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Continuum Thermodynamics of
Constrained Reactive Mixtures
Mixture theory models continua consisting of multiple constituents with independent
motions. In constrained mixtures, all constituents share the same velocity but they may
have different reference configurations. The theory of constrained reactive mixtures was
formulated to analyze growth and remodeling in living biological tissues. It can also
reproduce and extend classical frameworks of damage mechanics and viscoelasticity
under isothermal conditions, when modeling bonds that can break and reform. This study
focuses on establishing the thermodynamic foundations of constrained reactive mixtures
under more general conditions, for arbitrary reactive processes where temperature varies
in time and space. By incorporating general expressions for reaction kinetics, it is shown
that the residual dissipation statement of the Clausius–Duhem inequality must include a
reactive power density, while the axiom of energy balance must include a reactive heat
supply density. Both of these functions are proportional to the molar production rate of a
reaction, and they depend on the chemical potentials of the mixture constituents. We
present novel formulas for the classical thermodynamic concepts of energy of formation
and heat of reaction, making it possible to evaluate the heat supply generated by reactive
processes from the knowledge of the specific free energy of mixture constituents as well
as the reaction rate. We illustrate these novel concepts with mixtures of ideal gases, and
isothermal reactive damage mechanics and viscoelasticity, as well as reactive thermo-
elasticity. This framework facilitates the analysis of reactive tissue biomechanics and
physiological and biomedical engineering processes where temperature variations can-
not be neglected. [DOI: 10.1115/1.4053084]
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1 Introduction

Biological tissues and cells undergo biochemical reactions that
may consume or release chemical energy. The standard approach
in biochemistry is to assess this energy using the Gibbs potential
of reactants and products, usually under the assumption that these
reactions occur at constant temperature and pressure. Most com-
monly, this constant temperature is body temperature, and the
constant pressure is ambient pressure. The Gibbs potential is com-
monly used to assess whether these reactions may proceed sponta-
neously or require the addition of chemical energy, such as that
provided by the dephosphorylation of adenosine triphosphate, or
thermal energy (heating). While many processes in mammalian
physiology may be suitably modeled to take place under these iso-
thermal and isobaric conditions, there are circumstances where it
may be necessary to allow for spatiotemporal variations in tem-
perature and pressure. In the context of continuum mechanics, we
may alternatively model variations in pressure using strain as a
state variable, then relate pressure (or more generally stress) to
strain using appropriately selected functions of state. For tissues
and cells that are subjected to loading, the state of pressure or
strain may significantly influence the kinetics and thermodynam-
ics of reactive processes. Moreover, biological tissues and cells
may interact with an environment at a different temperature or
pressure, such as ambient air flowing in the lungs, injurious heat-
ing (e.g., burning) or cooling (freezing) of skin by external fluids
or solids, or potentially detrimental thermal effects of medical
procedures, such as laser ablation or cryotherapy. To better under-
stand how to model such processes, it becomes necessary to
update the standard thermodynamic methodologies for assessing
energy exchanges during reactive and thermal processes involving
biological tissues and cells.

Moreover, biomedical devices typically employ nonbiological
materials whose thermomechanical properties may also matter
significantly in some biomechanical modeling contexts. For exam-
ple, vascular stents may undergo large plastic deformation, ultra-
high molecular weight polyethylene used in joint arthroplasty
may undergo significant viscoelastic deformation, thus these
materials may heat up during normal function, potentially affect-
ing the progression of wear, or the viability of cells that come in
contact with these heated materials. Despite the potential impor-
tance of these phenomena, the classical training of bioengineers
rarely encompasses this wider range of conditions for understand-
ing and modeling the mechanics and thermodynamics of biologi-
cal processes and nonbiological materials in a unified framework.
The primary objective of this study is to present a framework that
facilitates the modeling of this wide range of thermomechanical
and reactive processes using mixture theory.

Mixture theory is the framework first introduced by Truesdell
[1] to model the mechanics of mixtures of multiple constituents.
In his original formulation, this author described a general frame-
work where all constituents that coexist in an elemental volume
may have independent motions. More detailed formulations were
subsequently developed by other authors, notably including reac-
tions that may take place among the various constituents [2–7].
This general mixture theory framework has been popular in the
field of biomechanics, where it has been used to describe the
mechanics of biological tissues and cells as a mixture of a porous
permeable solid matrix and an interstitial fluid [8–10], later
expanded to incorporate solutes and osmotic effects [11–15]. In
these studies, the relative motion and frictional interactions
between solute, solvent, and solid constituents gave rise to the
classical relations known as Fick’s law of diffusion and Darcy’s
law of permeation, which played an important role in the phenom-
ena being examined. Reactive processes have also been incorpo-
rated in this mixture framework to model biological growth [7]. In
this approach, growth is modeled as a set of reactions that convert
solute constituents in the interstitial fluid into solid matrix
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constituents, governed by the mass supply term in the mass balance
equation. Since growth is modeled as the interstitial addition of
solid mass to a porous solid matrix, there is no obligatory concomi-
tant change in volume; however, volumetric changes may take
place when growth reactions alter the osmotic environment [16,17].

In an effort to accommodate growth mechanics without the
added complexity of independent constituent motions (such as
solute diffusion and solvent permeation), Humphrey and Rajago-
pal [18] proposed to specialize the reactive mixture framework to
the case where all constituents are solids constrained to move
together, even though these constituents may not share the same
reference configuration. They used this constrained solid mixture
approach to model vascular tissue consisting of collagen, elastin,
and smooth muscle cells. As recognized by earlier authors [19],
growth mechanics poses an intriguing challenge to the classical
field of solid mechanics because growth causes the solid mass
content to evolve over time; since new solid mass may be added
interstitially to an existing porous solid matrix, it becomes neces-
sary to specify the reference configuration of the constrained solid
mixture as growth evolves. Baek et al. [20] proposed to keep track
of this evolution using a time-dependent tensor that represents the
prestretch of the newly added solid constituent at the time it is
being added to the mixture, based on the original concept pre-
sented by Wineman and Rajagopal [21]. Ateshian and Ricken [22]
adopted this constrained mixture framework; however, they pro-
posed that each generation of newly deposited solid matrix repre-
sents a distinct mixture constituent with a distinct, time-invariant,
reference configuration.

In their earlier work, Rajagopal and co-workers used their con-
strained mixture approach to describe the mechanics of inelastic
materials [23–27] along with the thermomechanics of viscoelas-
ticity and plasticity [28], with an emphasis on the evolution of the
natural configuration of such materials. However, these studies
did not explicitly adopt a reactive framework to describe this type
of inelastic behavior. In contrast, in our own prior work, we pro-
posed that viscoelasticity, damage mechanics, and plasticity could
all be modeled using reactive constrained mixtures where intact
bonds (mixture reactants) may break permanently (damage) or
reform into stress-free bonds (viscoelasticity) or stressed bonds
(plasticity) [29–32], by postulating different types of constitutive
relations for the reference configuration of newly formed mixture
products. We also showed that this framework could be easily
extended to accommodate elastoplastic damage, by modeling
three types of reactions (intact to broken bonds for elastic damage,
intact to yielded bonds for plasticity, and yielded to broken bonds
for plastic damage) [32]. Here again, in contrast to Rajagopal and
co-workers, our approach proposed a time-invariant reference
configuration for each mixture product, postulated by constitutive
assumption, while recognizing that an infinite number of products
could emerge in a continuously evolving viscoelastic or plastic
deformation. This distinction implies that the theoretical formula-
tions for these alternative approaches differ at a fundamental
level, even though both approaches adopt the same conceptual
constrained mixture framework.

In the studies of reactive mixtures from our group [7,22,29–32],
the stoichiometry of reactions was based on a standard textbook
approach [33], consistent with earlier mixture theory presentations
[4,5], and thus capable of also modeling standard biochemical
reactions as they may occur in biological systems. However, our
prior studies were restricted to isothermal processes. More general
formulations of reactive mixtures have been presented before,
allowing for temperature to vary in time and space, within uncon-
strained [2,4–6,34,35] or constrained [36] mixtures.

Among these studies, there is a distinction between those that
allow each constituent to have its own distinct temperature
[2,5,6,35] and those that assume a common temperature for all
constituents [4,34,36]. When each mixture constituent has its own
temperature, a separate energy equation must be used for that con-
stituent to provide a well-posed mathematical problem that can be
solved for all the unknown temperatures. In mixture theory, this

means that constitutive relations for energy supplies between each
pair of constituents must be formulated, based on the specific type
of energy transfer mechanism being considered in a model (such
as phase transformation in two-phase flow). Unfortunately, few
studies have proposed specific constitutive relations for this type
of energy supply in unconstrained mixtures, thus limiting their
usage in practice. Even those studies that presented the more gen-
eral thermodynamic framework with constituent-specific tempera-
tures chose to present isothermal problems as illustrative
examples, with all constituents sharing the same temperature [35].

In this study, we present a complete framework for constrained
reactive mixtures, which also accounts for their thermodynamics.
Whereas the principal constraint in the original constrained mix-
ture formulation was kinematic, requiring all constituents to move
together (i.e., to share the same velocity), in this presentation we
also assume that all mixture constituents are thermally constrained
to share the same temperature. Indeed, there is a distinctive anal-
ogy between the concept of constraining all mixture constituents
to share the same velocity, with that of sharing the same tempera-
ture: In the former case, we forgo the ability to formulate constitu-
tive models for the momentum exchange between pairs of
constituents in a mixture; in the latter case, we lose the ability to
formulate constitutive relations for the energy exchange. How-
ever, these constraints produce a considerable simplification of
the governing mixture equations; thus, we adopt both of them in
the presentation of this study. This assumption is consistent with
the thermodynamic framework for chemically reacting systems
presented by Kannan and Rajagopal [36] and adopted by other
investigators [37,38]. The main distinctions between this prior
work and the current presentation are twofold: First, as mentioned
above, Rajagopal and co-workers adopt a single evolving natural
configuration for their constrained mixture, requiring a constitu-
tive model for this evolution, whereas we assume that each prod-
uct of a reaction has a time-invariant reference configuration
postulated by constitutive assumption. Second, they adopt the
Gibbs potential as the fundamental function of state from which
constitutive models for stress, chemical potential, and entropy are
derived, whereas we adopt the Helmholtz free energy, consistent
with classical mixture approaches [2,4,39]. This distinction is non-
trivial because their novel Gibbs potential formulation depends on
the stress tensor, but in general the stress may have contributions
from nondissipative and dissipative mechanisms, of which only
the former depends on the free energy. This distinction is clarified
in the current presentation.

The ability to combine chemical reactions in biological systems
with inelastic processes in solid and fluid materials under the
same reactive framework makes it possible to examine a broad
range of thermodynamic processes using the same set of equa-
tions. In particular, it is noteworthy that engineering thermody-
namic textbooks do not provide the fundamental equations for
evaluating the heat produced in a reactive process under arbitrary
conditions of temperature and pressure (or strain). In this study,
we show that a reactive framework, which models the evolution
of the apparent densities of reactants and products, necessarily
introduces the chemical potential of reacting species in the axioms
of energy balance and entropy inequality. Terms involving these
chemical potentials in the energy balance are shown to represent
the reactive heat supply. The corresponding terms in the entropy
inequality determine whether the reaction is exergonic or
endergonic.

Finally, in the Appendix, we illustrate how this framework of
constrained reactive solid mixtures may be used to model reactive
mixtures of ideal gases, and heat dissipation in damage mechan-
ics, viscoelasticity, and thermoelasticity.

2 Governing Equations

2.1 Kinematics. A mixture may consist of any number of
constituents, each denoted by a. The motion of constituent a is
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given by vaðXa; tÞ, where Xa denotes material points of constitu-
ent a in their referential configuration. At the current time t, all
constituents that occupy an elemental region at the spatial position
x may thus have originated from different referential positions Xa,
such that x ¼ vaðXa; tÞ for all a. The velocity of each constituent
is given by vaðXa; tÞ ¼ @va=@t, whereas the deformation gradient
is given by FaðXa; tÞ ¼ @va=@Xa. Let a ¼ s represent the master
constituent whose reference configuration is determined by the
material point positions Xs.

