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Abstract: A traumatic brain injury (TBI) initiates an inflammatory response with molecular cas-
cades triggered by the presence of necrotic debris, including damaged myelin, hemorrhages and 
injured neuronal cells. Molecular cascades prominent in TBI-induced inflammation include the 
release of an excess of proinflammatory cytokines and angiogenic factors, the degradation of tight 
junctions (TJs), cytoskeletal rearrangements and leukocyte and protein extravasation promoted by 
increased expression of adhesion molecules. The brain-gut axis consists of a complex network in-
volving neuroendocrine and immunological signaling pathways and bi-directional neural mecha-
nisms. Importantly, modifying the gut microbiome alters this axis, and in turn may influence brain 
injury and neuroinflammatory processes. In recent years it has been demonstrated that the activity 
and composition of the gastrointestinal (GI) microbiome population influences the brain through all 
of above-mentioned pathways affecting homeostasis of the central nervous system (CNS). The GI 
microbiome is involved in the modulation of cellular and molecular processes which are fundamen-
tal to the progression of TBI-induced pathologies, including neuroinflammation, abnormal blood 
brain barrier (BBB) permeability, immune system responses, microglial activation, and mitochon-
drial dysfunction. It has been postulated that interaction between the brain and gut microbiome 
occurs mainly via the enteric nervous system and the vagus nerve through neuroactive compounds 
including serotonin or dopamine and activation by bacterial metabolites including endotoxin, neuro-
transmitters, neurotrophic factors, and cytokines. In recent years the multifactorial impact of selected 
immunomodulatory drugs on immune processes occurring in the CNS and involving the brain-gut 
axis has been under intensive investigation. 
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1. INTRODUCTION 

 A brain injury is the common cause of death among 
young male adults [1]. In survivors, mechanical external 
forces that cause the primary cause of brain injury, often 
involving the white matter, initiate a severe destructive and 
very protracted inflammation recently elucidated in the rat 
spinal cord injury model [2, 3]. While primary brain injury is 
irreversible as it occurs in an accident, the inflammatory  
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damage, with neuronal dysfunction related to trauma-
induced oxidative stress, apoptotic cell death, microglial 
activation and mitochondrial dysfunction, ischemia, edema 
and phagocytic macrophage activation and invasion, is ame-
nable to treatment [4, 5]. Permanent neuronal loss with apop-
tosis of neurons and oligodendrocytes occurs along a very 
protracted course of severe destructive inflammation and 
may still be observed 1 year after brain trauma [6, 7]. Neural 
cell death involves impairment of function with increased 
calcium level in the cytosol [8]. Damage to the blood-brain 
barrier (BBB) in the CNS around the site of inflammation 
can result in an uncontrolled release of metalloproteinases, 
inflammatory cytokines, and proteases and the inappropriate 
activation and dysfunction of endothelial cells and extravasa-
tion of oedema fluid into the interstitial space [9]. The first 
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peak of increased BBB permeability is noted within the ini-
tial few hours after injury and persists for 3-4 days, and a 
second peak may occur after 5 days as a result of inflamma-
tory response and microglial activation [10]. Damage to the 
BBB may offer an opportunity for the therapeutic access of 
anti-inflammatory drugs administered parenterally, however, 
a “leaky” BBB may still be a barrier to large anti-
inflammatory molecules such as Serp-1 and M-T7, immu-
nomodulatory proteins isolated from Myxoma virus, indicat-
ing the need for pre-clinical testing of each candidate anti-
inflammatory compound [11]. Although subdural infusion of 
Serp-1 resulted in lowering of the numbers of macrophages 
in the COI in the rat model of SCI, intraperitoneal infusion 
resulted in no effect [11]. Secondary axotomy and axonal 
degeneration are the result of destructive neuroinflammatory 
processes and involve proteolysis, excitotoxicity and mito-
chondrial dysfunction [12]. The site of trauma and superven-
ing inflammation are localized by increasingly severe astro-
cytic reaction that not only walls off the site but also appears 
to actively transfer edema fluid from surrounding CNS tissue 
thus contributing to the formation of the COI [2]. Progres-
sively severe astrogliosis around the COI may also partici-
pate in anti-inflammatory mechanisms that are water soluble 
and ultimately lead to inhibition and elimination of macro-
phage infiltration in the COI and result in a mature syrinx 
following the SCI [2, 13]. 

