitly assume that yk = 0 if zk = 0.

Now, it is possible to formulate an expression for the observational model p(yk|xk , x′k) , by the following 
mixture of hypergeometric distributions:

However, due to computational complexity of the involved binomial coefficients, we seek approximations of (6). 
For the given population sizes and infection rates, we would expect a Poisson approximation to yk|xk , x′k , with a 
mean value matching the ratio of the specific variant in the population, xk/(xk + x′k) , times the sample size, mk , 
will provide a good approximation of the distribution of yk|xk , x′k , i.e.

which leads to the following Poisson distribution approximation (Poisson)

and the following Binomial distribution approximation (Binom1)

(4)zk , z
′
k|xk , x

′
k ∼Hypergeometric (N , xk , x

′
k , nk),

(5)yk|zk , z
′
k ∼Hypergeometric (zk + z′k , zk ,mk).

(6)p(yk|xk , x
′
k) =

min(xk ,nk)
∑

i=0

min(x′k ,nk−i)
∑

j=0

p(yk|zk = i, z′k = j)p(zk = i, z′k = j|xk , x
′
k).

E[yk|xk , x
′
k] =mk

xk

xk + x′k
,

yk|xk , x
′
k ∼ Pois

(

mk
xk

xk + x′k

)

.

KL divergence: 
 Binom1 = 3e−04 

 Binom2 = 0.003 

 Poisson = 0.0026
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Figure 7.   Comparison of approximations and simulated sampling distributions including Kulback-Leibler 
divergence. Parameters used were N = 600, 000 , x′

k
= 3, 312 , xk = 288 , nk = 17, 000 , and mk = 29.
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and the following Binomial distribution approximation (Binom2) based on ratios

We simulated 10,000 realizations of yk from the two-stage sampling distrution, with N = 600, 000 , xk = 3, 312 , 
x′k = 288 , nk = 17, 000 , and mk = 29 , and constructed an approximation to the sampling distribution by the 
relative frequencies. Next, we compared the Poisson, Binom1, and Binom2 approximations to the approximated 
sampling distribution by the Kullback-Leibler distance, see Fig. 7.

To put the use of KL distance for comparison into perspective, consider two Poisson distributions f1 and f2 
with intensities �1 and �2 = (1+ ǫ)�1 , where f2 can viewed as a slight perturbation of f1 . For the two Poisson 
distributions we have:

A second order Taylor approximation of KL as function ǫ yields

In the simulations above, we have �1 = 2.32 . If we plug this into (7) together with the simulated KLD, we get 
ǫ = 0.042 and �2 = 2.42 , illustrating the proximity of the Poisson approximation.

Estimation of the current number of a specific variant.  The main question of the paper is to estimate 
the distribution of the current number of the specific variant given past and current observations of the variant, 
i.e., the problem is to find p(xk|y0, . . . , yk).

This can be achieved by a traditional recursive Bayes filter with initial value

and

for k = 1, 2, 3, . . . . We notice that, all values for the recursion in (8) and (9) have been specified above in the 
epidemic model and observation models.

Data availability
Data on the weekly number of PCR tests and infected people from Danish Covid-19 test centers are publicly 
available from Statens Serum Institut at: https://​covid​19.​ssi.​dk/​overv​agnin​gsdata/​downl​oad-​fil-​med-​overv​aagni​
ngdata. Data on the number of WGS samples per week in the North Denmark region were obtained from the 
Danish Covid-19 Genome Consortium at: https://​www.​covid​19gen​omics.​dk/​stati​stics. Data on Danish cluster5 
samples were obtained from a dedicated S:Y453F (mink mutation) build at Nextstrain13: https://​nexts​train.​org/​
groups/​neher​lab/​ncov/S.​Y453F?c=​gt-S_​453&f_​clade_​membe​rship=​Mink.​Clust​er5&f_​region=​Europe. Popula-
tion sizes in the municipalities in the North Denmark region were obtained from Statbank, Statistics Denmark: 
https://​www.​dst.​dk/​en/​Stati​stik/​emner/​befol​kning-​og-​valg/​befol​kning-​og-​befol​kning​sfrem​skriv​ning.

Code availability
The R code and data are available at https://​github.​com/​HaemA​alborg/​clust​er5. A Shiny app that can be used to 
run the algorithms is available at https://​covid​19voc​monit​or.​aau.​dk.
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