A constrained mixture represents the special case when all mix-
ture constituents share the same velocity in the current (spatial)
configuration

vaðx; tÞ ¼ vsðx; tÞ (2.1)

even though the respective referential configurations Xa may be
different.

Remark 1. In a strict sense, we should differentiate between the
material and spatial representations of a function f a, such as
f a ¼ �f

aðXa; tÞ ¼ ~f
aðx; tÞ. However, for notational simplicity, we

assume that f aðXa; tÞ � �f
aðXa; tÞ and f aðx; tÞ � ~f

aðx; tÞ.
For any pair of constituents a and b, it follows that

dx ¼ Fa � dXa ¼ Fb � dXb, explicitly establishing the constraint
equation between constituent deformation gradients. Since the
mixture is constrained, a unique, time-invariant mapping FasðXsÞ
may be defined between the reference configurations of a and s,
such that

FsðXs; tÞ ¼ FaðXa; tÞ � FasðXsÞ (2.2)

where Fas ¼ @Xa=@Xs maps the pair of material points Xa and Xs

that satisfy x ¼ vsðXs; tÞ ¼ vaðXa; tÞ in the current configuration.
It follows that volume ratios Ja ¼ detFa similarly satisfy

Js ¼ JaJas (2.3)

where Js ¼ detFs and Jas ¼ detFas.
Remark 2. In constrained mixtures, only a single deformation

gradient such as Fs of the master constituent is observable and
thus available as a state variable. For remaining constituents a, the
mapping Fas represents a function of state that must be postulated
by constitutive assumption; by definition, this function of state is
not observable. Thus, the position Xa extracted by integrating the
constitutive model for Fas is not observable either.

2.2 Mass Balance Relations. The axiom of mass balance for
each constituent is given by

_qa þ qadiv vs ¼ q̂a (2.4)

where qa is the apparent density of a (mass of a per volume of the
mixture in the current configuration), q̂a is the mass density sup-
ply describing mass supply to a due to reactions with all other
mixture constituents, and _qa is the material time derivative of qa.
In the spatial frame, it is given by

_qa ¼ @q
a

@t
þ gradqa � vs (2.5)

From the kinematics of the continuum, we recall that

div vs ¼
_J
s

Js
(2.6)

Substituting this expression into Eq. (2.4) produces a simplified
form of the mass balance for a

_qa
r ¼ q̂a

r (2.7)

where

qa
r � Jsqa ; q̂a

r � Jsq̂a (2.8)

From this expression, we understand that qa
r represents the mass

of constituent a per volume of the mixture in the reference config-
uration of the master constituent s. In the form given in Eq. (2.7),
the axiom of mass balance clearly shows that the referential appa-
rent density qa

r remains invariant when constituent a is nonreac-
tive (q̂a

r ¼ 0).
Since the mixture includes all constituents present in an ele-

mental region, the net mass supply for the mixture must reduce to
zero X

a

q̂a ¼ 0 (2.9)

implying that mass gained by products of a reaction must balance
the mass lost by reactants. Therefore, the mass balance for the
mixture, which may be evaluated by summing Eq. (2.4) over all
constituents, reduces to

_q þ qdiv v ¼ 0 (2.10)

where

q ¼
X

a

qa (2.11)

is the mixture density and

v ¼ 1

q

X
a

qava ¼ vs (2.12)

is the mixture velocity [1,2]. According to Eq. (2.8), we may
rewrite Eq. (2.11) as

qr ¼
X

a

qa
r ¼ Jsq (2.13)

Similarly, Eq. (2.9) may be rewritten as
P

aq̂
a
r ¼ 0; when com-

bined with Eq. (2.7), we conclude that _qr ¼ 0, so that qr is
constant.

2.3 Stoichiometry of Reactions. When examining the stoi-
chiometry of reactions, we find it convenient to express the
amount of each constituent a in the mixture in terms of its number
of moles. We may relate the mass concentration (apparent den-
sity) qa of constituent a to its molar concentration ca via
qa ¼ Maca, where Ma is its molar mass. Since Ma is constant, the
mass balance equation (2.4) may be rewritten as
_ca þ cadivv ¼ ĉa, where ĉa ¼ q̂a=Ma is the molar density supply
to a from reactions with all other constituents.

Reactions may occur among the constituents of a mixture which
result in a temporal evolution of the mass content of reactants and
products. Following standard textbook presentations [33], a forward
reaction between mixture constituents may be written down asX

a

�a
REa !

X
a

�a
PEa (2.14)

where Ea is the chemical (molecular) species associated with con-
stituent a, �a

R represents the stoichiometric coefficient of reactant
a, and �a

P is that of the corresponding product. Similarly, a reversi-
ble reaction may be written asX

a

�a
REa
�

X
a

�a
PEa (2.15)

The summations are taken over all mixture constituents, though
constituents that are not reactants in that particular reaction will
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have �a
R ¼ 0, and those that are not products will have �a

P ¼ 0.
The stoichiometry of the reaction imposes constraints on the
molar density supplies such that we may define a molar produc-
tion rate f̂ (units of mole per volume, per time)

ĉa ¼ �af̂ (2.16)

where

�a ¼ �a
P � �a

R (2.17)

is the net stoichiometric coefficient of a in the reaction. Using the
above relation between q̂a and ĉa, Eq. (2.16) may be substituted
into the constraint on mass supplies, Eq. (2.9) to produceP

aMa�a ¼ 0. This relation may be recognized as the classical
requirement to balance the molar mass of reactants and products
in a reaction. Thus, the constraint (2.9) produces a classical out-
come when applied to the mass balance.

Combining the relation between ĉa and q̂a with Eq. (2.16)
yields a relation between the mass density supply q̂a and molar
production rate f̂

q̂a ¼ �aMaf̂ (2.18)

Thus, for each reaction, a single constitutive relation for the molar
production rate f̂ is required to evaluate q̂a for all a. We may rewrite
Eq. (2.18) as q̂a

r ¼ �aMaf̂r , where f̂r � Jsf̂ as per Eq. (2.8).

2.4 Mixture Momentum Balance. As shown previously
[22], the state of stress ra in each constituent a remains indetermi-
nate in a constrained mixture, since the absence of relative motion
precludes the formulation of constitutive relations for momentum
exchanges between constituents. However, this indeterminacy is
inconsequential, since these internal forces cancel out. Hence, the
mixture Cauchy stress r ¼

P
ar

a may be obtained by solving the
mixture momentum balance

qa ¼ divrþ qb (2.19)

where a ¼ _v is the mixture acceleration, and b represents external
body forces per mixture mass. Therefore, given a constitutive rela-
tion for r, only one unknown deformation gradient may be
obtained from this momentum equation, such as Fs. All other
deformation gradients Fa may be related to Fs by Eq. (2.2), where
Fas is prescribed by constitutive assumption based on the nature
of the constrained mixture [22], as illustrated in the examples pre-
sented in the Appendix. For nonpolar continua, the axiom of angu-
lar momentum requires r to be symmetric.

2.5 Mixture Energy Balance. As noted in the Introduction,
we now propose to construct our constrained mixture framework
such that all constituents also share the same temperature h. Under
this constraint, energy exchanges between constituents remain
indeterminate, and the only equation we may solve is the mixture
energy balance

q_e ¼ r : D� divqþ qr (2.20)

where e ¼ ð1=qÞ
P

aq
aea is the specific mixture internal energy,

D ¼ ð1=2Þðgradvþ gradTvÞ is the rate of deformation tensor, q is
the heat flux in the mixture, and r is a specific heat supply repre-
senting interior sources of heat [39], which we propose are those
resulting from mechanisms not accounted for explicitly in a model
(such as radiation in a framework that does not include electro-
magnetism, or Joule heating in a model that does not account
explicitly for the flow of electrically charged constituents and
their frictional interactions with fixed charge constituents).
Accordingly, given constitutive relations for e and q, only one
unknown temperature h may be obtained from this energy

equation. Note that r : D, which appears on the right-hand side of
the energy balance, is known as the stress power density.

2.6 Mixture Entropy Inequality. The axiom of entropy
inequality for a constrained reactive mixture takes the form
described by Truesdell and Toupin [39] which they named after
Clausius and Duhem

q _g þ div
q

h
� q

r

h
P0 (2.21)

where g ¼ ð1=qÞ
P

aq
aga is the specific mixture entropy. By using

the energy balance (2.20) to eliminate r, we may rewrite this
inequality as

�q _w þ g _h
� �

þ r : D� 1

h
q � gradhP0 (2.22)

where

w ¼ e� hg (2.23)

emerges naturally as the specific free energy, commonly named
after Helmholtz. We may also introduce the mixture free energy
density Wr ¼ qrw, representing the free energy per volume of the
mixture in the master reference configuration. Since _qr ¼ 0 as
explained in Sec. 2.2, it follows that _Wr ¼ qr

_w. We may also
express the specific free energy of each constituent a as
wa ¼ ea � hga, such that

Wr ¼ qrw ¼
X

a

qa
r w

a (2.24)

3 State Variables for Reactive Constrained Mixtures

3.1 State Variables and Functions of State. In our contin-
uum mechanics and thermodynamics treatment, we consider that
state variables represent observable variables derived from measure-
ments of three-dimensional space (length, area, and volume) and
time. Thus, velocity, acceleration, gradient of velocity, and other
similar measures relating space and time are all considered to be
observable. Similarly, force is measured from the change of length
of a standard material; mass is measured from force and accelera-
tion; and temperature is measured from the change of length of a
standard fluid (e.g., mercury). Functions of state are measures of a
material’s behavior, i.e., r, e, g, w, q, and Fas, that cannot be
observed directly but must be calculated from suitably formulated
constitutive relations that are functions of observable state variables.
In particular, the complete state of stress (a tensorial measure) can-
not be determined exclusively from force and area measurements (a
vectorial measure) at every point inside a material without cutting
the material and altering that state of stress.

3.2 Constraints on Constitutive Relations. To formulate
constitutive relations that satisfy the entropy inequality, we extend
the approach of Coleman and Noll [40] by taking into account
that state variables are always observable, and that functions of
state are not observable, and thus they should not be arbitrarily
interchanged with observable state variables. Keeping in mind
that our principal applications for constrained reactive mixtures
include growth mechanics, damage mechanics, thermoelasticity,
viscoelasticity, heat transfer, and other dissipative processes using
only observable variables, we select a set of state variables that
can accommodate a wide range of phenomena in these fields.
Including the temperature h allows us to define material functions
(e.g., elastic moduli and viscosities) that vary with temperature.
Including the temperature gradient g ¼ grad h allows us to model
heat conduction. The deformation gradient Fs of the master con-
stituent is also included to account for the elastic response. The

041011-4 / Vol. 144, APRIL 2022 Transactions of the ASME



rate of deformation D may also be included to account for rate
effects when significant, as in the case of viscous flow. Since the
axiom of mass balance in Eq. (2.7) shows that the referential mass
densities qa

r evolve over time in a reactive framework, they also
need to be included in the list of state variables for a reactive mix-
ture. According to the principle of equipresence, all functions of
state (r, e, g, w, q, q̂a

r , and Fas) are nominally dependent on this
entire list of state variables ðh; g;Fs;D; qa

r Þ; in this list, a spans all
constituents in the mixture. Using the chain rule of differentiation,
and the kinematic relation _F

s ¼ L � Fs where L ¼ grad v, we find
that

_w ¼ @w
@h

_h þ @w
@g
� _g þ @w

@Fs � Fsð ÞT : Lþ @w
@D

: _D þ
X

a

@w
@qa

r

_qa
r

(3.1)

We use the axiom of mass balance (2.7) to substitute q̂a
r for

_qa
r above, and the resulting expression is substituted into the

entropy inequality (2.22), using Eqs. (2.8), (2.13), and (2.24),
to produce

�q
@w
@h
þ g

� �
_h þ r� 1

Js

@Wr

@Fs � Fsð ÞT
� �

: D

�q
@w
@g
� _g � q

@w
@D

: _D � 1

h
q � g�

X
a

q̂a @Wr

@qa
r

P0 (3.2)

Note that we substituted L with D knowing that r is symmetric
(thus, r : L ¼ r : D). This inequality must hold for arbitrary
changes in _h, D, _g; _D, and g (all of which are observable and
independent variables of state), under our self-imposed constraint
that w, g, r, q, and q̂a cannot depend on _h; _D, or _g. For example,
looking at the first term, which is the only one that involves _h, we
expect that this term must be positive regardless of the algebraic
sign of _h; however, since the coefficient multiplying _h is inde-
pendent of it, this inequality can be satisfied if and only if the
coefficient is zero. Applying the same reasoning to the terms
involving _D and _g, we conclude that

g ¼ � @w
@h

(3.3)

@w
@g
¼ 0 (3.4)

@w
@D
¼ 0 (3.5)

The remaining terms in Eq. (3.2) involve functions of D and g,
preventing us from simplifying this expression further. Thus, we
are left with the residual dissipation statement

s : D� 1

h
q � g�

X
a

q̂ala � 0 (3.6)

where

s � r� 1

Js

@Wr

@Fs � Fsð ÞT (3.7)

and

la � @Wr

@qa
r

(3.8)

is the definition of the chemical potential of constituent a (with
units of specific energy). The chemical potential always makes an
appearance in a reactive framework, since the composition qa

r of
reactants and products may evolve.