 The inflammatory response after TBI involves both the 
resident microglia and infiltrating inflammatory cells, pri-
marily phagocytic, CD68+/CD163- macrophages apparently 
stimulated by large quantities of damaged myelin and mark-
edly elevated inflammatory cytokines including IL1, IL-6, 
IFN and chemokines with degradation of tight junctions 
(TJs), cytoskeletal rearrangements and protein promoted by 
adhesion molecules [14]. The inflammatory response is his-
tologically evident on day 3 post-injury in the rat model of 
the SCI when large numbers of phagocytic macrophages 
begin to infiltrate the necrotic areas, become sequestered in 
the forming COI where they remove the myelin-rich necrotic 
debris and haemorrhage within 2 weeks post-SCI [2]. Large 
numbers of phagocytic macrophages persist in the COI for 
over 4 weeks apparently sustained by a mechanism of a vi-
cious cycle where damaged myelin is potently chemotactic 
and chemokines elevated, resulting in activation of infiltrat-
ing macrophages that coincides with additional damage to 
the surrounding CNS with damage to oligodendrocytes and 
myelin resulting in more macrophage chemotaxis [15, 16]. 
The extraordinarily destructive and protracted inflammation 
initiated by trauma involving the white matter is therefore of 
the primary interest to therapeutic efforts leading to neuro-
protection. The inflammatory response involves the release 
of DAMPS (danger associated molecular patterns): HMGB1, 
heat-shock, S100 proteins, ATP, which are bound by PRRs 
(Pattern Recognition Receptors) such as TLR [17]. PRRs 
recognise ligands and triggers, directly or by oligomerisation 
to inflammasomes (NLRP1 and NLRP3), with subsequent 
production of proinflammatory cytokines. Inflammasomes' 
activation of caspase-1 catalyses the cleavage of pro-
interleukins into the active forms of interleukin-18 and IL-1β 
[18]. Kimbler et al. documented that blockade of P2X7 re-
ceptor with NLRP3 activating properties, extends the lesion 
and increases brain oedema, directly at 12 and 24 hours post 

injury in an animal model [19]. NADPH oxidase 2 (NOX2) 
is a main contributor to oxidative stress and NOX2-
dependent inflammasome activation contributes to TBI pa-
thology. Importantly inhibition of NADPH oxidase enzymes 
provides neuroprotective effects and reduces superoxide 
production [20]. Although increased synthesis of pro-
inflammatory cytokines such as IL-1β, IL-6, IL-18 and 
TNFα, accompanied by rising levels of anti-inflammatory 
cytokines including IL-8, IL-10 and production of chemoki-
nes such as MCP1 and CCL5 has been attributed to activate 
blood-borne and CNS-resident immune cells, notably neu-
trophils, microglia and T-cells [21]. Recent systematic study 
on the progression of inflammation initiated by the SCI indi-
cates that the CNS response, specifically astrogliosis plays 
an important role in the inhibition and elimination of infil-
trating macrophages, thus eliminating the inflammation [2]. 
With this in mind, effective anti-inflammatory therapies 
should result in inhibiting destructive inflammation leading 
to its accelerated elimination and neuroprotection also reduc-
ing edema, neurodegeneration, cognitive deficits and im-
proving overall neurological recovery [22]. It needs to be 
emphasized that TBI is a pro-inflammatory condition that 
affects not only the brain, but also impairs functions of other 
organs including eyes, lung, intestines, myocardium, and 
vascular circulation with long lasting effects and complica-
tions which need to be considered in medical practice [23]. 

2. BRAIN-GUT AXIS DURING TBI 

 In recent years the relationship between gut microbiome 
and brain has been an important topic. Gut microbiome plays 
a fundamental role in the functionality of the immune sys-
tem. Over the past few years, some data have been presented 
that communities of microbes play a pivotal role in control-
ling aspects of host physiology [24]. The nervous system is 
strictly connected with the gut microbiome. This axis con-
sists of a complex network involving neuroendocrine and 
immunological signalling pathways and direct neural 
mechanisms [25, 26]. It has been demonstrated that the ac-
tivity and composition of the GI microbiome population in-
fluence the brain through a variety of pathways, including 
homeostasis of the CNS. 

 In mouse models, the gut microbiome is associated with 
changes in permeability of the BBB [27]. Braniste et al., 
demonstrated decreased expression of occludin by brain en-
dothelial cells in reference to sensitive changes in the intesti-
nal gut microbiota. In this study bacterial metabolites, in-
cluding short fatty acids; butyrate, acetate or propionate, 
have affected the permeability of the BBB [27]. 

 It is postulated that brain-gut microbiome communication 
occurs mainly via the enteric nervous system and the vagus 
nerve through neuroactive compounds and activation by bac-
terial metabolites, neurotransmitters, neurotrophic factors, 
cytokines, and endotoxins [28, 29]. Sympathetic and para-
sympathetic nervous systems have a pivotal role in the 
modulation of gut functions as regional motility, intestinal 
permeability, immune response of the mucosa, epithelial 
fluid maintenance and production of gastric acid, mucus, 
bicarbonate, gut peptides and antimicrobial peptides [30]. 
Therefore the autonomic nervous system mediates commu-
nication between the CNS and viscera. The HPA (hypo-
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thalamus-pituitary-adrenal) axis activity, stimulated in re-
sponse to environmental factors such as stress, reacts to mi-
crobiota-related energy sources production related to gut 
microbiota metabolic activity, which also results in restora-
tion of absorbable nutrients and energy [31]. Bacteria stimu-
late gut-microbiota axis by synthesizing neuroregulators and 
neurotransmitters, which connect via Meissner’s plexus with 
antigen presenting cells [32]. In addition, dysbiosis predis-
poses to adult stress responsiveness [33]. Previous research 
showed association between gut microbiome with autism, 
major depressive disorder, and Guillain-Barre syndrome 
[34]. Gut microbiota composition maintains homeostasis of 
the immune system. Different bacteria promote or antago-
nize production of pro- or anti-inflammatory cytokines, and 
importantly regulate the differentiation of T cells. Therefore, 
changes in the gut microbiome may result in dysregulation in 
the immune system and in the nervous system. Per example, 
in multiple sclerosis patients Acinetobacter calcoaceticus 
and Akkermansia muciniphila increased production of proin-
flammatory Th1 phenotype of peripheral mononuclear cells 
[35]. The GI microbiome is involved in the modulation of 
cellular and molecular processes which are fundamental to 
the progression of TBI-induced pathologies, including neu-
roinflammation, BBB permeability, immune system re-
sponses, microglial activation, and mitochondrial dysfunc-
tion, as well as intestinal motility and permeability [25, 36]. 

