Skip to main content
. 2021 Dec 17;11:737368. doi: 10.3389/fonc.2021.737368

Table 1.

The prediction power of the radiomic features extracted from target nodule images with different learning algorithms and feature selection methods over the balanced dataset.

Learning Algorithm Target Radiomic Prediction Performance (AUROC)
Feature Selection
None CST Corr LASSO RELIEF MI PCA FFS
Adab 0.889 ± 0.016 0.863 ± 0.021 0.881 ± 0.031 0.864 ± 0.026 0.671 ± 0.019 0.531 ± 0.037 0.868 ± 0.015 0.911 ± 0.016
DT 0.723 ± 0.011 0.733 ± 0.027 0.703 ± 0.019 0.711 ± 0.028 0.642 ± 0.013 0.523 ± 0.024 0.712 ± 0.026 0.730 ± 0.032
RF 0.871 ± 0.008 0.849 ± 0.025 0.846 ± 0.028 0.856 ± 0.023 0.765 ± 0.018 0.517 ± 0.031 0.862 ± 0.026 0.891 ± 0.011
KNN 0.850 ± 0.016 0.846 ± 0.016 0.807 ± 0.036 0.833 ± 0.017 0.735 ± 0.021 0.671 ± 0.089 0.846 ± 0.017 0.870 ± 0.023
SVM 0.777 ± 0.011 0.774 ± 0.029 0.752 ± 0.025 0.775 ± 0.027 0.751 ± 0.020 0.522 ± 0.040 0.775 ± 0.028 0.802 ± 0.008
LDA 0.655 ± 0.045 0.680 ± 0.032 0.785 ± 0.017 0.75 ± 0.027 0.741 ± 0.031 0.735 ± 0.018 0.771 ± 0.028 0.796 ± 0.011
QDA 0.778 ± 0.172 0.696 ± 0.181 0.747 ± 0.016 0.738 ± 0.024 0.753 ± 0.031 0.840 ± 0.020 0.752 ± 0.026 0.865 ± 0.006
Naive 0.763 ± 0.006 0.759 ± 0.023 0.742 ± 0.030 0.731 ± 0.022 0.756 ± 0.034 0.583 ± 0.046 0.739 ± 0.024 0.808 ± 0.010

For each feature selection algorithm, the highest value is marked in bold.