According to Eqs. (3.4) and (3.5), w (thus, Wr) cannot depend
on the temperature gradient g nor the rate of deformation D

Wr ¼ Wrðh;Fs;qa
r Þ (3.9)

Therefore, based on Eqs. (2.23), (3.3), and (3.8), the mixture spe-
cific entropy g, the specific internal energy e, and the chemical
potentials la must also be independent of g and D. Moreover, g, e,
and la are entirely determined by w. Thus, a suitable constitutive
relation for the specific free energy suffices to also evaluate the
specific entropy, the specific internal energy, and the chemical
potential of all mixture constituents.

In contrast, the list of state variables for s, q, and q̂a is still the
complete set ðh; g;Fs;D; qb

r Þ where b spans all a. Since these
functions of state persist in the residual dissipation statement
(3.6), they represent dissipative processes by definition. In particu-
lar, we may refer to s as a dissipative stress, since it represents the
dissipative part of the stress tensor r in Eq. (3.7). Furthermore,
according to Eq. (2.18), the molar production rate f̂ is a function
of all those state variables. Thus, the rate at which a reaction
evolves is determined not only by temperature and concentrations
of reactants and products (the conventional assumption in chemis-
try) but also by the temperature gradient, the state of strain, and
the rate of deformation.

The relation of Eq. (3.7), when combined with the restriction of
Eq. (3.9), shows that

r ¼ re þ s (3.10)

where

re � 1

Js

@Wr

@Fs � Fsð ÞT (3.11)

Thus, the stress tensor r includes the dissipative contribution
sðh; g;Fs;D;qa

r Þ and the nondissipative contribution reðh;Fs;qa
r Þ.

3.3 Residual Dissipation. The residual dissipation statement
in Eq. (3.6) provides necessary and sufficient constraints on the
constitutive models we may adopt for the dissipative stress s, the
heat flux q, and the molar production rate f̂. Thus, any constitutive
model for these functions of state must satisfy Eq. (3.6), as illus-
trated here. As we shall also discuss in greater detail, terms that
remain in the residual dissipation represent the irreversible proc-
esses for the material being modeled, whereas terms from the
entropy inequality that reduce to zero (such as the coefficients of
_h; _D, and _g) may be associated with reversible processes.

In the absence of reactions (q̂a ¼ 0; 8a, implying that qa
r ’s are

all constant), the residual dissipation statement (3.6) reduces to
s : D� q � g=h � 0. Necessary and sufficient conditions for satis-
fying this inequality are not generally available due to dependen-
cies of s and q on D and g. However, constitutive relations for
functions of state are guided by experimental observations, while
the axiom of entropy inequality only needs to place constraints on
specific choices of such relations. In practice, it has been common
to satisfy this residual dissipation statement using the sufficient
(but not necessary) conditions q � g � 0 and s : D � 0. To satisfy
qðh; g;Fs;DÞ � g � 0 for arbitrary temperature gradients g, the
heat flux must have the general form q ¼ �K � g, where
Kðh; g;Fs;DÞ is the thermal conductivity tensor, which must be
positive semidefinite and symmetric for all ðh; g;Fs;DÞ to
uniquely satisfy that inequality constraint. This constitutive model
represents a generalization of Fourier’s law of heat conduction as
it also allows a dependence on g and D. The precise mathematical
dependence of the material function K on its state variables must
be informed by experimental observations of each desired
material.

Similarly, the relation sðh; g;Fs;DÞ : D � 0 may be used to
place a constraint on the choice of constitutive relations for s. It
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follows that s must be a function of D or else this inequality may
not be satisfied for arbitrary values of D; therefore, the dissipative
stress s represents a viscous stress [40]. The stress r in Eq. (3.7)
must reduce to zero when the material is at rest in its reference
configuration. Thus, the free energy density Wr should be formu-
lated such that re in Eq. (3.11) reduces to zero when there is no
strain; simultaneously, the constitutive relation for the dissipative
stress s should be constructed such that it reduces to zero when
the rate of deformation is zero (i.e., when the material is at rest in
a strain-free state).

Example 1. For example, for an isotropic material, we may for-
mulate s as a Taylor series expansion of D. Using the
Cayley–Hamilton theorem, we can show that powers of D higher
than two may be expressed in terms of lower powers, so that the
general form of s is

sðh; g;Fs;DÞ ¼ /0ðh; g;Fs;DÞIþ /1ðh; g;Fs;DÞD
þ/2ðh; g;Fs;DÞD2 (3.12)

where /i (i¼ 0, 1, 2) are scalar functions of their arguments. In
particular, since the material is assumed to be isotropic in this
example, /i may be functions of the invariants ðI1; I2; I3Þ of D. In
order for s to reduce to zero in the reference state D ¼ 0; /0

should reduce to zero when D ¼ 0. For a material with a linear
response, we may choose s ¼ ðj� ð2=3ÞlÞðtrDÞIþ 2lD, where
lðh; g;Fs;DÞ is the dynamic shear viscosity and jðh; g;Fs;DÞ is
the dynamic bulk viscosity; this is equivalent to setting
/0 ¼ ðj� ð2=3ÞlÞðtrDÞ, /1 ¼ 2l, and /2 ¼ 0. According to the
residual dissipation constraint s : D � 0, these material functions
must satisfy l � 0 and j � 0 for all ðh; g;Fs;DÞ. Moreover, in a
Newtonian fluid, l and j are assumed to depend neither on D nor
g. Since r : D is the stress power density, we may refer to s : D as
the viscous stress power density.

The last term in the residual dissipation statement (3.6) repre-
sents dissipative mechanisms resulting from reactions. It may be
denoted by

F̂ ¼
X

a

q̂ala ¼ f̂
X

a

�a�la ; �la ¼ Mala (3.13)

where we used Eq. (2.18) and defined �la as the chemical potential
of a on a molar basis (with units of molar energy). Here, F̂ has
units of power density, and we may refer to it generically as the
reactive power density. In the absence of net heat supplies gener-
ated by the viscous stress s and the heat flux q (i.e., when
s : D� q � g=h ¼ 0), the residual dissipation statement reduces to
F̂ � 0. Thus, a reaction may proceed spontaneously (i.e., in the
absence of net heat supplies) if and only if F̂ is negative. Since
the constitutive relation for the chemical potentials la is com-
pletely determined from Wr according to Eq. (3.8), in practice the
constraint on F̂ represents a constraint on the algebraic sign of the
constitutive relation for the molar production rate f̂. If a reaction
is observed experimentally to take place spontaneously, and ifP

a�
a�la is negative for that reaction, the constitutive model

postulated for f̂ must produce a positive function (i.e., a net for-
ward reaction). In practice, however, this argument is generally
flipped: a forward reaction (f̂ � 0) may proceed spontaneously if
and only if

P
a�

a�la � 0. Conversely, when F̂ is positive, a non-
spontaneous reaction may be induced by supplying a sufficient
amount of heat to satisfy s : D� ð1=hÞq � g � F̂.

In classical chemistry and thermodynamics, the argument
regarding the spontaneity of chemical reactions is expressed in
terms of a net change in (Helmholtz) free energy DA for processes
under constant volume and temperature or a net change in Gibbs
energy DG for processes under constant pressure and temperature
[41]. In our continuum treatment using reactive mixtures, this
argument is given in rate form, valid for any process (not neces-
sarily at constant temperature, nor volume, nor pressure). By anal-
ogy to the classical framework, we may state that processes for

which F̂ < 0 are exergonic, those for which F̂ > 0 are ender-
gonic, and F̂ ¼ 0 represents isergonic processes. Moreover, we
may define the energy of formation (with units of molar energy)
as

�f � F̂

f̂
¼
X

a

�a�la (3.14)

by analogy to the classical definition of DG as the Gibbs energy of
formation in a reaction. Contrary to F̂ and f̂, which depend on the
complete list of state variables ðh; g;Fs;D; qa

r Þ, the right-hand side
of Eq. (3.14) shows that the energy of formation �f is only a func-
tion of ðh;Fs;qa

r Þ.

3.4 Implications for Energy Balance. Using the thermody-
namically restricted dependencies on state variables presented in
Sec. 3.2, the material time derivative of the specific internal
energy e becomes

_e ¼ @e
@h

_h þ @e
@Fs � Fsð ÞT : Lþ

X
a

@e
@qa

r

q̂a
r (3.15)

Employing Eq. (3.3), as well as Eqs. (2.23), (3.7), and (3.8), this
expression may be used to evaluate

q_e ¼ qcv
_h þ re � h

@re

@h

� �
: Dþ

X
a

q̂a la � h
@la

@h

� �
(3.16)

where

cv �
@e
@h
¼ h

@g
@h
¼ �h

@2w

@h2
(3.17)

is the definition of the isochoric specific heat capacity. Substitut-
ing Eq. (3.16) into the energy balance in Eq. (2.20) produces its
alternative form commonly described as the heat equation

qcv
_h ¼ sþ h

@re

@h

� �
: D� divqþ qr þ R̂ (3.18)

where, using Eq. (2.18), we define

R̂ �
X

a

q̂a h
@la

@h
� la

� �
¼ f̂

X
a

�a h
@�la

@h
� �la

� �
(3.19)

The form of the axiom of energy balance in Eq. (3.18) represents
the specialization of the general form (2.20) to the case of reactive
processes in constrained mixtures, for the choice of state variables
adopted in Sec. 3.2. Based on the definition in Eq. (3.19), the term
R̂ on the right-hand side of Eq. (3.18) evidently represents the
reactive heat supply density (heat supply from reactions, in units
of power density), for any type of system that may be modeled as
a constrained reactive mixture. When R̂ > 0 heat is supplied by
reactions to the continuum, implying that the net effect of all reac-
tions is exothermic; conversely, R̂ < 0 implies that heat is lost by
the mixture due to endothermic reactions; R̂ ¼ 0 describes an adi-
abatic reaction.

We may now define the heat of reaction �r (units of molar
energy) as

�r � R̂

f̂
¼
X

a

�a h
@�la

@h
� �la

� �
¼ h

X
a

�a @�la

@h
� �f (3.20)

This definition differs from that of the enthalpy of formation of
the product of a reaction in classical thermodynamics, which is
defined in terms of the enthalpies of reactants and products at con-
stant temperature and pressure (or volume). The expression given
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in Eq. (3.20) encompasses transient and steady-state processes
under any set of conditions for temperature, pressure, or volume.
Contrary to the enthalpy of formation, the relation of Eq. (3.20)
does not include the heat supply density contributed by
hð@re=@hÞ : D on the right-hand side of Eq. (3.18), which arises
from the dependence of the elastic stress (thus, elastic or thermo-
dynamic pressure) on temperature. The heat of reaction �r is
defined in terms of the intrinsic properties (the chemical potential)
of reactants and products. Contrary to R̂ and f̂, which depend on
the complete list of state variables ðh; g;Fs;D;qa

r Þ, the right-hand
side of Eq. (3.20) shows that the heat of reaction �r is only a func-
tion of ðh;Fs;qa

r Þ.
Yet another form of the energy balance may be obtained by tak-

ing the material time derivative of Eq. (2.23) and expressing it as
_e ¼ _w þ _hgþ h _g, substituting Eq. (3.1) into this expression, and
making use of the constraints (3.3)–(3.5) and (3.11) to produce
q_e ¼ qh _g þ re : Dþ F̂. Substituting this relation into the energy
balance (2.20) produces

qh _g ¼ s : D� divq� F̂ þ qr (3.21)

This relation clarifies which mechanisms increase the entropy of a
reactive mixture, namely, the heat generated by viscous stresses, a
converging heat flux, the loss of reactive power density, and other
heat supplies not modeled explicitly. It can be verified that substi-
tuting Eq. (3.21) into the general entropy inequality (2.21) recov-
ers the residual dissipation (3.6).