 The brain injury generates microbiome disruptions 
through neuroendocrine and immunological pathways. These 
perturbations contribute to bi-directional imbalance even 
greater in the microbiome composition and induce secondary 
damage [37]. In experimental models, brain injury has in-
duced disruption of the motility and permeability of intesti-
nal wall, and finally changed the gut microbiome composi-
tion [38]. 

 Theories about how TBI alters intestinal permeability are 
still under investigation. Some authors have indicated that 
increased NF-kB, leading to up-regulation of ICAM-1 and 
production of cytokines including IL-6 predispose to de-
clined expression of tight junction proteins [39]. Another 
theory focuses on reduced vagal stimulation of the enteric 
system after brain trauma [40]. Holulden et al. have docu-
mented that damage to the CNS can lead to gut dysbiosis 
[41]. Brain injury predisposes to changes of cecal microbiota 
composition with specific changes involving Peptococ-
caceae and Prevotellaceae and may be affected by altered 
autonomic activity [41]. Expanded brain lesion correlates 
with increased levels of Firmicutes sp. which is composed of 
more than 200 different genera such as Lactobacillus sp., 
Bacillus sp., Clostridium sp., Enterococcus sp., and Rumini-
coccus sp. [39, 42, 43]. It is important to note that this im-
balance correlates with the extent of injury and the impact of 
the pathophysiology of brain injury [44-46]. Lesion volume 
in MRI and loss of behavioural function correlates with 
philogenic changes and alpha diversity [37]. In the rat model 
of post-ischemic stroke, intestinal dysbiosis is linked to 
worse neurological outcomes [47]. Kigerl et al. demon-
strated in the post-TBI period disruption of microbiome evi-
dent as suppression in Bacteroides sp. and proliferation of 
Firmicutes sp. [48]. Authors observed changes even 1 month 
after injury [48]. This disruption of the physiological balance 

resulted in elevation of Th1 cells, Th17 cells and in in-
creased expression of IFN-γ, and IL-17 in mouse model of 
stroke [25]. In recent years experimental animal data have 
demonstrated remarkable changes in gut microbiota, even 2 
hours after brain injury, which correlated with TBI lesion 
volume and predicted the degree of locomotor impairment 
[37, 49, 50]. Howard et al. reported an imbalance in gut mi-
crobiome in injured patients within 72 h of TBI, resulting in 
the decrease in Bacteroidales sp., Fusobacteriales sp., Ver-
rucomicrobiales sp., and increase in Clostridiales sp., and 
Enterococcus sp. [51]. Changes in the GI microbiome can 
affect the BBB given the part of bacterial translocation, LPS 
exposure or activation of gdT-cells with other parallel 
mechanisms such neutrophil induced release of TNF alpha 
and MMP 9 [52]. Moreover, dysbiosis predisposes to altera-
tions of the integrity and permeability of the BBB initiated 
by the inflammatory response [27]. Imbalances in intestinal 
content can be associated with increased severity of neuroin-
flammation, increased microglial activity and intensified 
neuropathology processes [53-56]. Total absence of intesti-
nal bacteria in axenic animal model, results in impaired im-
mune response of the microglia, in amplifying of myelina-
tion, in hyperactivity of the HPA axis, in changes in brain 
neurochemistry and in decreased anxiety and social behav-
iors [53, 57-60]. Additionally mitochondrial dysfunction 
after TBI is probably also impacted by microbiome disrup-
tions [61-64]. 

3. MODULATION OF MICROBIOME AND IMMUNI-
TY AFTER BRAIN INJURY 

 Alterations to the gut microbiome affect the brain-gut 
axis, and in turn brain injury impacts inflammatory processes 
that may alter the gut microbiome (Fig. 1) [25]. 

3.1. Eubiotic Therapies 

 Eubiotic therapies as transplants and administration of 
pre/probiotics are novel proposition for patients after brain 
trauma [65]. These eubiotic therapies probably have the po-
tential to shift the gut microbiome composition to a bal-
anced, beneficial state, especially in a period of TBI-induced 
inflammatory progression. The window of 24-72 hours fol-
lowing the TBI is considered ideal for administration for an 
eubiotic therapy [51]. Preclinical studies showed that an ef-
fective eubiotic therapy reduces lesion volume and micro-
glial activation, inhibits neuroinflammation, improves mito-
chondrial activity, and stabilises the immune system proc-
esses and intestinal functions [47]. 

