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Abstract

Neurogenesis persists throughout life in the dentate gyrus region of the mammalian hippocampus. 

Computational models have established that the addition of neurons degrades existing memories 

(i.e., produces forgetting). These predictions are supported by empirical observations in rodents, 

where post-training increases in neurogenesis also promote forgetting of hippocampus-dependent 

memories. However, in these computational models which use 10–1,000 neurons to represent the 

dentate gyrus, forgetting is only observed at rates of new neuron addition that greatly exceed adult 

neurogenesis rates observed in vivo. In order to address this, here we generated an artificial neural 

network which incorporated more realistic features of the hippocampus – including increased 

network size (with up to 20,000 dentate gyrus neurons), sparse activity, and sparse connectivity 

– features that were not present in earlier models. In addition, we explored how properties of 

new neurons – their connectivity, excitability, and plasticity – impact forgetting using a pattern 
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categorization task. Our results revealed that neurogenic networks forget previously learned input-

output pattern associations. This forgetting predicted a performance enhancement in subsequent 

conflictual learning, compared to static networks (with no added neurons). These effects were 

especially sensitive to changes in increased output connectivity and excitability of new neurons. 

Crucially, forgetting was observed at much lower rates of neurogenesis in larger networks, with 

the addition of as little as 0.2% of the total DG population sufficient to induce forgetting.
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1. Introduction

The dentate gyrus (DG) of the hippocampus is distinct from many other regions in the 

brain, in so far as the production and integration of new neurons continues throughout life 

in humans [1–4] (but see [5]), and many non-human mammalian species [6–10]. Newly 

generated neurons are produced in the subgranular zone of the hippocampus, and within 

weeks they migrate and integrate into the DG. They transiently have distinct properties 

compared to developmentally-generated granule cells: they are more excitable (i.e., have a 

greater probability of firing) [11–13], more plastic (i.e., more readily undergo LTP) [14,15] 

and have different wiring properties than their mature counterparts [16,17]. The dentate 

gyrus has particularly sparse activity compared to other regions of the hippocampus [18]. 

Hence, a relatively active population of immature neurons in the DG is well-situated to 

impact activity locally within the DG as well as downstream. Accordingly, behavioral 

studies examining the impact of manipulating levels of hippocampal neurogenesis in 

adult rodents have suggested neurogenesis levels regulate a diverse collection of cognitive 

function in the hippocampus including pattern separation [19–21], forgetting [22], cognitive 

flexibility [23,24], modulation of systems consolidation [25] and mood regulation [26,27].

In order to understand how neurogenesis modulates hippocampal function, and memory in 

particular, various computational models have been explored [28–34]. These models have 

examined the impact of neurogenesis on new learning, as well as the stability of previously 

learned information. The general findings are that neurogenesis, on one hand, is beneficial 

for encoding new information and, on the other hand, may degrade stored memories (but 

see [31–33]). However, these previous models did not capture important features of the 

hippocampus, and, in particular, the DG: (1) The rodent DG contains > 1,000,000 granule 

cells [35]. Previous models used much lower numbers of neurons in the layer corresponding 

to the DG (10–1000); (2) In the rodent trisynaptic circuit, entorhinal cortex (EC) → DG 

→ CA3, the approximate ratio of numbers of neurons in these subregions is 1:10:2 [36]. 

Previous models did not preserve the approximate ratio of neurons within the trisynaptic 

circuit. (3) Recurrent connections in CA3 allow for pattern completion. Previous models 

did not incorporate pattern completion capabilities in CA3. (4) Estimated rates of DG 

neurogenesis in adulthood are low, ranging from below 0.01% of the DG per day in 

macaques and humans [7,37,38] to 0.03–0.06% per DG per day in rodents. Previous models 

have observed effects on mnemonic function, but only after adding 5% to 30% of the DG 
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(across time or in one single epoch). Even the lower end of this range very much exceeds 

biological estimates.

Here we generated an artificial neural network (ANN) to explore the impact of 

neurogenesis on forgetting and also the interaction between forgetting and new learning. 