Finally, combining Eq. (2.20) with Eqs. (2.23) and (3.21) pro-
duces another alternative form of the energy balance

q _w ¼ �q _hgþ re : Dþ F̂ (3.22)

This expression could also be obtained from Eq. (3.1) by substitut-
ing into it the relations (2.7), (2.8), (3.8), and the constraints (3.3)
and (3.9). This form of the energy balance shows that gains to the
free energy density occur due to losses in q _hg, the gain of elastic
stress power density re : D, and the gain of reactive power density
F̂. The elastic stress power is the rate of work of the conservative
part of the stress tensor.

3.5 Irreversible, Reversible, and Isentropic Processes. We
found two types of constraints resulting from the
Clausius–Duhem inequality: Constraints that reduce the corre-
sponding terms to zero, such as those in Eqs. (3.3)–(3.5), and con-
straints that persist in the residual dissipation, as in Eq. (3.6). We
deduce that the processes associated with terms that vanish from
the residual dissipation are reversible, since they produce no dissi-
pation, whereas processes that persist in the residual dissipation
are irreversible. In the derivations presented above, it becomes
apparent that processes which only alter the temperature ( _h 6¼ 0)
while maintaining zero dissipation, s : D� q � g=h� F̂ ¼ 0, are
reversible processes. A process is irreversible if the sum of terms
on the left-hand side of the residual dissipation (3.6) is strictly
positive. In practice, this means that any process which exhibits a
nonzero viscous stress s, or nonzero heat conduction q, or under-
goes an exergonic or endergonic reaction, is irreversible. (We
may theoretically conceive of a reversible process where none of
these individual terms is zero but their sum remains zero; how-
ever, this type of construct is mostly hypothetical.) Conversely,
when s ¼ 0 (implying the material is idealized as inviscid; or
rigid, with zero rate of deformation), and q ¼ 0 (implying no tem-
perature gradient, g ¼ 0, or that the material is idealized as a per-
fect heat insulator, K ¼ 0), and F̂ ¼ 0 (no reactions, or only
isergonic reactions), the process is reversible. For example, non-
reactive perfectly elastic materials (s ¼ 0) and rigid materials
(D ¼ 0) undergo reversible processes under isothermal conditions
(g ¼ 0).

By definition, a process is isentropic ( _g ¼ 0) when the right-
hand side of Eq. (3.21) is zero. Therefore, a reversible process

that satisfies s ¼ 0, q ¼ 0, r¼ 0, and F̂ ¼ 0 is always isentropic.
However, the requirement for isentropic processes is slightly less
restrictive than that for reversible processes. When s ¼ 0, r¼ 0,
and F̂ ¼ 0, a process is isentropic if divq ¼ 0, which is less strin-
gent than requiring q ¼ 0. For example, one-dimensional steady-
state heat conduction in a rigid body satisfies q 6¼ 0 but divq ¼ 0,
implying that it represents an isentropic process which is irreversi-
ble. (In other words, heat can never conduct from low temperature
to high temperature, even under one-dimensional steady-state
conditions.)

Recall that we eliminated the heat supply r from the entropy
inequality (2.21) by combining it with the energy balance. As a
result, r does not appear in the residual dissipation statement
(3.6), and we may wonder whether this user-specified heat supply
term is dissipative or not. This apparent ambiguity arises from the
fact that we introduced r to simulate various potential sources of
heat supplies, such as microwave heating, Joule heating, etc.,
without explicitly accounting for the mechanisms that give rise to
these phenomena. In reality, these illustrative phenomena are dis-
sipative, as shown for frictional interactions between electrically
neutral or charged species in unconstrained mixtures [7], which
can represent Joule heating. Therefore, the absence of r in the
residual dissipation statement represents a simplifying idealization
of actual dissipative processes. In effect, r is a generic placeholder
for processes that have not been modeled explicitly via the adop-
tion of suitable state variables. For example, when processes in a
material are assumed a priori to be isothermal (q ¼ 0) or the mate-
rial is assumed to be inviscid (s ¼ 0), or when reactive processes
are not modeled explicitly (R̂ ¼ 0), qr may serve as a placeholder
for any of the irreversible processes embodied by viscous heat dis-
sipation, a converging heat flux, or exothermic/endothermic reac-
tions, qr � s : D� divqþ R̂ as per Eq. (3.18).

In summary, reversible processes and isentropic processes are
not interchangeable concepts under general conditions, and the
specific heat supply r is a generic placeholder for dissipative proc-
esses that are not modeled explicitly due to the exclusion of
selected state variables, such as g to model q, D to model s, or qa

r
to model R̂. As a final point on the subject of residual dissipation,
we can define the concept of thermodynamic equilibrium of a sys-
tem as the set of conditions when all the terms in the residual dis-
sipation (3.6) are identically equal to zero.

3.6 Specialized Mixtures

3.6.1 Formulation in Terms of wa. In some applications, we
may propose a constitutive model for the mixture where Wr is
expressed in terms of the specific free energy wa of each of the
mixture constituents, as per Eq. (2.24). In that case, we may find it
more suitable to set the list of state variables for wa to ðh;Fa;qb

r Þ,
such that it depends on the deformation gradient Fa of that constit-
uent relative to its own reference configuration Xa; here, b spans
all constituents. Using the relation (2.2) and the chain rule of dif-
ferentiation, it follows that

@wa

@Fa � Fað ÞT ¼ @w
a

@Fs � Fsð ÞT

where we also used @Fs=@Fa ¼ I�ðFasÞT (a time-invariant
fourth-order tensor).

Remark 3. Using Cartesian components, the tensor dyadic prod-
uct � is defined such that (A � BÞijkl ¼ AikBjl.

Combining this relation with Eq. (2.24), and recalling that Fs

and qa
r are mutually independent state variables, the elastic stress

re in Eq. (3.11) may be evaluated from

re ¼
X

a

qa @w
a

@Fa � Fað ÞT �
X

a

ra h;Fa; qb
r

� �
(3.23)

where ra is in the standard hyperelastic form of a constitutive
model for stress evaluated using a strain measure based on Fa. To
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maintain frame indifference for constrained mixtures, we must
satisfy reðQ � FsÞ ¼ Q � reðFsÞ �QT, where Q is an orthogonal
transformation that maintains the symmetry group of re. Here, we
abbreviated the list of state variables for re from ðh;Fs; qb

r Þ to just
Fs, for notational simplicity. This frame indifference is automati-
cally satisfied for re based on the hyperelasticity relation of
Eq. (3.11) and the invariance of w to Q. By the same argument, ra

as given in Eq. (3.23) satisfies raðQ � FaÞ ¼ Q � raðFaÞ �QT for
transformations that maintain the symmetry group of wa. Since
the symmetry transformations Q of w must also belong to the
symmetry groups of all wa, we need to ensure that Fs� ¼ Q � Fs

and Fa� ¼ Q � Fa also satisfy the kinematic constraint of Eq. (2.2)
for those transformations Q, namely, Fs� ¼ Fa� � Fas. This can be
achieved if and only if Fas is invariant under a change of frame.

3.6.2 Mixture of Fluids. If mixture constituents are all fluids,
the only measure of strain needed to describe their elastic
response is the volume ratio Ja (see Sec. 2.1). We may thus substi-
tute the state variable Ja for Fa throughout our treatment and use

@ �ð Þ
@Fa ¼

@ �ð Þ
@Ja

@Ja

@Fa ¼ Ja @ �ð Þ
@Ja

Fað Þ�T
(3.24)

Moreover, for fluid mixtures, we may pick a common reference
configuration for all constituents a, so that Js is the only needed
measure of volumetric strain. Now, the elastic stress in Eqs. (3.11)
and (3.23) reduces to

re ¼ @Wr

@Js
I (3.25)

We may define the fluid pressure p as

p ¼ � @Wr

@Js
(3.26)

such that re ¼ �pI. By this definition it should be evident that p
represents a gauge pressure, not the absolute pressure, since it
reduces to zero in some arbitrary reference configuration. The
energy balance for a mixture of fluids may be reduced from
Eq. (3.18) to

qcv
_h ¼ s : D� h

@p

@h

_J
s

Js
� div qþ R̂ (3.27)

3.6.3 Ideal Simple Mixtures. We define ideal simple mixtures
as those whose constituents have specific free energies wa that are
independent of concentrations qa

r

Wrðh;Fs;qa
r Þ ¼

X
a

qa
r w

aðh;FsÞ ; ideal simple mixture (3.28)

For ideal simple mixtures, it follows from Eq. (3.8) that the chem-
ical potential of each constituent is equal to its specific free
energy

laðh;FsÞ ¼ waðh;FsÞ ; ideal simple mixture (3.29)

According to Eq. (3.14), the energy of formation simplifies to

�f ðh;FsÞ ¼
X

a

�a �w
a
; ideal simple mixture (3.30)

where �w
a ¼ Mawa is the molar free energy, and the heat of reac-

tion (3.20) simplifies to

�rðh;FsÞ ¼ �
X

a

�að�wa þ h�gaÞ

¼ �
X

a

�a�ea ; ideal simple mixture (3.31)

where �ga and �ea are the molar entropy and molar internal energy,
respectively, of each constituent. In other words, for ideal simple
mixtures the energy of formation represents the net gain or loss of
molar free energy, and the heat of reaction represents the net loss
or gain of molar internal energy. Thus, a reaction is exergonic
(endergonic) when the net free energy of products is less (greater)
than that of reactants. A reaction is endothermic (exothermic)
when the net internal energy of products is less (greater) than that
of reactants.

4 Discussion

The objective of this study was to present a complete frame-
work for constrained reactive mixtures of solids or fluids which
accounts for their thermodynamics using observable state varia-
bles. The framework of constrained reactive mixtures was origi-
nally formulated to analyze growth and remodeling mechanics in
biological tissues [18,20,22]. More recently, it has been shown to
be capable of also describing classical dissipative mechanics phe-
nomena such as viscoelasticity, damage mechanics, plasticity, and
elastoplastic damage [29–32].

In this study, we presented the general equations of mass,
momentum, and energy conservation, as well as the axiom of
entropy inequality, for constrained mixtures undergoing reactive
processes, accounting for spatiotemporal changes in temperature.
An important element of this framework was the assumption that
the temperature must be constrained to be the same for all constit-
uents of such mixtures in order to produce a well-posed system of
equations. As usual for mixture theory, an equation of mass bal-
ance was posed for each constituent which includes a function of
state for the mass density supply resulting from reactions with all
other constituents, making it possible to solve for the evolving
composition of reactive mixture constituents. However, in con-
trast to general mixture theory, the theory of constrained mixtures
only requires a single momentum and a single energy balance
equation to solve for the motion and temperature of the mixture.
An essential aspect of this constrained mixture approach is that
each constituent may have its own reference configuration, which
represents a function of state that should be postulated by consti-
tutive assumption as illustrated in the Appendix.

To illustrate the application of this constrained reactive mixture
framework to familiar problems in mechanics, we selected a broad
set of observable state variables in Sec. 3 that allowed us to con-
sider a wide range of examples as presented in the Appendix.
Using those state variables we extended the approach of Coleman
and Noll [40] to show that the Clausius–Duhem inequality (2.22)
produced familiar constraints on the functions of state as pre-
sented in Sec. 3.2. Most notably, as in our previous presentation
of general reactive mixtures [7], we found that the chemical
potential of the constituents in Eq. (3.8) emerges naturally to play
a critical role in the thermodynamics of constrained reactive mix-
tures. It enters into the expression for the reactive power density F̂
in Eq. (3.13), which appears in the residual dissipation statement
(3.6). As usual, the residual dissipation statement places thermo-
dynamic constraints on the constitutive models for the viscous
stress and the heat flux. It also places a constraint on F̂ which
embodies the classical concept from chemistry that spontaneous
reactions may only take place when there is a net decrease in
Helmholtz free energy for processes under constant volume and
temperature, or a net decrease in Gibbs energy for processes under
constant pressure and temperature [41].