 The probiotic supplementation leads to recovery of the 
basic synaptic transmission in diabetic rats as well as to en-
hanced activation of superoxide dismutase [66]. Recent data 
suggest that the administration of probiotics may modulate 
mitochondrial homeostasis via production of short-chain 
fatty acid (SCFAs) products such as butyrate, propionate, 
and acetate [67]. Microbial-derived SCFAs have beneficial 
effects on the host energy metabolism [68]. Furthermore, 
supplementation with Lactobacillus sp. probiotic before 
myocardial infarction reclaims myeloid cell proportions to 
normal, shifts SCFAs balance and has cardioprotective ef-
fects [69]. Probiotic treatment improves the intestinal and 
peripheral tissue environment since it upregulates fatty acid 
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oxidation in the muscle and liver [68]. In addition, it im-
proves sympathetic activity, gut brain neural circuit glu-
coneogenesis and thermogenesis [68]. Gut microbiome also 
produces alternative energy sources, including dietary ke-
tones, important metabolites to regenerate bioenergetic status 
after TBI [70]. The butyrate is an important mediator of 
host-microbe crosstalk that promotes histone acetylation and 
up-regulates gene expression in host cells [71]. These effects 
are generated via the β-oxidation pathway and because bu-
tyrate is an inhibitor of histone deacetylases (HDACs) that 
can also ameliorate cognitive functions in neuropsychiatric 
disease and play a crucial role in neuroprotection [72, 73]. Li 
et al. have shown in mouse models that butyric acid pro-
duced by Clostridum butyricum improved neurological defi-
cits and BBB impairment in TBI and in stroke [3, 56, 74]. 
These treatments significantly upregulated the expression of 
TJ proteins such as occluding and zonula occludens-1 but 
also p-Akt and Bcl-2, as well as down-regulated expression 
of Bax [74]. They also augmented the secretion of intestinal 
GLP-1 and induced expression of cerebral GLP-1R [74]. The 
propionic acid, a prominent microbiome metabolite, modu-
lates mitochondrial functions in cells line [64]. Frye et al. 
have demonstrated that increased ROS levels lead to a det-
rimental effect of propionic acid resulting in mitochondrial 
dysfunction in individuals with inflammatory processes in 
the gut [64]. 

 Probiotics rich in bacteria producing lactic acid decrease 
levels of circulating TNF-α, attenuate cerebral monocyte 
infiltration and reduce microglial activation [75, 76]. 
D’Mello et al. suggested that probiotics reduce microglial 
activation and monocyte infiltration and alter behavior [75]. 
In recent animal studies, probiotic supplementation after the 
SCI improved locomotor recovery and shifted immune re-
sponse to protective mode by elevation in the Treg cell num-
bers (CD4+CD25+FoxP3+ T cells and CD11c+ DCs) [48]. 
In a randomized study by Min Tan et al. probiotic administa-

tion resulted in increased levels of IL-12p70 and IFN-γ in 
patients after brain trauma [77]. In addition, levels of IL-4 
and IL-10 were reduced and these patients had decreased 
incidence of nosocomial infections, and lowered mortality 
rate within the 28-day period [77]. Daily probiotic prophy-
laxis can restore deviated TH1/TH2 response, reduce ventila-
tor-associated pneumonia involving infections caused by 
P.aeruginosa, decreased GI dysfunction, and shorten the 
length of stay in the ICU [78-80]. 

 A transplant of a normal fecal microbiota can prevent 
dysbiosis after SCI, and has a neuroprotective effect [81]. 
Anti-inflammatory effects of the normal microbiome are 
demonstrated in an animal model of ischemic stroke. Dys-
biosis influences proinflammatory T cell activation in the 
immune compartment and in brain with lymphocyte migra-
tion to the CNS [47]. Thus, fecal transplantation can reduce 
the brain lesion and markedly improve stroke outcome via its 
anti-inflammatory effect. 

 Approximately one quarter of TBI patients develop a 
progressive neurodegenerative syndrome related to neurode-
generative proteinopathy or to neuroinflammation [82, 83]. 
Both processes initiated by brain trauma are the subject of 
ongoing studies [84]. The immune response to brain injury 
may be both a destructive contributor to outcomes and also a 
therapeutically tractable target mechanism. The impact of 
selected immunomodulatory drugs on inflammatory processes 
occurring in the neurotrauma with their role in affecting the 
brain-gut axis is a novel topic in recent years (Table 1). 

3.2. Xanthohumol 

 Xanthohumol is a natural flavonoid present in hops (Hu-
mulus lupulus L), which possesses antioxidant, anti-
inflammatory and chemopreventive properties [47]. Impor-
tantly, this natural substance, as a possible enhanced compo-
nent of nutrition may become a significant element support-