We established two main goals. First, to generate an ANN that incorporates the key 

features of the hippocampus, as outlined above, thereby permitting exploration of the 

impact of neurogenesis on hippocampal memory function under more physiologically-

plausible conditions. Second, to use this model to systematically explore the impact of 

the unique properties of newborn neurons (connectivity, excitability, and plasticity) on 

memory function. Accordingly, our ANN was sparsely connected, had sparse activity, 

and layer sizes that mimicked EC→DG→CA3 neuroanatomy. Within our model we 

manipulated the excitability, plasticity, and connectivity of newborn neurons, and also 

varied network size (simulated DG size ranging from 500→20,000 neurons). The network 

was trained on a categorization task requiring pattern completion. Our main findings are 

that adding new neurons after original training promotes forgetting. These effects are 

observed regardless of network size, and are exacerbated by increased excitability and 

output connectivity of newborn neurons. In turn, neurogenesis-mediated forgetting facilitates 

new conflictual learning. Following forgetting of original categorizations, networks with 

neurogenesis exhibited facilitated reversal learning. Crucially, these same forgetting and 

facilitated reversal learning effects occur at low rates of neurogenesis (on par with biological 

estimates).

2. Methods

2.1. Three layer model of the hippocampus

We are using a feed forward artificial neural network (ANN) in which the input, hidden, and 

output layers are intended to model the EC, and DG and CA3 layers of the hippocampus. 

The network is a multilayer recurrent neural network, where the recurrent connections only 

exist in the output layer. This was implemented in order to observe pattern completion in the 

network in a manner that reflects the putative role of the CA3 in pattern completion in the 

hippocampus [39]. The network was built in Python 3.6 using Pytorch 0.4.1., and NumPy 

1.14.3.

2.2. Model architecture

Based on relative numbers of neurons in the EC, DG and CA3 of rodents, the size of each 

layer, N, approximately reproduces the ratio of neuronal numbers between these regions 

(500, 5000, 1000 or 1:10:2).

Similarly, estimates from anatomical studies informed the choice of synaptic connectivity, 

syn, between these regions where syn is the proportion of target weights for each neuron in 

a layer to neurons in the next layer. For our network, we consider three values of syn: syni 

which is the proportion of target weights from the EC onto each DG neuron, syno which is 

the proportion of target weights from each DG neuron to the CA3, and synCA3 which is the 

proportion of recurrent connections in the CA3 given by:
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syni = 7
NEC

= 0.014 (1)

syn0 = 10
NCA3

= 0.01 (2)

synCA3 = 50
NCA3

= 0.05 (3)

where the numerator is the number of actual connections to the target layer, and the 

denominator is the total possible connections to the target layer equivalent to the number of 

neurons in the target layer.

Values of syni = 0.014, syno = 0.01, synCA3 = 0.1 for all experiments unless otherwise 

stated.

2.3. Layer activations

We applied a k-winners-take-all (KWTA) rule in order to maintain sparse activation of 

neurons in each layer, thereby capturing the sparse activations and inhibitory connections 

observed in these regions [40]. We used PyTorch’s topk to identify the k-largest activations. 

These top K neurons were set to 1 and the remainder of the neurons were set to 0. The 

proportion of neurons active in each layer, K, is given by:

KEC = sEC ⋅ NEC (4)

KDG = sDG ⋅ NDG (5)

KCA3 = sCA3 ⋅ NCA3 (6)

where s is the sparsity of activations (the proportion of active neurons in a layer). We used 

values of 0.1, 0.05 and 0.1 for s in KEC, KDG and KCA3, respectively. We determine the layer 

activations, H, for the feedforward layers as follows:

Hl = topk W lHl − 1 + bl (7)

where topk is the KWTA function, W is the weights feeding into that layer, Hl−1 are the 

previous layers activations, and bl is the bias.

We calculate the recurrent output layer activations over two time steps as follows:

HCA3k = topk HCA3k − 1W CA3 + HDGW o (8)
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where HCA3k is the CA3 activations at time k, where HCA3k − 1 is the CA3 activations at 

previous time, WCA3 are the recurrent weights, and HDGWo is constant external input to the 

CA3 consisting of the DG activations and weights from the DG to CA3.

2.4. Weight updates

We randomly initialized the sparse synaptic weights representing neuronal connectivity 

using normal distributions with the variance proportional to input layer size, termed Xavier 

initialization [41]. Specifically, the variance, var, is given by the following:

var = 2
nin + nout

(9)

where nin and nout are the number of inputs and outputs of the layer, respectively.

The loss function, L, is given by the Hamming distance which measures the bit difference 

between two vectors, and is given by the following equation:

L = ∑
i = 1

k
|xi − yi| (10)

where x and y are binary vectors representing the target and actual output patterns, and i 
represents the sequence of patterns.