However, in this continuum mechanics framework, the mean-
ing of F̂ in the residual dissipation statement is more significant:
It represents a constraint in rate form, valid for any process, not
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just those taking place at constant temperature, or volume, or pres-
sure. The sign of F̂ determines if a reaction is exergonic, ender-
gonic, or isergonic. Moreover, by accounting for the
stoichiometry of reactions as presented in Sec. 2.3, it becomes
apparent that the residual dissipation constraint on F̂ actually pla-
ces a constraint on the molar production rate f̂, which determines
the mass density supplies (2.18) for all constituents in a reaction.
This is consistent with our expectation that the Clausius–Duhem
inequality should place constraints on the constitutive relations of
all functions of state. This study shows that the thermodynamic
feasibility of classical dissipative mechanics processes, such as
viscoelasticity and damage mechanics, may be determined by the
contribution of F̂ to the residual dissipation statement, just like
the feasibility of chemical reactions. Thus, classical concepts
from chemical kinetics extend to the mechanics of solids, as long
as we recognize that dissipative processes in solid mechanics may
be modeled by letting f̂ also depend on the state of deformation
(Fs and D).

In our constrained mixture approach, we emphasize that the
mapping Fas between the reference configurations of constrained
mixture constituents a and s is a nonobservable function of state,
instead of an observable (or hidden) state variable. As such, one
may wonder why the entropy inequality in Eq. (3.2) does not
impose an explicit constraint on this function of state. In fact, the
residual dissipation statement (3.6) indirectly imposes a constraint
on Fas, as illustrated in the reactive damage framework, Appendix
A.2, and the reactive viscoelasticity framework, Appendix A.3. In
the damage reaction Ei ! Eb, we made the constitutive assump-
tion that the specific free energy of broken bonds b is zero,
whereas that of intact bonds i is positive (since the free energy is
the strain energy in an isothermal framework); in the viscoelastic-
ity reaction Eu ! Ev, we made the constitutive assumption that
the specific free energy of reformed bonds v is zero at the time of
reformation, whereas that of the breaking bonds u is positive.
These constitutive assumptions led to the formulation of associ-
ated functions Fas (arbitrary for damage mechanics, and given by
FasðXsÞ ¼ UsðXs; aÞ at time t ¼ a when bonds a are formed for
isotropic viscoelasticity). Had we formulated Fas such that the
specific free energy of the product of a reaction was higher than
that of the reactant, we would have violated the residual dissipa-
tion statement in those isothermal frameworks. Thus, the axiom of
entropy inequality does indeed constrain our choices of constitu-
tive models for Fas.

Another important finding of this study is that an expression
emerged naturally for the reactive heat supply density R̂ in a con-
strained reactive mixture, as presented in Sec. 3.4 and Eq. (3.19).
The reactive heat supply density is proportional to the molar pro-
duction rate f̂; it also depends on the chemical potential and its
rate of change with temperature. The sign of R̂ determines if the
reaction is exothermic, endothermic, or adiabatic. To the best of
our knowledge, this study gives the first presentation of this sim-
ple and elegant formula for the reactive heat supply in a contin-
uum thermodynamics framework. In other words, the formulation
of constitutive relations for the specific free energy wa of each
mixture constituent, using experimental measurements of its elas-
tic stress versus strain and temperature (or elastic pressure versus
volume ratio and temperature in the case of a fluid) along with
experimental characterization of its isochoric specific heat
capacity, makes it possible to calculate the reactive heat supply
density R̂ in rate form. For many fluids, wa may be calculated
from Eq. (2.23) using internal energy and entropy values available
from thermodynamic tables, even though engineering thermody-
namic textbooks do not tell how to evaluate R̂. The formulation
given in Eq. (3.19) now provides this capability, thereby allowing
engineers to solve the energy balance (3.18) in rate form using
known constitutive models for wa and similarly characterized con-
stitutive models for f̂.

Since both F̂ and R̂ are proportional to f̂, we could define the
ratios of these measures as the energy of formation �f in Eq. (3.14)
and the heat of reaction �r in Eq. (3.20). The concepts of energy of

formation and heat of reaction are well recognized in thermody-
namics and chemistry, but the general form of the equations pre-
sented in this study differs from the various process-specific forms
given for these concepts in the classical literature. For example, in
these classical approaches, the energy of formation is typically
associated with the Gibbs potential, whereas the heat of reaction
is often associated with the change of enthalpy in a reactive ther-
moelastic fluid undergoing steady flow at constant pressure and
temperature. As can be seen in Secs. 2 and 3, neither Gibbs poten-
tial nor enthalpy emerge naturally in the general governing equa-
tions of continuum thermodynamics presented here. We believe
that the concepts presented in the classical literature lack the gen-
erality of our formulation.

In this context, it is noteworthy that the classical thermodynam-
ics literature is based on frameworks that long predate the formu-
lation of the Clausius–Duhem inequality in the form given by
Truesdell and Toupin [39]. Their form of this axiomatic inequality
has been adopted by many in the continuum mechanics commu-
nity, but it does not enjoy universal acceptance as reviewed by
M€uller [42]. In particular, Truesdell and Toupin [39] chose to
include the specific heat supply r in the inequality (2.21), as
explained in a subsequent historical note by Truesdell [43], which
differentiated their approach from that of other continuum formu-
lations [42]. In our treatment, we go one step further and explain
that r is a generic placeholder for mechanisms of internal heat
generation that cannot be accounted for due to the self-restricted
choice of observable state variables adopted in an analysis. Thus,
as explained in Sec. 3.5, qr could serve as a placeholder for R̂
when one wants to model reactive heat supplies without explicitly
accounting for evolving compositions qa

r . This point is further
illustrated by our adoption of a constrained mixture framework in
this study, which prevented us from explicitly accounting for fric-
tional heat supplies arising from the relative motion of mixture
constituents since we could not include such relative motions as
state variables.

To illustrate this novel approach to the thermodynamics of dis-
sipative processes, in the Appendix, we provided explicit expres-
sions for the heat of reaction �r in reactive mixtures of ideal gases
(A15), in damage mechanics of solids (A20), and in viscoelastic-
ity (A28). We also showed that the heat of reaction is zero in ther-
moelasticity (A47). In a recent study, we demonstrated that the
thermodynamic framework presented here could also be used to
evaluate these measures of heat production for elastoplastic proc-
esses, with or without damage [32].

One of the greatest challenges in modeling reactive mixtures is
the dependence of the mixture free energy density Wr on the con-
stituent concentrations qa

r as per Eq. (2.24), especially when the
specific free energy wa of each constituent depends on qb

r of all
mixture constituents. For a pure substance (single constituent), w
is characterized experimentally by performing stress–strain (or
pressure–volume) experiments at various temperatures, and
extracting the isochoric specific heat capacity cv, to fully charac-
terize all the functions of state for that material, as illustrated for a
pure ideal gas in Appendix A.1.1 and for a thermoelastic neo-
Hookean solid in Appendix A.4.2. These stress–strain or
pressure–volume experiments are generally conducted under
quasi-static conditions. Methods for obtaining cv may rely on
experimental measurements of the spatiotemporal evolution of
temperature in the material under various strains, which would be
temporally constrained by the thermal diffusivity and characteris-
tic dimensions of a sample. In practice, the experimental charac-
terization of w over a wide range of deformations and
temperatures may be a very time-consuming process, constrained
by the characteristic time constant of the experiments being
conducted.

When multiple constituents are mixed, their specific free ener-
gies wa could vary significantly due to the presence of other con-
stituents; a simple example is the case of fluid solutions, where
the solvent free energy may be significantly affected by solute
concentrations. To model such mixtures, one would also need to
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characterize wa as a function of qb
r for all constituents b in the

mixture, preferably over a wide range of their concentrations. For
reasons given above, this effort would be typically prohibitive
from an experimental perspective, especially if spontaneous reac-
tions take place in the mixture at some pressures and tempera-
tures, creating a fleeting presence of some of the reactants and
products that would prevent the performance of quasi-static meas-
urements at constant values of qb

r . In practice, investigators may
postulate a constitutive model (often motivated by microstructural
theories) to account for the influence of constituent concentrations
in mixtures. In Sec. 3.6.3, we adopted the simplest such model,
namely, that wa is independent of any of the concentrations qb

r ;
we called such mixtures ideal and simple, and provided an illus-
tration using simple mixtures of ideal gases in Appendix A.1.

Even for the standard models of ideal gases and neo-Hookean
solids, our continuum framework emphasizes that the functions of
state for the stress r, or the pressure p in thermoelastic fluids, rep-
resent a gauge stress and pressure, which are set to zero at an arbi-
trary absolute ambient pressure Pr and temperature hr. While this
concept is well-accepted in solid mechanics and fluid mechanics,
it is much more common to use the absolute pressure P and tem-
perature h in conventional thermodynamics. In this study, our
illustration of pure ideal gases and their mixtures in Appendix A.1
provides a formulation that employs the gauge pressure relative to
Pr, also allowing a nonzero referential absolute temperature hr.

Because of our ability to completely characterize the functions
of state of ideal gas mixtures, we were able to evaluate the energy
of formation �f in Eq. (A13) and the heat of reaction �r in Eq.
(A15) for such mixtures, serving as a practical illustration of these
fundamental concepts as presented in their novel form in this
study. These relations may be combined with constitutive rela-
tions for the kinetics (the molar production rate f̂) of various reac-
tions in such ideal gas mixtures. This type of framework can be
very useful in studies of reactive processes in air, such as respira-
tory O2 � CO2 exchanges in the lung.

Finally, we illustrated the application of this thermodynamics
framework to problems in solid mechanics, notably damage
mechanics in Appendix A.2, viscoelasticity in Appendix A.3, and
thermoelasticity in Appendix A.4. The first two reactive frame-
works were described in our earlier studies [29,30] where we
assumed that isothermal conditions prevailed. Here, we showed
that the dissipative mechanisms of damage mechanics and viscoe-
lasticity, which arise from the breaking of intact bonds, produce
reactive power densities F̂ and heat supplies R̂ that can be charac-
terized in a straightforward manner. To maintain this hypothetical
isothermal condition, the exothermic supply R̂ has to radiate out
of the continuum to satisfy the axiom of energy balance.

Evidently, more general theories of thermodamage mechanics,
thermoviscoelasticity and phase transformations could be formu-
lated, where the dissipative heat supply R̂ changes the temperature
of the continuum, driving heat conduction. However, the starting
point for such theories would need to account for the thermal
expansion of the solid in response to changes in temperature.
Therefore, in Appendix A.4, we developed a novel formulation of
reactive thermoelasticity that can serve as a foundation for more
general thermal theories of dissipative solid mechanics. We
treated the change in temperature as a reactive process that trans-
forms a substance by altering its reference configuration and mate-
rial properties. As for ideal gases, damage mechanics, and
viscoelasticity, we demonstrated that reactive thermoelasticity
recovers standard models in the classical literature. Moreover, we
examined the conditions under which thermoelastic processes sat-
isfy the residual dissipation statement.

The fact that constrained reactive mixture theory can reproduce
such a broad range of classical material responses, while also clar-
ifying many thermodynamic concepts associated with these mate-
rials, suggests that this framework is a suitable generalization of
classical continuum mechanics frameworks for pure substances.
Indeed, in future studies, we will demonstrate that constrained
reactive mixtures can be used to model fatigue failure in

biological tissues and metals; we will also demonstrate that this
framework can be used to examine liquid–gas phase transforma-
tions across an interface, where the Gibbs potential (free enthalpy)
emerges naturally as a function of state. We believe that this con-
strained reactive mixture framework provides a powerful and intu-
itive approach for modeling material responses within a unified
framework. This study has provided the broad foundations of the
thermodynamics of such mixtures, along with several illustrations
for solids and fluids.
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Appendix: Examples

A.1 Ideal Gas Mixtures

In this section we model a mixture of compressible fluids where
each fluid is modeled as an ideal gas. We start by reviewing the
governing equations for a pure ideal gas (a single constituent).