 
Fig. (1). Connection between gut microbiome -brain and selected therapeutic interventions. (A higher resolution / colour version of this  
figure is available in the electronic copy of the article). 
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ing the treatment of many diseases [85]. The available in-
formation on the possible effects of Xanthohumol in brain 
injury is limited but it was found to have neuroprotective 
effect in cerebral infarction studies in the rat, presumably 
related to its anti-inflammatory activities. The focal cerebral 
ischemia in the rat model was associated with increases in 
hypoxia-inducible factor (HIF)-1α, tumor necrosis factor 
(TNF)-α, inducible nitric oxide synthase (iNOS), and active 
caspase-3 protein expressions in ischemic regions [47]. Yen 
et al. showed that expression of these genes was inhibited by 
treatment with Xanthohumol [86]. The neuroinflammatory 
response in Parkinson's disease is mediated by the presence 
of activated microglial cells in the substantia nigra, with in-
creased levels of proinflammatory cytokines in the striatum 
and the substantia nigra, and activation of the NF-κB pro-
inflammatory pathway, which regulates target genes encod-
ing proinflammatory cytokines, chemokines, growth factors 
and inducible enzymes [87]. In experimental models, Xan-
thohumol significantly reduced the production of pro-

inflammatory cytokines IL-1β and TNF-α, and decreased the 
imbalance between pro- and anti-apoptotic factors observed 
in the brain [88]. Moreover, Xanthohumol increased the ex-
pression of the neurotrophic factor BDNF what suggests a 
capacity to modulate inflammatory responses in the brain 
[89]. Xanthohumol inhibits iNOS and activation of Ito cells, 
central mediators of hepatic fibrogenesis [90]. It induces 
apoptotic processes and prevents DNA damage secondary to 
carcinogens in liver and colon [91]. In addition, Zhang and 
al. have demonstrated that Xanthohumol administration de-
creases the diversity of intestinal microbiota and reduces 
counts of Tenericutes sp. [92]. Xanthohumol alters bile acid 
metabolism and specifically reduces inflammation in meta-
bolic syndrome and in obesity. 

3.3. Baicalin 
 Baicalin is a 7-D-Glucuronic acid-5,6-dihydroxyflavone, 
an active flavonoid isolated from the radix of Scutellaria 
baicalensis, with antitumor, antiviral, antimicrobial anti-

Table 1. Medications tested for the microbiome modulation. 

Agents/Therapy Immune System Effect Microbiome Interactions Others 

Eubiotic therapie -inhibit inflammation 
-improve mitochondrial 
-stabilize immune system functions 

-shift the microbiome composition 
-reduce lesion volume 
-reduce microglial activation 

-improve locomotion recovery 
-reduce ventilator associated pneumonia 
-decrease gastrointenstinal dysfunction 
-short leigh of stay in ICU 

Xanthohumol -inhibit oxidative stress 
-improve anti-inflammatory reactions 

- decrease intenstinal microbiota diversity 
- alters bile acid metabolism 

-regulate fat metabolism 
-modulate triglyceride and cholesterol levels 
-control glucose and insulin levels 
-inhibits Notch signaling and induces apoptosis 
in carcinoma (anticancer activity) 

Baicalin --inhibit oxidative stress 
-improve anti-inflammatory reactions  

-increase of Proteobacteria, Euryarchaeota, 
and Fusobacteria 
-reduce of Firmicutes, Actinobacteria, and 
Bacteroidetes 

-antitumor and antiviral properties 
-neuroprotective effects via Akt/Nrf2 and 
PI3K/AKT/FoxO1 pathway  

Metformin --inhibit oxidative stress 
-improve proinflammatory  
reactions 

-adjust abundance of microbiome 
-decrease Intestinibacter, Bacteroides fragilis 
-increase bile acid glycoursodeoxycholic acid 
(GUDCA 

-hypoglycemic effect 
-reduce cerebral edema 
-reduce neuronal apoptosis 
-improve neurological deficits 

Melatonine -reduce inflammation 
-modulate superoxide dismu-
tase,gluthione, gluthione peroxidase 
-inhibit apoptotic pathways 

-reduce dysbiosis in mice after spinal injury 
-ameliorate intenstinal integrity 

-attenuate brain edema and hyperpermeability 
-ameliorate locomotion recovery 

Ketamine -inhibit neuronal apoptosis 
  

-reduce Deferrribacteres Mollicutes 
-increase Turicibacterales 

-reduce neurological deficits 
-inhibit neuronal apoptosis 
-reduce brain edema 

Statins -immunomodulatory and anti-
inflammatory effects 
-reduce apoptosis 

-increase the abundance of Es-
cherichia/Shigella,Ruminococcaceae UCG 
014, Sutterella, Bacteroides, Butyricimonas, 
and Mucispirillum 
-decrease short chain fatty acids production 

-reduce triglyceride levels 
-raise HDL levels 
-reduce risk of blood clots, heart attack and 
stroke 

Mesenchymal cells  -augments transcription of immuno-
modulatory genes 
-inhibit inflammation 
-inhibit apoptosis 
-regulate IgA production 

-restore gut functions 
-induce gut microbiome diversity 
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inflammatory antioxidative and neuroprotective effects [93]. 
In recent studies, Baicalin administration reduced brain 
edema, apoptotic cell death and activated antioxidative en-
zymes [94]. Baicalin demonstrates neuroprotective effect via 
activating the Akt/Nrf2 pathway and through the inhibition 
of TLR4 expression via the PI3K/AKT/FoxO1 pathway [93, 
94]. Application of baicalin significantly decreased levels of 
IL-1, IL-6 and TNF-α in the hippocampus. 