To maintain syni, syno and synca3 to the preset levels, we generated a mask, m, such that 

any weights with zero values cannot change. Furthermore, weights are clamped to values 

between −1 and 1 by capping the values once they reach |1|. The weight update for our 

network is as follows:

W i C W i + αδW iL ⊙ mi (11)

where Wi are the weights, α is the learning rate, δWiL is the backpropagated error for the 

weights with respect to the loss, L, given above, mi is the mask, and C(·) is the capping 

function given by:

C(x) =
1 x ≥ 1
x −1 ≤ x ≤ 1
−1 x ≤ − 1

(12)

The recurrent layer updates using backpropagation through time and the remainder of the 

layers learn through standard gradient descent (for review, see [42]) using the PyTorch 

Autograd module. Each update involves a complete pass of the full training set (not in 

batches).

Once the network generates an output pattern given an input pattern, we calculate the error 

between the target output and the generated output. Here, each type of input pattern is paired 

to one of four randomly generated target output patterns (i.e., A, B, C, or D output patterns) 
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(see 2.2 for the associative learning task). Using backpropagation, error signals generated at 

the output are sent back through the network layers to adjust the weights. This error signal is 

typically reduced in magnitude by a learning rate, α, typically a value less than one, which 

scales the relative size of weight updates at each iteration. We found a learning rate, α, of 

0.0005 led to the least variable learning curves using a grid search (from 1×10−6 to 1, with 

21 values spaced evenly on a log scale), testing on a separately generated validation set with 

25 patterns. We used this value for all experiments. This procedure of determining the error, 

and propagating back through the network is repeated until 100 iterations have been reached 

for initial training, and 85 iterations for subsequent new or reversal training (see 2.2.1).

2.5. Measuring network performance

We tested the network’s ability to reproduce the target output pattern upon presenting an 

input pattern from a test set of 25 patterns that the network had not seen during training. 

This accuracy measure is calculated using the Hamming distance, adjusted for the KWTA 

rule and sparsity level of the output layer:

accuracy = 1 − L
KCA3

× 100 (13)

where L is the loss function given by the Hamming distance, as described in 2.1.3, and KCA3 

is the number of neurons active at the given sparsity level for the output layer (KCA3 = 0.1 

for all experiments). This accuracy measure is averaged across all test patterns to obtain an 

estimate of the network’s performance.

2.6. Associative learning task

We trained the network on categorical input (EC) to output (CA3) pattern pairings. During 

each training stage, networks were presented an input pattern belonging to one of two 

categories (A and B, B and A, or C and D, see Section 2.2.1), and across training, networks 

learned to produce the associated target output pattern for that category. We generated input 

layer patterns drawn from four categories of input neurons, A, B, C, or D. The input layer 

is randomly divided into four subpopulations such that every input neuron belongs to either 

category A, B, C, or D. The total number of neurons active (i.e. neurons with activations set 

to 1) per input pattern is given by (KEC) (see eq. 4).

Each input pattern from a single category consisted of active neurons of which 60% belong 

to the category, and the remaining 40% belong to the other three categories. For example, in 

A input patterns, of the 250 active neurons, 150 neurons belong to the A subpopulation, and 

100 neurons belong to either B, C, or D subpopulations.

We randomly generated 50 of these input patterns for each category, comprising the training 

set. An additional 50 non-overlapping input patterns were generated (25 for testing, 25 for 

validation). We also generated 50 overlapping input patterns to control for the impact of 

overlap in the test set.

For each category, the input patterns are associated with a single category-specific output 

(Fig. 1). The overall goal of the training is for the network to identify which category the 
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majority of active EC neurons belong to and produce that category’s target CA3 pattern. The 

CA3 target output patterns for the four categories are randomly generated producing four 

patterns with KCA3 active neurons.

2.7. Training stages

To create two distinct learning phases, training1 and training2, we only train on A and B 

patterns in training1. Using backpropagation, we are able to use the error between the target 

output and the observed output patterns to train the weights of the network. Following 

training1, we tested the network with or without first introducing post-training neurogenesis. 

The test consisted of presenting the network with new patterns from category A or B it had 

not seen, and measuring its ability to correctly produce the corresponding output pattern.

After training1 on A and B categories, we then trained the network on a different set 

of patterns in training2. We used either two new categories, C and D, (new learning) or 

the same categories with reversed outputs, B and A (reversal learning). In training2, we 

measured both the accuracy attained once the performance plateaued (does not increase 

by more than 0.5% accuracy), and the number of epochs required to reach this final 

performance, tfinal. These were performed with and without adding new neurons after 

training1 (e.g. Fig. 2A).