A.1.1 Pure Substance. Our approach for modeling thermody-
namics defines a reference configuration (such as a reference
absolute pressure Pr and temperature hr) for evaluating the vol-
ume ratio. Therefore, the pressure p (elastic stress re) in our treat-
ment represents a gauge pressure (stress) acting on top of the
reference pressure Pr (stress �PrI). For a pure ideal gas with
molar mass M, its gauge pressure is given by

p h; Jð Þ ¼ �qr

@w
@J
¼ Rhr

M
qr

h
Jhr
� 1

� �
(A1)

where R is the universal gas constant, hr is the reference tempera-
ture, and qr is the gas density in the reference configuration (when
J¼ 1 and h ¼ hr). The reference absolute pressure Pr is

Pr ¼
Rhr

M
qr (A2)

and the absolute pressure is P ¼ pþ Pr . In practice, we may pick
the desired reference Pr and hr and evaluate the corresponding
value of qr from Eq. (A2); then J ¼ qr=q according to Eq. (2.13).
Equation (A1) may be integrated with respect to J to produce an
expression for the specific free energy

w h; Jð Þ ¼ w h; Jð Þ þ w0 hð Þ

w h; Jð Þ ¼ R

M
Jhr � hþ h ln

h
Jhr

� �
w0 hð Þ ¼ w
 hð Þ þ wr � gr h� hrð Þ

(A3)
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where wr and gr are, respectively, the specific free energy and
entropy of the gas at the reference temperature hr and reference
pressure Pr. This expression for w also accounts for Eq. (3.17),
where w
ðhÞ is evaluated from the gas isobaric specific heat
capacity cpðhÞ ¼ cvðhÞ þ R=M as

w
 hð Þ � �
ðh

hr

g
 #ð Þ d# ; g
 hð Þ �
ðh

hr

cp #ð Þ
#

d# (A4)

This form for w was derived such that the term wðh; JÞ on the
right-hand side of Eq. (A3) represents that part of the specific free
energy which varies with pressure, since this term reduces to zero
when p is zero at any temperature, i.e., when h ¼ Jhr according to
Eq. (A1). The specific internal energy of a pure ideal gas may be
evaluated from Eqs. (2.23) and (A3) as

e h; Jð Þ ¼ R

M
Jhr � hð Þ þ e
 hð Þ þ er (A5)

where e
ðhÞ � w
ðhÞ þ hg
ðhÞ and er ¼ wr þ hrgr . The specific
entropy of an ideal gas may be obtained by substituting w in
Eq. (A3) into Eq. (3.3) to produce

g h; Jð Þ ¼ � R

M
ln

h
Jhr
þ g
 hð Þ þ gr (A6)

A.1.2 Mixture. Now consider that we formulate a mixture of
ideal gases a which all share the same reference configuration
(same absolute reference pressure Pr and temperature hr, and Ja ¼
Js for all a), for which the mixture free energy density is con-
structed to produce an ideal simple mixture

Wr h; Js; qa
r

� �
¼
X

a

qa
r w

a

¼
X

a

qa
r

R

Ma
Jshr � hþ h ln

h
Jshr

� �

þqa
r w
a hð Þ þ wa

r � ga
r h� hrð Þ

� �
(A7)

In other words, we have assumed that the specific free energy wa

of each ideal gas constituent is not altered by the presence of other
constituents in the mixture; thus, it keeps the same form (A3) as
that of a pure substance. According to Eq. (3.26), the gauge pres-
sure in this mixture is

p h; Js; qa
r

� �
¼ Rhr

h
Jshr
� 1

� �X
a

qa
r

Ma

¼ Rhr

M
qr

h
Jshr
� 1

� �
(A8)

where qr is given in Eq. (2.13) and M is the mixture molar mass,
evaluated from

qr

M
¼
X

a

qa
r

Ma
(A9)

Note that M may evolve during a reaction, since qa
r evolves

according to Eq. (2.7), while qr remains constant. The expression
for the mixture pressure in Eq. (A8) has the exact same form as
that of a pure ideal gas as shown in Eq. (A1); therefore, an ideal
constrained mixture of ideal gases is also an ideal gas. We may
express Eq. (A8) as p ¼

P
apa, where

pa ¼ Rhr

Ma
qa

r

h
Jshr
� 1

� �
(A10)

is called the partial pressure of each ideal gas constituent a.

Remark 4. In a strict sense, as mentioned at the start of this pre-
sentation on constrained mixtures, the pressure in each mixture
constituent remains indeterminate. In reality, the true pressure of
constituent a has the form pa þ ka, where ka’s are indeterminate
pressures that satisfy

P
ak

a ¼ 0.
Note that this expression for the partial pressure satisfies pa ¼

xap where

xa ¼ qa
r M

qrM
a

(A11)

is the molar fraction of constituent a in the mixture.
Remark 5. In classical chemistry of ideal gas mixtures, this rela-

tion is expressed in terms of absolute pressures, Pa ¼ xaP; these
two forms are equivalent.

Now, using Eq. (3.29), the chemical potential of each constitu-
ent is

la ¼ R

Ma
Jshr � hþ h ln

h
Jshr

� �
þw
a hð Þ þ wa

r � ga
r h� hrð Þ (A12)

In other words, the chemical potential of each constituent is equal
to its specific free energy, as anticipated in Eq. (3.29) for ideal
simple mixtures. Therefore, the energy of formation for an ideal
reactive mixture of ideal gases may be evaluated from Eq. (3.30)
as

�f h; Jsð Þ ¼
X

a

�aR Jshr � hþ h ln
h

Jshr

� �

þ�a �w

a

hð Þ þ �w
a
r � �ga

r h� hrð Þ
� �

(A13)

where �w

a ¼ Maw
a; �w

a
r ¼ Mawa

r , and �ga
r ¼ Maga

r . As is evident
here, the energy of formation in an ideal gas mixture is not a func-
tion of the constituent concentrations.

In particular, for an isobaric process at some gauge pressure p0,
we may evaluate Js from Eq. (A8)

Js ¼ h
Mp0

Rqr

þ hr

; isobaric process (A14)

and substitute it into the expression for �f in Eq. (A13). Since M
and h may evolve during a reaction, it follows that Js may simi-
larly evolve under a constant pressure reactive process. If the pro-
cess takes place at the reference pressure Pr (i.e., when p0 ¼ 0),
this expression for the volume ratio simplifies further to Js ¼ h=hr

and �f ðh; h=hrÞ ¼
P

a�
að�w
aðhÞ þ �w

a
r � �ga

r ðh� hrÞÞ. Conversely,
we may consider an isochoric and isothermal process under the
reference conditions (h ¼ hr; Js ¼ 1), in which case the energy of
formation simplifies to �f ðhr; 1Þ ¼

P
a�

a �w
a
r .

Similarly, we may evaluate the heat of reaction (3.31) using ea

in the form of Eq. (A5) to produce

�rðh; JsÞ ¼ �
X

a

�aðRðJshr � hÞ þ �e
aðhÞ þ �ea
r Þ (A15)

where �ea ¼ Maea is the molar internal energy of constituent a. As
seen here, the heat of reaction for an ideal mixture of ideal gases
is not a function of the constituent concentrations. We may simi-
larly simplify �r when modeling isobaric, isochoric, or isothermal
processes.

For this fluid mixture, the heat supply contributed by the fluid
pressure (A3) on the right-hand side of Eq. (3.27) reduces to

�h
@p

@h

_J
s

Js
¼ �Rh

M

qr

Js

_J
s

Js
¼ �P

_J
s

Js
(A16)
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where Pðh; JsÞ is the absolute pressure. For an isochoric process
(constant Js), this term reduces to zero.

In summary, we have presented the constitutive relations rele-
vant to ideal simple mixtures of ideal gases, and we have eval-
uated the chemical potential of each constituent in Eq. (A12), as
well as the energy of formation in Eq. (A13) and the heat of reac-
tion in Eq. (A15) for reactions involving these ideal gas constitu-
ents. These relations are not generally given in engineering
thermodynamics textbooks. A key aspect of this formulation is
that the constitutive relations for the mixture constituents are all
expressed relative to the same reference configuration at absolute
pressure Pr and absolute temperature hr (e.g., the standard state,
or the standard temperature and pressure). Therefore, w
aðhÞ; wa

r ,
and ga

r for each constituent a must be determined for this specific
reference configuration.

A.2 Reactive Damage Mechanics

In our previously reported formulation for reactive damage
mechanics [30], it was proposed that an elastic material (s ¼ 0)
undergoing damage from loading could be modeled as an ideal
constrained mixture of a constituent with intact bonds and another
with broken bonds (a ¼ i and a ¼ b, respectively). In that presen-
tation, a simplifying constitutive assumption was made that the
specific free energy of each constituent was only a function of
deformation, wa ¼ waðFsÞ, implying an isothermal process
(g ¼ 0; q ¼ 0) where the specific free energy only represents the
specific strain energy stored in constituents a, which is a positive
semidefinite function of the strain. Here, we examine the energy
of formation and heat of reaction for this damage model.

The net free energy density of this ideal mixture is

WrðFs; qi
r; q

b
r Þ ¼ qi

rw
iðFsÞ þ qb

r w
bðFsÞ (A17)

and the chemical potential of each constituent reduces to its spe-
cific free energy, as predicated in Eq. (A12). The damage reaction,
Ei ! Eb, is a forward reaction derived from Eq. (2.14) with �i ¼
�1 and �b ¼ þ1. It requires the formulation of a constitutive rela-
tion for the molar production rate f̂ðFs; qi

r;q
b
r Þ. Consider that

damage occurs when some scalar damage measure UðFsÞ (e.g.,
the von Mises stress in the material) causes a mass fraction f ðUÞ
of the constituent with intact bonds to break at that value of U.
The cumulative mass fraction of the constituent with broken
bonds at U is FðUÞ, where F0ðUÞ ¼ f ðUÞ. Then, according to Eqs.
(2.7) and (2.18)

Mf̂ ¼
qi

rf ðUÞ _UjUm
_UjUm

> 0

0 otherwise

(
(A18)

where M is the molar mass of i and b, and Um is the maximum
value of U achieved so far in the loading history. Since the
bond concentrations satisfy qi

r þ qb
r ¼ qr according to Eq. (2.13),

a natural damage variable D emerges from that framework,
representing the mass fraction of broken bonds, D ¼ qb

r=qr

¼ 1� qi
r=qr ¼ FðUmÞ.

Since broken bonds cannot store strain energy, it follows that
wb ¼ 0. Therefore, it is not necessary to specify a function of state
for the mapping Fbs of broken bonds in a reactive damage frame-
work. The reactive power density in Eq. (3.13) and the energy of
formation in Eq. (3.14) reduce to

F̂ ¼ �f̂�l i ¼ �f̂�w
i
; �f ¼ ��w

i
(A19)

To satisfy the residual dissipation statement (3.6) for this process,
F̂ � 0, we must have f̂ � 0 (implying a forward, bond-breaking
reaction), since �w

i
is always positive, implying that the reaction is

exergonic (i.e., in this context, it can occur spontaneously from
loading, without the addition of heat). By examining the constitu-
tive model for the molar production rate f̂ in Eq. (A18), we find

that f ðUÞ must always be positive, implying that FðUÞ must be a
monotonically increasing function of U. Therefore, the functions f
and F may be represented by a probability density function and its
associated cumulative distribution function, respectively, with f
representing the probability of bonds breaking at the value of U.
In this context, it makes further sense to interpret F as a damage
measure bounded by 0 � FðUÞ � 1. As usual, the
Clausius–Duhem inequality has placed a constraint on our choice
of constitutive models; in this case, the constraint is placed on the
constitutive relation for the molar production rate.

For this isothermal damage mechanics framework, using Eqs.
(3.19) and (3.20) produces

R̂ ¼ f̂�li ¼ f̂�w
i
; �r ¼ �w

i
(A20)

Thus, since the molar strain energy �w
i

of intact bonds is always
positive, and since f̂ > 0 when bonds break, it follows that R̂ > 0
for a damage reaction. In other words, as expected, damage
mechanics is an exothermic process.