 Baicalin-aluminium complexes altered the composition 
of the gut microbiome in piglets [95]. In animals treated with 
Baicalin-aluminium complexes, the counts of Viruses 
noname, Proteobacteria sp., Euryarchaeota sp., and Fuso-
bacteria sp., were increased, while the counts of Firmicutes 
sp., Actinobacteria sp., and Bacteroidetes sp., were reduced 
[95]. In addition, Kang et al. demonstrated that intestinal 
microbiota may play a crucial role in the pharmacokinetics 
of Baicalin administered orally [96]. 

3.4. Metformin 

 Metformin is an oral hypoglycaemic drug with anti-
inflammatory, antioxidative, and anti-ischemic activity [97]. 
In an animal model of TBI, metformin reduced cerebral oe-
dema and neuronal apoptosis, and significantly improved 
neurological deficits presumably related to a neuroprotective 
effect. Metformin reduced levels of pro-inflammatory cyto-
kines such as TNF-α, IL-1β and IL-6, inhibited microglial 
activation and the translocation into the cellular nucleus of 
NF-κB p65 and the phosphorylation of ERK1/2 and p38 
MAPK [98]. Tao et al. have shown neuroprotective effect of 
metformin in TBI associated with its anti-inflammatory ef-
fect involving specific intracellular pathways indicated 
above [98]. In a randomized study, metformin had a strong 
effect on the gut microbiome by reducing abundance in mi-
crobiome, of γ Proteobacteria including Escherichia coli and 
Firmicutes sp [99]. These authors also observed decreased 
counts of Intestinibacter sp. and increased counts of Bifi-
dobacterium sp. In addition, recent data demonstrated con-
nection between the administration of metformin and the 
abundance of Akkermansia muciniphila and potentially re-
lated metabolic effects [100-103]. A. muciniphila contributed 
to metformin antidiabetic effect via increased mucin degra-
dation and enrichment of SCFA secretion [104]. Sun et al. 
have shown that individuals treated with metformin had de-
creased Bacteroides fragilis counts in the gut and increased 
levels of glycoursodeoxycholic acid (GUDCA) in the bile 
related to inhibition of intestinal farnesoid X receptor (FXR) 
signaling [105]. 

3.5. Melatonin 

 Melatonin is another agent with a neuroprotective activ-
ity whose administration attenuates early brain damage and 
behavioral deficits after TBI [106]. In addition, exogenous 
melatonin reduces inflammation; attenuates levels of IL-1β, 
TNF-α, IL-10, IL-4, superoxide dismutase, glutathione, glu-
tathione peroxidase, and inhibits mitochondrial apoptotic 
pathways [106, 107]. In recent studies, melatonin attenuated 
brain edema and increased permeability of the BBB [108, 
109]. Furthermore, Jing et al. have shown that administration 
of melatonin reduced gut dysbiosis in mice after SCI [110]. 
Gut microbiome in animals treated with melatonin had de-

creased relative counts of Clostridia sp. [110]. In addition, 
reduction of monocyte chemotactic protein 1 expression and 
of gut barrier permeability were correlated with increase in 
counts of Lactobacillales sp. and Lactobacillus sp. [110]. 
Animal studies have shown that administration of melatonin 
improved locomotor recovery and intestinal integrity [111]. 
https://www.nature.com/articles/s41598-020-59314-7 In 
addition, melatonin significantly elevated goblet cells, 
Reg3β, and Firmicutes sp. to Bacteriodetes sp. ratio by in-
hibiting Gram-negative bacteria through TLR4 signaling 
[112]. Herein, it is showed that melatonin administration 
suppresses proinflammatory mediators in colitis and has a 
regulatory effect on microbiota in the intestine [113]. 

3.6. Ketamine 

 Ketamine has anti-inflammatory activity and inhibits 
neuronal apoptosis [114, 115]. In addition, ketamine inter-
acted with gut microbiota as it reduced counts of Deferrri-
bacteres sp. and Mollicutes sp. and increased the abundance 
of Turicibacterales sp. [116]. Furthermore, low Sarcia sp. 
levels were associated with inflammatory actions due to 
changes in degradation of polysaccharides complex to short 
chain fatty acids including butyrate, and ketamine signifi-
cantly increased counts of these bacteria [117]. 

3.7. Statins 

 Recent studies demonstrated immunomodulatory and 
anti-inflammatory effects of statins. In animal models of TBI 
statins reduced apoptosis of microglia and downregulated 
expression of TNF-α [118, 119]. Atorvastatin reduced neu-
roinflammation by increasing the proportion of regulatory T 
cells (Tregs), IL-10 and transforming growth factor (TGF)-
β1 [120]. In vitro research showed gut microbiota composi-
tion changes during statins treatment. Administration of flu-
vastatin increased the abundance of Escherichia/Shigella sp., 
Ruminococcaceae UCG 014, and Sutterella sp. [121] with 
concurrent reduction in production of short chain fatty acids. 
However, gut composition after rosuvastatin, simvastatin and 
atorvastatin treatment were almost unchanged. Kummen et 
al. have shown that patients treated with resuvastatin demon-
strated a decreased genetic potential to transport and metabo-
lize TMAO (pro-atherogenic metabolite trimethylamine-N-
oxide) [122]. Furthermore, authors observed elevated me-
tabolites of betaine and γ-butyrobetaine in plasma. Atorvas-
tatin and rosuvastatin markedly elevated the counts of Bac-
teroides sp., Butyricimonas sp., and Mucispirillum sp. in the 
gut [122]. Changes in the content of gut microbiota in the 
ileum corresponded to the levels of IL-1β and TGFβ1 [123]. 