2.8. Measuring forgetting and enhanced learning

We investigated the relationship and impact of neuronal addition and loss by measuring 

dforget and dlearn given by:

dforget =
test1static − test1neurogenesis

test1static
(14)

dlearn =
test2neurogenesis − test2static

test2static
(15)

Test1 occurs after adding or not adding neurogenesis following training1, and consists of 

testing the accuracy of the networks on the test sets for the A and B categories. Test2 occurs 

after training2 and involves testing the networks either with or without neurogenesis on the 

test sets used for training2. Static refers to a network with no neurogenesis.

To avoid random effects of different initializations, for experiments correlating dforget and 

dlearn across initializations, a copy of each model is made after training1 before neurogenesis 

occurs. One copy receives neurogenesis and the other does not. These undergo training2 to 

obtain dlearn and the comparison is made between neurogenic and static copies of the same 

model, repeated 500 times.
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2.9. Neurogenesis

New neurons were exclusively added to the hidden layer (DG) of the model between 

training1 and training2 (see Section 2.2). These new neurons, similar to the ‘mature’ 

neurons, receive input from the EC and output onto the CA3 neurons, however, the sparsity 

of their connections were varied. New neurons also differ in terms of sparsity of activation 

(excitability) and learning rate (plasticity). We studied the impact of these properties on 

network performance by exploring the effects across the parameter space.

We calculated the KWTA for the ‘mature’ neurons as described in Section 2.1.2, and 

repeated this for the new neurons using the appropriate K values (KDGmat = 0.05 for all 

experiments, and KDGnew = 0.2 for all unless otherwise stated). The resulting activations are 

summed to produce the first hidden state of the CA3 activations, Y CA31:

Y CA31 = Y DGW CA3mat + Y DGW CA3new  where W CA3mat and W CA3new are the weights 

connecting the ‘mature’ and new neurons, respectively, to the CA3. All weights for the 

new neurons were generated the same way weights were initialized in the ‘mature’ neurons 

(2.1.3).

2.10. Rate of neurogenesis

The level of neurogenesis, pnew, is the proportion of neurons added to the hidden layer. It is 

given by:

pnew =
Nnew
NDG

 where Nnew is the number of new neurons added in a single epoch, and NDG is 

the number of neurons in the DG (hidden) layer.

For the majority of experiments we used pnew = 0.05. This was based on an analysis of 

effects of neurogenesis rates on differently sized neural networks. We found that pnew = 0.05 

in a network with 5000 hidden units caused forgetting comparable to a much larger network 

(20000 hidden units) with pnew = 0.002, as the effects of new neurons scales with the size of 

hidden layer (see Figure 8).

Here, pnew corresponds to the number of new neurons that would be approximately 3–5 

weeks of age at a given timepoint, which carry the unique properties of adult-generated 

granule cells that were explored in this paper.

2.11. Input and output connectivity

The impact of input and output connectivity of new neurons on network performance was 

explored. Similar to ‘mature’ neurons, a new neuron can receive a proportion, syn, of all 

possible connections, termed syni or syno for input and output synapses, respectively (see 

2.1.1).

We varied connectivity of new DG neurons, synnew for input and output connectivity using 

the following:
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synnewi = syni ⋅ ci s.t. ci 0, 0.5, 1, 1.5, …, 10

and

synnewo = syno ⋅ co s.t. co 0, 1, 2, …, 10

where ci and co are constant factors used to vary the input and output connnectivity, 

respectively. We measured accuracy after training1 and training2 with and without 

neurogenesis after training1.

2.12. Plasticity

To explore the role of plasticity of newborn neurons on network performance, we modulated 

the learning rate, αnew (see 2.1.2) of only the new neurons, while keeping the learning rate 

of other neurons fixed across experiments. This is given by:

αnew = αmat ⋅ cα s.t. cα 0, 0.5, 1, 1.5, …, 20

where the cα is the factor used to vary αnew.

A value of cα = 4 is used for all new/reversal learning experiments with higher values not 

appearing to provide any further benefit.

2.13. Excitability

Excitability was modelled in our networks as the sparsity of activations. The sparsity of the 

‘mature’ DG, nDGmat was 0.05 for all experiments, i.e. with 250 of the 5000 DG neurons 

active on any given forward pass, based on the KWTA-rule (see 2.1.2). To explore the role 

of excitability of newborn neurons on network performance, we modulated the excitability 

of only the new neurons, while keeping the excitability (i.e. sparsity) of the ‘mature’ neurons 

fixed. This is given by:

nDGnew = nDGmat ⋅ cexc s.t. cexc 0, 0.5, 1, 1.5, …, 20

A value of cexc = 4 such that nDGnew = 0.2 was used for all other experiments, i.e. 50 of 250 

new neurons were active in each forward pass. The sparsity of new neurons was chosen to be 

4 times greater based on in vivo results.