The elastic stress re may be evaluated from Eq. (3.23) using
Eq. (A17). Evidently, since wbðFsÞ ¼ 0 in a damage model, the
only contribution to re arises from Wr ¼ qi

rw
iðFsÞ in Eq. (A17),

which decreases with decreasing concentration qi
r of the constitu-

ent with intact bonds. Since we also assumed that the specific free
energy is not a function of temperature in this idealized damage
model, it follows that @re=@h ¼ 0 in the energy balance (3.18),
which now reduces to 0 ¼ qr þ R̂ for this isothermal process.
This relation implies that the reactive heat supply R̂ must be emit-
ted as some form of radiation qr ¼ �R̂ in order to maintain iso-
thermal conditions. Of course, this mechanism of radiation is a
hypothetical construct arising from our imposition of the isother-
mal constraint.

A.3 Reactive Viscoelasticity

The complete framework for nonlinear reactive viscoelasticity
was presented in our earlier study [29], and the special case of lin-
ear viscoelasticity was reviewed by Nims and Ateshian [31]. In
this isothermal framework, a viscoelastic solid includes constitu-
ents associated with two bond families: Strong bonds (a ¼ e) that
do not break in response to loading and produce the equilibrium
elastic response; and weak bonds (a 6¼ e), which break in response
to loading and immediately reform into a stress-free state. Load-
ing is represented by a change in any strain measure derived from
the deformation gradient Fs. Constituents with weak bonds are the
reactive constituents in this mixture, responding to this change in
strain; those that reform in a stress-free state at time t¼ u are
denoted by a ¼ u and called u�generation bonds. Similarly, those
that break and reform in a stress-free state at a subsequent time
t¼ v are denoted by a ¼ v. The reaction describing bond breaking
and reforming as a result of consecutive changes in strain at times
u and v is Eu ! Ev (with �u ¼ �1 and �v ¼ þ1). The earliest gen-
eration in this reactive mixture is a ¼ s where s! �1; it repre-
sents the master constituent for the reactive mixture, while Xs also
represents the stress-free reference configuration of strong bonds.

The strain energy density of this mixture of constituents with
strong and weak bonds thus takes the form

WrðFsÞ ¼ We
rðFsÞ þ

X
u

qu
r wðFuÞ (A21)

where We
r is the strain energy density of the elastic constituent

with strong bonds. Here, we have assumed that all generations u
of weak bonds share the same functional form w for the specific
strain energy of their associated constituent u; however, the value
of w for each generation u depends on the deformation gradient
Fu for that generation. For example, suppose that the first step
increase in strain occurs at time u and is given by FsðXs; uÞ. Start-
ing at time u, weak bonds that belonged to generation s start
breaking and reforming immediately into u�generation bonds
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whose reference configuration Xu is the current configuration
vsðXs; uÞ. Thus, by constitutive assumption (i.e., by assuming that
bonds break and immediately reform in a stress-free state), we
postulate that FusðXsÞ ¼ UsðXs; uÞ (i.e., the right stretch tensor of
Fs) for isotropic materials, from which it follows that FuðXs; tÞ is
equal to the rotation tensor RðXs; uÞ of Fs for t � u, until the next
change in deformation. The concentration qu

r of the constituent
associated with u�generation bonds is zero at time u but progres-
sively increases for t> u due to the time-dependent reaction Eu !
Ev which increases qu

r at the expense of qs
r , while maintaining

qs
r þ qu

r ¼ qr according to Eq. (2.13).
The energy stored in constituents with strong bonds for t � u is

We
rðFsðXs; tÞÞ; the specific strain energy in the constituent with

s�generation weak bonds is wðFsðXs; uÞÞ, while that in
u�generation bonds is wðFuðXs; tÞÞ ¼ wðRðXs; tÞÞ ¼ 0 (stress-
free state). Upon loading (t � u), the temporal evolution of Wr in
Eq. (A21) is now governed by the temporal evolutions of qs

r and
qu

r . At a subsequent time v, another step change in strain occurs
given by FsðXs; vÞ, causing bonds from generation u and remain-
ing bonds from generation s to start breaking and reforming into
v�generation bonds with a stress-free configuration
Xv ¼ vsðXs; vÞ.

The bond breaking-and-reforming reaction is governed by Eq.
(2.7); thus, for u�generation bonds, we may write
_qu

r ¼ q̂u
r ¼ �Mf̂, where M is the molar mass of the constituent

associated with weak bonds, whereas _qv
r ¼ q̂v

r ¼ Mf̂. For a
first-order reaction, we may propose a constitutive model where
Mf̂ is proportional to the evolving concentration of u�generation
bonds

Mf̂ ¼ qu
r=s (A22)

where s is a time constant for the temporal evolution of this reac-
tion. As presented in earlier studies [29,31], these constitutive
assumptions (first-order reaction with strain-independent time
constant s) reproduce the framework of quasi-linear viscoelastic-
ity; a recursive solution is found from these equations for each
consecutive pair of generations

qu
r ¼

0 t < u

qrð1� e�ðt�uÞ=sÞ u � t < v

qrðe�ðt�vÞ=s � e�ðt�uÞ=sÞ v � t

8>>><
>>>:

(A23)

where qr ¼
P

uq
u
r is the total referential density of weak bonds.

In particular, this solution shows that all generations of loaded
weak bonds in a loading history have decaying concentrations that
eventually reduce to zero, leaving only reformed weak bonds in a
stress-free state. Thus, as t!1 under steady loading, the free
energy density reduces to that stored in the strong bonds,
Wr ! We

r , reducing to the elastic response for this viscoelastic
mixture.

For continuous time increments between consecutive genera-
tions (i.e., when v ¼ uþ du), and assuming that loading starts at
t¼ 0, it was shown earlier [29] that the above recursive relation
leads to

Wr Fsð Þ ¼ We
r Fsð Þ þ qrw Fsð Þe�t=s

þ qr

s

ðt

0þ
e� t�uð Þ=sw Fuð Þ du (A24)

where FuðXs; tÞ ¼ FsðXs; tÞ � ðUsðXs; uÞÞ�1
is the deformation gra-

dient at t relative to time u. The elastic stress may be evaluated
from this expression for Wr using Eqs. (3.11) and (3.23). Since we
assumed that the specific free energy is not a function of tempera-
ture in this idealized isothermal viscoelasticity model, it follows
that @re=@h ¼ 0 in the energy balance (3.18).

For example, consider the simplest case of stress relaxation,
where a step change in deformation occurs at u ¼ 0þ. In this case,
FsðXs; tÞ ¼ F0ðXsÞHðtÞ, where HðtÞ is the Heaviside unit step
function, and FuðXs; tÞ ¼ R for 0þ � t. Since wðRÞ ¼ 0, the strain
energy density in Eq. (A24) reduces to

WrðF0Þ ¼ We
rðF0Þ þ qrwðF0Þe�t=s ; t � 0þ (A25)

which clearly shows that the strain energy density decays from its
peak value of We

rðF0Þ þ qrwðF0Þ to its equilibrium value of
We

rðF0Þ as a result of the viscous dissipation caused by bonds
breaking and reforming. The elastic stress becomes

re F0ð Þ ¼
1

Js

@We
r

@Fs þ qr

@w
@Fs e�t=s

� �
� Fsð ÞT

����
Fs¼F0

(A26)

These two expressions clearly show that the time-dependent
response of a reactive viscoelastic material is governed by the
time-dependent decrease in the concentration of loaded weak
bonds. It is of particular interest that this reactive viscoelasticity
framework does not involve time derivatives of the stress tensor.

Since the constrained mixture of weak bonds in this reactive
viscoelasticity framework represents an ideal mixture, it follows
that the chemical potential of each weak mixture constituent is
equal to its specific free energy, as per Eq. (3.29). According to
Eq. (3.30) and the above relations, the energy of formation for
each reaction Eu ! Ev is

(A27)

where we have recognized that v�generation bonds form in a
stress-free state for this reaction. Since w represents the specific
strain energy (always positive), this expression shows that �f is
negative. To satisfy the residual dissipation statement (3.6), which
reduces to F̂ � 0 in this isothermal framework (exergonic pro-
cess), it follows from Eq. (3.13) that the molar production rate f̂
must be positive, hence producing a forward reaction. This con-
straint is satisfied in our constitutive model (A22) for f̂ by assum-
ing that the parameter s (the time constant for the bond-breaking
reaction) is positive.

The heat of reaction is given by Eq. (3.31), which reduces to

�rðh;FsÞ ¼ MwðFuÞ ; t > u (A28)

for the breaking-and-reforming reaction Eu ! Ev. The reactive
heat supply for this reaction is f̂�r which becomes

R̂ ¼ qu
r

s
w Fuð Þ ; t > u (A29)

Using the recursive relation (A23) in the limit of continuous time
increments, it follows that the net reactive heat supply for all the
breaking-and-reforming reactions is

R̂ ¼ qr

s
e�t=sw Fsð Þ þ 1

s

ðt

0þ
e� t�uð Þ=sw Fuð Þ du

� �
(A30)

This quantity is always positive; thus, the bond breaking-and-
reforming reaction is exothermic as expected. For this isothermal
problem, the energy balance in Eq. (3.18) reduces to qr þ R̂ ¼ 0,
once again implying that this heat supply must be radiated out of
the continuum to maintain isothermal conditions.

A.4 Reactive Thermoelasticity

In elasticity theory the reference configuration of a material is
defined as the traction-free configuration that also produces a
stress-free state. This reference configuration is unique. In thermo-
elasticity, a traction-free material subjected to temperature
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changes exhibits a change in mass density due to its thermal
expansion, even while it may remain in a stress-free state. There-
fore, at each temperature the material has a different stress-free
reference configuration and a different referential (stress-free)
mass density. It may also have different material properties, such
as elastic moduli that vary with temperature. Thus, it would be
natural to consider that a pure substance E at temperature hu is a
different material than the same substance at temperature hv, even
though both materials (call them Eu and Ev) share the same chemi-
cal formula. This assumption makes it possible to treat each mate-
rial as having its own unique reference configuration and intrinsic
referential mass density. Then, changes in temperature may be
treated as reactions that convert the substance E from material Eu

to material Ev. From this perspective it becomes possible to ana-
lyze thermoelasticity using constrained reactive mixtures. Here,
the reaction is triggered by a change in temperature. In this treat-
ment of reactive thermoelasticity we exclude phase
transformations.

We adopt hs ¼ hr as the reference temperature for a thermo-
elasticity analysis, such that the corresponding stress-free configu-
ration Xs is the master reference configuration, corresponding to
material Es. Importantly, the “stress-free” state should be under-
stood to be the state of the material under an arbitrary, uniform
constant ambient absolute pressure Pr. Therefore, throughout this
treatment, r represents the state of stress relative to this ambient
condition (gauge stress). The density of the material in this refer-
ential stress-free state is qs

r ¼ qr .
As the temperature changes from hs to hu, we assume that the

referential density qs
r goes from qr to zero, while qu

r goes from
zero to qr. Similarly, for the temperature change from hu to hv, the
reaction Eu ! Ev causes the density qu

r to go from qr to zero,
while qv

r goes from zero to qr. The corresponding referential mass
densities at these three consecutive temperatures are given by

qs
r ¼ ð1� Hðh� huÞÞqrh

s � h

qu
r ¼ ðHðh� huÞ þ Hðhv � hÞÞqr8h

qv
r ¼ Hðh� hvÞqrh

v � h

(A31)

These expressions satisfy qs
r þ qu

r þ qv
r ¼ qr . In that case, using

Eqs. (2.7) and (2.18), the molar production rate for Eu ! Ev is
given by

Mf̂ ¼ ðdðh� huÞ � dðhv � hÞÞ _hq (A32)

where d is the Dirac delta function, and _h is the material time
derivative of the temperature. In the limit of an infinitesimal tem-
perature increment from hu to hv, this expression for Mf̂ reduces
to zero.

