Table 1.
Learning Algorithm | Target Radiomic Prediction Performance (AUROC) | |||||||
---|---|---|---|---|---|---|---|---|
Feature Selection | ||||||||
None | CST | Corr | LASSO | RELIEF | MI | PCA | FFS | |
Adab | 0.889 ± 0.016 | 0.863 ± 0.021 | 0.881 ± 0.031 | 0.864 ± 0.026 | 0.671 ± 0.019 | 0.531 ± 0.037 | 0.868 ± 0.015 | 0.911 ± 0.016 |
DT | 0.723 ± 0.011 | 0.733 ± 0.027 | 0.703 ± 0.019 | 0.711 ± 0.028 | 0.642 ± 0.013 | 0.523 ± 0.024 | 0.712 ± 0.026 | 0.730 ± 0.032 |
RF | 0.871 ± 0.008 | 0.849 ± 0.025 | 0.846 ± 0.028 | 0.856 ± 0.023 | 0.765 ± 0.018 | 0.517 ± 0.031 | 0.862 ± 0.026 | 0.891 ± 0.011 |
KNN | 0.850 ± 0.016 | 0.846 ± 0.016 | 0.807 ± 0.036 | 0.833 ± 0.017 | 0.735 ± 0.021 | 0.671 ± 0.089 | 0.846 ± 0.017 | 0.870 ± 0.023 |
SVM | 0.777 ± 0.011 | 0.774 ± 0.029 | 0.752 ± 0.025 | 0.775 ± 0.027 | 0.751 ± 0.020 | 0.522 ± 0.040 | 0.775 ± 0.028 | 0.802 ± 0.008 |
LDA | 0.655 ± 0.045 | 0.680 ± 0.032 | 0.785 ± 0.017 | 0.75 ± 0.027 | 0.741 ± 0.031 | 0.735 ± 0.018 | 0.771 ± 0.028 | 0.796 ± 0.011 |
QDA | 0.778 ± 0.172 | 0.696 ± 0.181 | 0.747 ± 0.016 | 0.738 ± 0.024 | 0.753 ± 0.031 | 0.840 ± 0.020 | 0.752 ± 0.026 | 0.865 ± 0.006 |
Naive | 0.763 ± 0.006 | 0.759 ± 0.023 | 0.742 ± 0.030 | 0.731 ± 0.022 | 0.756 ± 0.034 | 0.583 ± 0.046 | 0.739 ± 0.024 | 0.808 ± 0.010 |
For each feature selection algorithm, the highest value is marked in bold.