2.14. Neuronal and synaptic turnover

In some experiments, we not only added neurons, but explored the loss of neurons as well. 

The ratio of loss to addition, preplace is defined by

preplace = Nloss/Nnew
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where Nloss is the number of ‘mature’ neurons lost, and Nnew is the number of new neurons 

added.

Neuronal turnover is defined here as a loss of neurons when new neurons are added. We 

tested the impact of turnover by varying Nloss and Nnew systematically, from values of 

0 to 1000, at increments of 25. Due to the computational intensity of this approach, we 

decided to stop at a maximum of 20% loss or addition to the DG population, but predict that 

this becomes biologically irrelevant at values beyond this, given that rates of neurogenesis 

observed in vivo are much lower.

2.15. Statistical analyses and plotting

All statistics were performed using the scipy.stats module in Python 3.6. Error bars on 

graphs represent the standard error of the mean, across different initializations of the model, 

where each experiment is repeated 20 times unless otherwise stated. Comparisions were 

made using a two-way factorial, or one-way ANOVA with Tukey’s HSD post hoc test where 

appropriate. Significance indicated by an asterisk (*) for p-values less than 0.05 unless 

otherwise stated. Graphs were generated using the seaborn package in Python 3.6, and 

compiled into figures using Inkscape.

3. Results

3.1. Generation of a 3 layer ANN with neurogenesis occurring in the hidden layer

To study the impact of neuron addition on memory stability we generated a 3 layer ANN, 

with the input layer corresponding to the EC, the hidden layer corresponding to the DG, and 

the output layer corresponding to CA3, which has dense recurrent connections (Fig. 1A). 

The network is comprised of 500, 5000 and 1000 units in the EC, DG and CA3 respectively, 

capturing relative neuron number ratios in these regions in rodents [36]. Neurogenesis 

occurred only in the hidden (DG) layer. Mature DG neurons receive sparse inputs from 

the EC [45], and send sparse output connections to CA3 [36], and are sparsely activated 

relative to EC and CA3 [46]. In contrast, new DG neurons receive fewer inputs from the EC 

[16], send more output connections to the CA3 [47], and are more excitable relative to their 

mature counterparts [12]. We incorporated these distinct wiring and physiological properties 

of new and mature DG neurons in our model.

We trained this network on a categorization task. Our training set comprised of 50 A and 

50 B binary input patterns (with sparsity of 10%) (Fig. 1B). These patterns overlapped by 

40% in cluster membership. All A or B patterns were associated with a single A or B output 

pattern, respectively, each with a sparsity of 10% of the output layer size. A further 40 

patterns were generated for A and B, with no overlapping neurons, comprising our test set 

(see 2.2 for further details). We confirmed that our model is able to categorize A and B 

input patterns significantly above chance levels of 10% (Fig. 1C). We further established that 

categorization performance did not depend upon selecting only non-overlapping neurons in 

the test set: Testing on patterns with the same overlap as the training set (i.e., 40%) produced 

similar categorization accuracy (Supplemental Fig 1).
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A typical experiment involved training on A and B patterns, and then adding new neurons 

(neurogenesis condition) or not (static condition) to the middle layer of the network. The 

network was then tested on the remaining A and B patterns (Fig. 1D). A training epoch 

consisted of presenting our input patterns to the model, calculating the Hamming distance 

between the expected output A or B patterns and the actual output patterns from our 

model (Fig. 1E), and propagating the error backwards through the network using stochastic 

gradient descent (see 2.1.3).

3.2. Hippocampal neurogenesis induces forgetting of stored memories

We first assessed how neurogenesis impacts the stability of stored memories. To do this 

we trained the network in the AB categorization task, and then added new neurons to the 

hidden layer (Fig. 2A). We varied the proportion of new neurons added, where proportion 

is the ratio between new and old neurons (pnew = Nnew/NDG). After adding new neurons, 

we compared performance on previously unseen AB test patterns. We hypothesized that 

post-learning neurogenesis would cause forgetting, with more forgetting as more neurons are 

added to the DG. Consistent with our hypothesis, we found that forgetting was dependent 

on the proportion of new neurons added, with forgetting plateauing (when the change in 

performance is less than 5% between epochs) when pnew > 0.05 (Fig. 2B). This corresponds 

approximately to levels of neurogenesis observed in young adult rodents across a 2–3 week 

time-span, and based on cross-species analyses of rates of neurogenesis, this value likely 

also falls within the rates observed in primates and humans [1]. Therefore, we chose this rate 

of neurogenesis in all future experiments.