3.8. Mesenchymal Stem/Stromal Cells 

 The ribosome, glycolysis, amino acid biosynthesis, car-
bon metabolism, and oxidative phosphorylation are involved 
in regulation of mesenchymal stem/stromal cell (MSC) pro-
liferation and differentiation. The HIF-1 and several infec-
tion/inflammation signaling pathways are connected with 
chemokine and cytokine up-regulation by MSC [124]. These 
immunomodulatory effects have been assessed after TBI. 
Normal microbiota is involved in immunomodulatory prop-
erties of bone marrow stromal cells (MSCs). Microbiome 
induced immune-regulatory mediator secretions, cytokine 



1170    Current Neuropharmacology, 2021, Vol. 19, No. 8 Dabrowski et al. 

gene transcription and surface protein expressions in MSCs 
[125]. These MSC-microbiome interactions markedly aug-
mented transcription of immunomodulatory genes including 
COX2, IL-6, and IL-8 and upregulated secretion of prosta-
glandin E2 (PGE2), IL-6, and IL-8 [126]. Gut microbiome 
markedly activated T-cell apoptosis and cytokine secretion 
[125]. Experimental data indicate that MSCs influenced by 
microbiota had enhanced expression of chemokines and IL-
10 [125, 127]. This MSC-gut microbiome axis may lead to 
novel discoveries in therapeutics helping regulate pathologic 
inflammatory processes. In animal models of bowel inflam-
matory disease, administration through systemic infusion or 
local inoculation of MSC restored the physiologic composi-
tion of gut microbiome and enhanced suppression of patho-
genic bacteria [128]. Furthermore, subepithelial MSC in-
duced diversity of gut microbiome and regulated IgA pro-
duction [127]. MSC interacts directly with the gut epithelium 
to control expression of CCL20 and microfold (M) cell dif-
ferentiation [127]. These combined influences of micro-
biome and MSC therapy inhibited inflammation and restored 
gut function [128]. The cytosolic bacterial peptidoglycan 
Nod2 triggered MSC protective effect against oxidative 
stress-mediated apoptosis [129]. In addition pluripotent stem 
cells therapy increased numbers of Lgr5+ intestinal stem 
cells, increased proliferation of intestinal epithelial cells, 
promoted angiogenesis and restored changes of gut micro-
biome composition in a mouse model [130]. Thus interac-
tions between MSC and gut microbiome could be used in 
addressing therapies for inflammatory diseases including the 
TBI. Recent data demonstrated that MSC administrated by 
systematically infusion or intracerebral injection migrates 
preferentially to the ischemic area [131, 132]. MSC therapy 
and migration in TBI depends on specific signals crosstalk 
with the brain tissue involving the stromal-derived factor-1 
(SDF1), a chemokine expressed in astrocytes, neurons and 
endothelial cells and CXCR4 (receptor of SDF-1) expressed 
in MSCs [133]. MSC can reduce apoptosis of astrocytes in 
the ischemic boundary zone of the TBI and augment astro-
cyte proliferation post-ischemia. Gao et al. demonstrated that 
these processes may specifically involve activation of mito-
gen-activated protein kinase/extracellular signal-regulated 
kinase and phosphoinositide 3-kinase/threonine protein 
kinase pathways [134]. Transplantation of MSC elicited up-
regulation of brain-derived neurotrophic factor (BDNF), 
epidermal growth factor (EGF), fibroblast growth factor 2 
(FGF2), insulin-like growth factor 1 (IGF1) and vascular 
endothelial growth factor (VEGF). The increase in the pro-
duction of growth factors stimulated regeneration of resident 
brain cells [135]. Promising data have shown that MSCs can 
reduce inflammation and edema [131]. MSC with purified 
immune cells including NK, dendritic cells, naive and effec-
tor T cells, upsurge the production of interleukins IL-4 and 
IL-10 and inhibit TNF-α and IFN-γ expression [136]. In rat 
model of hemorrhagic stroke intraventricular infusion BM-
MSCs suppressed pro-inflammatory cytokine expression 
including IL-‐6, IL-‐1α, and IFN-‐γ [137]. It is important to 
note that increased IL-4 levels opposite to decreased INF-γ 
reverse the helper T cell subsets, from cytotoxic Th1 cells to 
Th2 cells [131]. Furthermore, MSC therapy inhibits T cells 
proliferation and finally, these may correlate with alterations 
of cell damage [136]. In recent years BM-MNCs therapy is a 

subject of clinical trials for TBI. Cox et al. have shown in 
twenty-five patients that intravenous delivery of BM-MNCs 
is safe and had no severe adverse effects [138]. 