For the specialization presented in this section, we use
ðh; g;Fs;qa

r Þ as our list of state variables and exclude the rate of
deformation D, thus setting the viscous stress s to zero. Even
though the emergence of _h in Eq. (A32) might suggest that it
should be included in the list of state variables, we use the fact
that the right-hand side of Eq. (A32) is actually equal to zero in
the limit of continuous temperature changes. Assuming that the
mixture is ideal, the mixture free energy density (3.28) for this
reactive thermoelasticity framework takes the form

Wrðh;Fs; qa
r Þ ¼

X
a

qa
r wðh;FaÞ (A33)

where we also assume that the specific free energy wa for all con-
stituents a share the same functional form wðh;FÞ, such that
waðha;FaÞ ¼ wðha;FaÞ. The stress is related to this mixture free
energy density Wr via Eq. (3.11).

A.4.1 Thermal Expansion. Based on our constrained mix-
ture framework, the stress-free configuration at hu is achieved
when FuðXs; tÞ ¼ RðXs; tÞ (a pure rotation) and qu

r ¼ qr;

according to Eq. (2.2), it follows that FusðXsÞ ¼ UsðXs; uÞ when
the temperature is hu and the material is in a stress-free state.
Thus, Fus describes the stress-free thermal expansion of the mix-
ture between temperatures hs and hu. This constitutive model
makes it possible to characterize Fus experimentally for a specific
material.

For example, for isotropic thermal expansion, the general form
for Fus is that of an isotropic stretch tensor

Fus ¼ kusI (A34)

where kus is the stretch ratio at hu, relative to hs, representing the
unconstrained (stress-free) thermal expansion. According to Eq.
(2.2), it follows that Fs ¼ kusFu.

In particular, the line element dXs is stretched to
dXu ¼ kusdXs. Experimental measurements of the stretch ratio
resulting from stress-free thermal expansion of a material may be
performed relative to a reference temperature hs, producing a
function f ðh; hsÞ, such that kus ¼ f ðhu; hsÞ. In the special case of a
constant (temperature-invariant) linear thermal expansion coeffi-
cient aL, it follows that f ðh; hsÞ ¼ 1þ aLðh� hsÞ. More generally,
for temperature-dependent thermal expansion, the linear thermal
coefficient is aLðh; hsÞ ¼ @f=@h.

For orthotropic materials whose mutually orthogonal symmetry
planes have unit normals ai in the reference configuration (i¼ 1,
2, 3 and ai � aj ¼ dij), the general form for Fus remains that of a
stretch tensor

Fus ¼
X3

i¼1

kus
i ai � ai (A35)

where kus
i is the stretch ratio resulting from unconstrained thermal

expansion along ai; in general, kus
1 6¼ kus

2 6¼ kus
3 . According to Eq.

(2.2), it follows that

Fs ¼ Fu �
X3

i¼1

kus
i ai � ai

At lower symmetries, thermal expansion produces a combina-
tion of stretch and rotation. For example, for monoclinic materi-
als, thermal expansion may be described along three unit vectors
ai that satisfy a1 � a2 ¼ 0; a1 � a3 ¼ 0, and a2 � a3 6¼ 0, such that
a1 defines the single plane of symmetry. In this case

Fus ¼ kus
1 a1 � a1 þ

kus
2

1� a2 � a3ð Þ2
a2 � a2 � a2 � a3ð Þa3ð Þ

þ kus
3

1� a2 � a3ð Þ2
a3 � a3 � a2 � a3ð Þa2ð Þ (A36)

where kus
i is the thermal stretch along ai. Under general conditions

(i.e., when kus
1 6¼ kus

2 6¼ kus
3 and a2 � a3 6¼ 0), the polar decomposi-

tion theorem shows that this deformation gradient is not a pure
stretch, as it also involves a rotation. The deformation gradient for
thermal expansion of a triclinic material may be similarly con-
structed by finding Fus such that Fus � ai ¼ kus

i ai (no sum) for non-
orthogonal and noncollinear unit vectors ai. The combination of
stretch and rotation is the expected behavior in the thermoelastic-
ity of monoclinic and triclinic materials. A transformation Q in
the symmetry group of this monoclinic material satisfies Q � a1 ¼
6a1 and Q � a2 ¼ 7a2; Q � a3 ¼ 7a3. It is straightforward to ver-
ify that such transformations keep Fus invariant.

A.4.2 Thermoelastic Neo-Hookean Solid. This example
illustrates the application of this reactive framework to model
thermoelasticity for a solid substance; it also demonstrates that we
can recover the classical thermoelastic stress response of a linear
isotropic elastic solid in the limit of infinitesimal deformations.
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Consider that an isotropic solid material Eu is tested for its
stress–strain response at a constant temperature hu. The experi-
mental data show that the material behaves as a compressible neo-
Hookean elastic solid, so that its strain energy density Wu

0 has the
form [44]

Wu
0 Fuð Þ ¼ Eu

Y

2 1þ �uð Þ

� 1

2
trCu � 3ð Þ � ln Ju þ �u

1� 2�u
ln Juð Þ2

	 

(A37)

where Eu
Y and �u are the measured material coefficients at that

temperature, corresponding to Young’s modulus and Poisson’s
ratio in the limit of infinitesimal strains. This strain energy density
is expressed in terms of the deformation gradient Fu describing
the deformations at this temperature, with Cu ¼ ðFuÞT � Fu, such
that Wu

0ðh
u;FuÞ reduces to zero when Fu ¼ R. The mass density

of the material at this temperature, under stress-free conditions, is
measured to be qu

0. By definition, Wu
0 measures the strain energy

per volume of the material in its stress-free reference configura-
tion at temperature hu (which is generally different from the refer-
ential volume at hs due to thermal expansion). From this
expression, we may easily evaluate the specific strain energy as
wuðhu;FuÞ ¼ Wu

0ðhu;FuÞ=qu
0, which would produce an expression

similar to Eq. (A37), with Eu
Y replaced by eu

Y ¼ Eu
Y=q

u
0 (with units

of specific energy). At this fixed temperature hu, the specific free
energy may be offset from this value by a constant representing
the thermal free energy, wuðFuÞ ¼ wuðFuÞ þ wu

0, where wu
0 needs

to be determined using additional experiments.
Consider that these experiments are repeated at multiple tem-

peratures ha, producing corresponding experimental values of
qa

0; Ea
Y (or ea

Y), �a, and wa
0. In the absence of phase transformations

we assume that the functional form of waðha;FaÞ remains the
same but the material coefficients vary with temperature. Thus,
we may formulate continuous functions of temperature eYðhÞ,
�ðhÞ, and w0ðhÞ, such that eYðhaÞ ¼ ea

Y ; �ðhaÞ ¼ �a, and
w0ðhaÞ ¼ wa

0. Then, the specific free energy takes the form

w h;Fð Þ ¼ w0 hð Þ þ eY hð Þ
2 1þ � hð Þð Þ

� 1

2
trC� 3ð Þ � ln J þ � hð Þ

1� 2� hð Þ
ln Jð Þ2

" #
(A38)

such that wðha;FaÞ ¼ waðha;FaÞ. We may also express the spe-
cific free energy as wðha;FsÞ by substituting Fa ¼ Fs � ðFasÞ�1

into this relation.
We can differentiate Eq. (A38) with respect to h, while keeping

F constant since h and F are independent state variables, to evalu-
ate the remaining functions of state, such as the specific entropy
gðh;FÞ using Eq. (3.3), and the isochoric specific heat capacity
cvðh;FÞ using Eq. (3.17), which is needed in the energy balance.
The general expression for cvðh;FÞ is too cumbersome to present
here, but under stress-free conditions (F ¼ R) it reduces to

cv0ðhÞ ¼ �hw000ðhÞ (A39)

It is evident from this relation that cv0ðhÞ depends on w000ðhÞ; thus,
additional experimental measurements that characterize the stress-
free isochoric specific heat capacity cv0ðhÞ as a function of tem-
perature may be used to extract w000ðhÞ ¼ �cv0ðhÞ=h, which may
be integrated subject to arbitrary referential constraints, such as
w0ðhrÞ ¼ wr and w00ðhrÞ ¼ �gr at the reference temperature, as
shown for ideal gases in Sec. A.1.1. In practice, for solids, it is
expected that cv will be nearly independent of deformation, in
which case we may simply set cvðh;FÞ 
 cv0ðhÞ.

Given that waðha;FaÞ ¼ wðha;FaÞ and the fact that qa
r ¼ qr at

ha and zero at all other temperatures, we may evaluate the elastic
stress re using Eqs. (3.23) and (A38) to produce

re ha;Fað Þ ¼ 1

Ja

Ea
Y

2 1þ �að Þ Ba � Iþ 2�a ln Ja

1� 2�a
I

� �
(A40)

where Ba ¼ Fa � ðFaÞT, and we used qr=q
a
0 ¼ Js=Ja. To recover

the classical thermoelastic stress response of a linear isotropic
elastic solid in the limit of infinitesimal deformations, consider
that kas ¼ 1þ aLðha � hsÞ, where jaLðha � hsÞj � 1. Then,
according to Eqs. (2.2) and (A34), Fa 
 ð1� aLðha � hsÞÞFs,
from which we get Ba 
 ð1� 2aLðha � hsÞÞBs and
Ja 
 ð1� 3aLðha � hsÞÞJs. Furthermore, under infinitesimal
strains and rotations, Fs 
 Iþ es þ xs, where es is the symmetric
infinitesimal strain tensor and Iþ xs is the infinitesimal rotation
tensor, and xs is antisymmetric; then, Js 
 1þ tres and
Bs 
 Iþ 2es. Substituting these relations into Eq. (A40) produces
the classical thermoelastic stress response of a linear isotropic
elastic solid

re h; esð Þ ¼ EY

1þ � es þ �

1� 2�
tresð ÞI

� �

�aL h� hsð Þ EY

1� 2�
I (A41)

where h � ha; EY � Es
Y 
 Ea

Y , and � � �s 
 �a, since small
changes in temperature are assumed to have a negligible effect on
the material properties.

This example also allows us to illustrate how we may evaluate
@re=@h, as required for the energy balance (3.18). We may
rewrite the general nonlinear relation (A40) more conveniently in
terms of Lam�e coefficients

re h;Fð Þ ¼ 1

J
G hð Þ B� Ið Þ þ k hð Þ ln Jð ÞI
� �

(A42)

where

G hð Þ ¼ EY hð Þ
2 1þ � hð Þð Þ ; k hð Þ ¼ 2G hð Þ � hð Þ

1� 2� hð Þ
(A43)

Then

@re ha;Fað Þ
@h

¼ 1

Ja
G0 hað Þ Ba � Ið Þ þ k0 hað Þ ln Jað ÞI
� �

(A44)

Here again, we may express this formula for @re=@h as a function
of Fs using Fa ¼ Fs � ðFasÞ�1

.

A.4.3 Thermoelastic Processes. Since we are using an ideal
simple mixture, the chemical potential la is equal to the specific
free energy wa according to Eq. (3.29). For the reaction Eu ! Ev,
the net stoichiometric coefficients are �u ¼ �1 and �v ¼ þ1.
Thus, the reactive power density in Eq. (3.13) evaluated at time v
reduces to

F̂ðXs; vÞ ¼ Mf̂ðXs; vÞðwðhv;FvðXs; vÞÞ � wðhv;FuðXs; vÞÞÞ
(A45)

However, as explained earlier, the expression for Mf̂ in Eq. (A32)
reduces to zero when we consider that consecutive temperatures
hu and hv differ by an infinitesimal increment. In that case, F̂ ¼ 0
and the residual dissipation statement for our proposed thermo-
elastic process simplifies from Eq. (3.6) to

1

h
q � g � 0 (A46)

As shown in Sec. 3.3, this residual dissipation statement is satis-
fied unconditionally when the constitutive model for q is con-
structed properly.
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The reactive heat supply for Eu ! Ev may now be evaluated
from Eq. (3.19) as

R̂ ¼ Mf̂ðeðhv;FuðXs; vÞÞ � eðhv;FvðXs; vÞÞÞ (A47)

where we have also used the relations of Eqs. (2.23) and (3.3).
Since Mf̂ reduces to zero in our reactive thermoelasticity frame-
work, we conclude that R̂ ¼ 0. In other words, the change in tem-
perature does not produce a reactive heat supply.
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