To further investigate how forgetting may be further modulated by initial encoding, we 

attempted to curb forgetting by overtraining our network by training for more epochs, or 

providing our network with more input pattern exemplars during training (Fig. 2C,D). In 

both cases, we saw similar forgetting effects despite making the memories stronger.

3.3. Rates of forgetting are modulated by connectivity of newborn neurons

As newborn neurons integrate into hippocampal circuits they form input and output 

connections. We hypothesized that forgetting should be sensitive to the extent of integration 

of newborn neurons, such that increased input or output connectivity should produce 

more forgetting. Therefore, we next examined the impact of different levels of new 

neuron input and output connectivity on forgetting. To do this we trained our network 

on the AB categorization task as before, and, following training, new neurons were 

added at the pnew rate (i.e., 0.05) (Fig. 3A). We first manipulated the input connectivity 

of new neurons (relative to mature granule cell connectivity), while maintaining output 

connections at mature granule cell levels. We initially selected 3 levels of input connectivity 

for newborn neurons: hypo-integration (corresponding to 0.5X mature granule cell input 

connectivity), normal-integration (matching mature granule cell input connectivity) and 

hyper-integration (corresponding to 4X mature granule cell input connectivity). We found 

that all levels of input integration resulted in similar levels of forgetting (Fig. 3B left). We 

then comprehensively evaluated forgetting across a range of input connectivities. We found 

that there was no effect of increasing input connectivity of new neurons on forgetting within 

the parameter range of 1 to 10 times the connectivity of a mature neuron (Fig. 3C).
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We next manipulated the output connectivity of new neurons (relative to mature granule cell 

connectivity), while maintaining input connections at mature granule cell levels. We selected 

3 levels of output connectivity for newborn neurons: hypo-integration (corresponding to 

0.5X mature granule cell output connectivity), normal-integration (matching mature granule 

cell output connectivity) and hyper-integration (corresponding to 4X mature granule cell 

output connectivity). With normal output connectivity, neurogenesis induced forgetting, as 

we observed previously. These levels of forgetting were exacerbated by increasing output 

connections of newborn neurons, while restricting the integration of newborn neurons into 

the circuit abolished the forgetting effect (Fig. 3B right). We then comprehensively evaluated 

forgetting across a range of output connectivities. We found that there was an effect of 

increasing output connectivity of new neurons on forgetting within the parameter range of 1 

to 10 times the connectivity of a mature neuron (Fig. 3D).

Finally, we changed input and output connectivity of newborn neurons simultaneously. 

We observed a similar increase in forgetting with increased connectivity, as seen with 

manipulating output connectivity alone. This lack of interaction suggests that forgetting is 

primarily sensitive to changes in output connectivity of new neurons (Fig. 3E).

3.4. Rates of forgetting are modulated by excitability of newborn neurons

Newborn neurons are transiently more excitable than mature granule cells between 4–7 

weeks of age [12,13]. We therefore next examined how new neuron excitability modulates 

forgetting in our ANN. To do this we trained our network on the AB categorization task 

as before, and, following training, new neurons were added with varying excitability levels 

(Fig. 4A). In our model excitability was determined the sparsity of activation (i.e., using the 

KWTA-rule, see 2.1.2). To mimic excitability changes, we varied sparsity in the new neuron 

population relative to sparsity in the mature neuron population, with increased excitability 

corresponding to decreased sparsity (Fig. 4B). We hypothesized that increased excitability of 

new neurons (relative to their mature counterparts) would cause more forgetting. As sparsity 

decreased (i.e., excitability increased) in the new neuron population, forgetting increased 

(Fig. 4C,D). Forgetting was also observed even when sparsity in the new neuron population 

was higher (i.e., excitability decreased relative to the mature granule cell population) (Fig. 

4C). More importantly, when fold-changes in excitability matched those typically observed 

in vivo (i.e., ~2–4X [15,43]), forgetting rates were near maximal. We chose a value of 4X 

the excitability of the mature neurons as the default value for all following experiments.