3.9. The Stable Gastric Pentadecapeptide (BPC 157) 
 The stable gastric pentadecapeptide is a small anti-ulcer 
and anti-inflammatory peptide founding in the human gastric 
juice [139]. It is freely soluble in water at pH 7.0 and in sa-
line [140]. BPC 157 presents multiorgan activity. It was suc-
cessfully used for the treatment of esophagus, stomach, duo-
denum, intestine, liver and pancreas lesions [141, 142]. In-
terestingly, BPC 157 also presents neuroprotective properties 
[143, 144]. Experimental study has confirmed the BPC 157 
counteracts the immediate consequences of severe head in-
jury and reduces post-traumatic brain oedema, number and 
size of haemorrhagic post-traumatic lacerations, intensity of 
subarachnoidal bleeding and intraventricular haemorrhage 
[144]. Additionally, BPC 157 significantly reduces the 
cuprizone-induced demyelination and then risk of severe 
encephalopathy [141, 145]. A single dose of pentadecapep-
tide BPC 157 improved motor function and decreased limb 
spasticity induced by experimental spinal cord injury [146]. 
The administration of BPC 157 30 sec after 20 minutes ex-
perimental-induced cerebral ischemia significantly reduced 
neuronal damage and attenuated or even completely pre-
vented ischemia/reperfusion-induced behavioural deficits 
and motor dysfunction [147]. The neuroprotective effect of 
BPC 157 may result from its interaction with dopaminergic 
and serotonergic system, however BPC 157 also affects 
GABAergic system, upregulates the GABAergic-dependent 
neurotransmission and interacts with opioid system [148-
150]. Ultimately, neuro-beneficial activity of peripheral ad-
ministration of the stable gastric pentadecapeptide BPC 157 
can document the link between intestinal and brain, however, 
this relationship should be confirmed in further clinical studies. 

4. QUERCETIN AND ANTI-QUORUM SENSING 
ACTIVITY  

 Quorum sensing (QS) plays a crucial role in the activity 
of important microbial physiology processes, including pro-
duction of biofilm [151]. Populations of bacteria synchronize 
their gene expression by range of intra and intercellular sig-
nals, and production of different compounds including 
autoinducer-1, autoinducer-2, autoinducer-3, Pseudomonas 
quinolone signal (PQS) and diffusible signal factors (DSFs). 
Because these processes are connected with virulence, there 
is a theory that anti-quorum activity of some agents reduces 
pathogenicity and may present smaller effect on the host of 
commensal microbes and modulation of gut microbiome 
[152]. Recent studies share an interest in the use of new anti 
quaorum therapies to limit collateral damage to microbiota 
by antibiotics [153, 154]. Experimental study has confirmed 
the anti-quorum sensing activity of the quercetin and reduc-
tion the formation of Pseudomonas aeruginosa PAO1 
biofilm [155]. Quercetin is natural aglycone flavonoid occur-
ring in fruits and vegetables, with anti-inflammatory, 
anti‐proliferative and antioxidative effects [156]. In addition 
these commands alleviate cerebral edema, decrease neuronal 
degeneration, reduce oxidative stress in the mitochondria. 
Additionaly quercetin attenuate neuronal apoptosis via inhi-
bition of extracellular signal-regulated kinase 1/2 phosphory-
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lation and activated Akt serine/threonine protein kinase 
phosphorylation [157, 158]. The administration of quercetin 
resulted in the modulation of the Nrf2 pathway and pre-
sented antioxidant enzyme activity on mitochondrial bio-
genesis after TBI [159]. In mice model of atherosclerosis 
quercetin significantly effects on gut microbiom and Fir-
micutes phyla were the most sensitive commensals [160]. 
However, the relationship between quercetin and host of 
commensals needs more further studies. 

CONCLUSION 

 Influences of microbiome on the CNS constitute a poten-
tial target for therapeutic interventions in neurotrauma. Fur-
ther detailed investigations are needed to better understand 
complex brain-gut interactions in respect to regulation of 
destructive inflammation initiated by neurotrauma. 

LIST OF ABBREVIATIONS 

ATP = Adenosin-triphosphate 

Bax/Bcl = Pro-apoptotic /anti-apoptotic proteins 

BBB = Blood-brain barrier 

BDNF = Brain-derived neurotrophic factor 

BPC 157 = Stable gastric pentadecapeptide 

CNS = Central nervous system 

COI = Cavities of injury 

DAMPS = Danger associated molecular patterns 

EGF = Epidermal growth factor 

FGF2 = Fibroblast growth factor 2 

GLP-1 = Glucagon-like peptide-1 

GUDCA = Glycoursodeoxycholic acid 

HDACs = Inhibitor of histone deacetylases 

HIF = Hypoxia-inducible factor 

HMGB 1 = High mobility group box 1 protein 

HPA axis = Hypothalamus-pituitary-adrenal axis 

ICU = Intensive Care Unit 

IGF1 = Insulin-like growth factor 1 

MSC = Bone marrow stromal cells 

NADPH = Nicotinamide adenine dinucleotide phos-
phate 

NOS = Nitric oxide synthase 

NOX = NOXs, NADPH oxidase 

PGE2 = Prostaglandin E2 

PRRs = Pattern Recognition Receptors 

ROS = Reactive products of oxygen 

SCFA = Short-chain fatty acids 

SCI = Spinal cord injury 

TBI = Trauma brain injury 

TJs = Tight junctions 

TLR = Toll like receptors 

TMAO = Trimethylamine-N-oxide 

TNFα = Tumor necrosis factor 

Treg = Regulatory T cells 

VEGF = Vascular endothelial growth factor 
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