3.5. Forgetting facilitates reversal learning

Forgetting stored memories may be useful in environments that are dynamic, and where 

contingencies are constantly changing [48]. Consistent with this idea, we have shown 

that artificially elevating hippocampal neurogenesis weakens established memories, but 

facilitates encoding of new information that conflicts with previous learning [24]. Therefore, 

we next explored how forgetting impacts new category learning that is either conflictual 

or non-conflictual in nature. We hypothesized that neurogenesis-mediated forgetting should 

positively correlate with levels of conflictual, but not non-conflictual, learning.
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To do this we trained the network on the AB categorization, and then added new neurons 

to the hidden layer and tested performance on the AB categorization (test 1). Next we 

re-trained the network on a reversal task, where inputs pattern which would have normally 

corresponded to A now corresponding to B (and vice-versa). We tested performance on the 

BA categorization to assess the efficiency of reversal learning in networks with and without 

neurogenesis (test 2) (Fig. 5A).

Post-training neurogenesis induced forgetting of the AB categorization in test 1 (inset, 

Fig. 5B). Across 500 replications we calculated dforget (i.e., the difference between 

performance in static vs neurogenesis conditions). As expected, networks with neurogenesis 

outperformed static networks in the reversal task (i.e., BA categorization). BA learning 

was faster in networks with neurogenesis, reaching asymptotic performance far sooner than 

static networks (Fig 5B). To quantify this advantage we computed dlearn (i.e., the difference 

in performance between neurogenic and static networks when the neurogenic network 

performance reaches asymptote). To assess how forgetting interacts with subsequent 

conflictual learning we plotted dlearn against dforget (Fig. 5C). We found that forgetting 

moderately predicted subsequent conflictual learning, consistent with published mouse 

behavioral experiments [24].

We additionally assessed non-conflictual learning (i.e., new category learning (CD)) 

following forgetting (Fig. 5D). As before, post-training neurogenesis induced forgetting of 

the AB categorization in test 1 (Fig 5D, inset). However, there was only modest facilitation 

of CD learning in the neurogenic network compared to the static network (Fig. 5D), 

suggesting that forgetting primarily facilitates subsequent learning in conflictual (but not 

non-conflictual) situations. Consistent with this, there was no relationship between dlearn and 

dforget (Fig 5E).

3.6. Excitability and output hyperintegration drive reversal learning enhancements

To test the impact of plasticity, excitability, and input and output connectivity on the 

reversal learning enhancement, we varied these parameters in new neurons relative to 

the values used for mature neurons. We trained the network on the AB categorization, 

added new neurons with properties varied across the parameter space, and retrained in the 

reversal categorization (BA), as before (Fig. 6A). We hypothesized that increasing plasticity 

(i.e., learning rate), excitability, and input and output connectivity would enhance reversal 

learning (Fig 6B–E). We found that reversal learning accuracy was sensitive to increases in 

excitability (Fig. 6C) and output connectivity (Fig. 6E). However, reversal learning accuracy 

was largely insensitive to increases in learning rate (or plasticity) (Fig. 6B) and changes in 

input connectivity (Fig. 6D,F).

3.7. Forgetting and reversal learning in networks with loss and addition of new neurons 
(turnover)

Although the dentate gyrus is thought to have net growth through early to mid-adulthood 

in mice [49], this doesn’t exclude the possibility that fully mature granule cells are lost. 

Indeed, in rats ~17% of postnatally generated granule cells die between 2–6 months [50], 

indicating that the addition of new neurons is accompanied by loss of some fully mature 
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granule cells. We next explored how forgetting and reversal learning are affected by both the 

loss of mature granule cells, and the addition of new neurons in our ANN.

We first examined forgetting. We trained our network on the AB categorization, and then 

varied rates of neuron loss and addition and computed dforget. Compared to the static 

network, neuronal addition (in the absence of neuronal loss) increased forgetting, as seen 

previously (Fig. 7A). This increase occurred with relatively low rates of neuron addition 

(i.e., ~2%). Similarly, compared to the static network, neuronal loss (in the absence of 

neuron addition) increased forgetting. However, this only occurred when rates of neuronal 

loss exceeded ~10%, and forgetting rates were much lower compared to those observed 

with only neuronal addition. This suggests that forgetting in this model is more sensitive to 

neuronal addition than neuronal loss.

We next explored why neuron addition produced greater levels of forgetting than neuronal 

loss. In our model, neuronal loss is random and so it is unlikely that all neurons with the 

highest information content (i.e., neurons that pass the KWTA threshold) would be lost. 

Furthermore, when high information content neurons are lost, they would be most likely 

replaced by the other neurons with high information content (i.e., neurons that were just 

below the KWTA threshold) and therefore little forgetting would be predicted. We tested 

this intuition in the following way. We trained the network as before and then silenced the 

top k neurons. Then we either allowed replacement from the next ranking cohort of neurons 

or the bottom ranking cohort of neurons. We found that replacement with the next ranking 

cohort led to little forgetting. In contrast, there was much higher levels of forgetting when 

replacement neurons were selected from the bottom ranking cohort (Supplemental Figure 2). 

This suggests the network is resilient to neuron loss because replacement neurons are drawn 

from the next ranking neurons which will inevitably contain rich information.

In the same model, we next evaluated reversal learning following forgetting (i.e., dlearn). 

Compared to the static network, neuronal addition (in the absence of neuronal loss) 

increased dlearn, and this facilitation was observed at relatively low rates of neurogenesis 

(> ~2%) (Fig. 7B). In contrast, neuronal loss (in the absence of neuronal addition) impaired 

reversal learning only when loss exceeded ~10% of total DG. However, neuronal addition 

appears to be protective against the effects of neuronal loss on reversal learning. At rates of 

neuronal loss > ~10%, reversal learning was still enhanced when neurogenesis levels were 

above ~2%.

3.8. Forgetting and facilitated reversal learning at low rates of neurogenesis is observed 
in large networks

In our network, the input (EC), middle (DG) and output (CA3) layer had 500, 5000, 1000 

neurons, respectively. To evaluate whether network size impacts observed forgetting rates 

following neurogenesis, we trained and tested our network as before (Fig. 8A) and varied 

numbers of neurons in input, middle and output layers while maintaining the 1:10:2 ratio. 

Forgetting was observed for all networks containing > 500 DG units, indicating that this is 

a robust phenomenon, even in very large networks (i.e., containing 20,000 DG units) (Fig. 

8B). Moreover, the minimum proportion of neurons added in order to observe forgetting 

(defined as a minimum of 10% decrease in network performance) decays as network size 
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increases (Fig. 8C), suggesting that even lower rates of neurogenesis may significantly 

impact memory storage at more biologically relevant network sizes (e.g. 1,200,000 neurons 

in rat DG and 7,000,000 in macaques [35]).

We next explored the difference between models where new neurons have the same 

properties as their mature counterparts, and models where new neurons have the distinct 

properties observed biologically (increased excitability, different wiring etc.). We found that 

by distinguishing the new neurons from the mature neurons by changing their properties 

to simulate those observed biologically, we see that even lower levels of neurogenesis are 

required to observe similar effects (0.2%) which is more in line with estimates of human 

rates of neurogenesis [38] (Fig. 8B,C).

To evaluate whether enhanced reversal learning is observed across both smaller and larger 

(and more biologically plausible) ANNs, we varied the size of the DG (and scaled input 

and output layers accordingly). We trained the network on the AB categorization, added 

new neurons (or not), and then retrained in the reversal categorization (BA), as before. We 

found that reversal learning depended upon network size. Whereas in small networks (e.g., 

< 5,000 neurons in the hidden layer) forgetting occurred with low to moderate rates of 

neurogenesis, this was not associated with enhanced reversal learning. Only when networks 

exceeded ~5,000 neurons in the hidden layer, was enhanced reversal learning observed. 

Indeed, reversal learning increased as a function of network size (at least up to hidden layers 

containing 20,000 neurons) (Figure 8D, E).

We again explored the difference between models where new neurons have the same or 

different properties than their mature counterparts. We found that by distinguishing the 

new neurons from the mature neurons, we also observed that lower levels of neurogenesis 

were required to observe similar learning enhancements (defined as a minimum of a 10% 

enhancement in network performance) (Fig. 8D right, and 8E blue line).

4. Discussion

4.1. Overview of results

In this paper, we built a model of the hippocampus to explore the impact of ongoing 

neurogenesis on memory using a categorization task. Consistent with previous models 

[30,51], we found that post-training neurogenesis caused forgetting. These forgetting effects 

were observed regardless of network size (from 500–20,000 DG neurons), and when the 

network was over-trained (either by providing the network with more exemplars during 

training or training over more epochs). We showed that forgetting was modulated by 

properties of new neurons, and identified output connectivity and excitability as key features 

of new neurons that promote forgetting. We also found that forgetting facilitated conflictual 

learning. When learning patterns that conflicted with previous training sets, higher rates of 

forgetting of the original categories was associated with more efficient reversal learning. 

Enhanced reversal learning was similarly modulated by the output connectivity and 

excitability of new neurons, and was observed regardless of network size. These findings 

support empirical work that shows that hippocampal neurogenesis regulates forgetting 

[22,24,52–54], and that partial forgetting allows animals to behave more flexibly in dynamic 
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environments [24], where contingencies change with time (see also [48]). Importantly the 

effects of neurogenesis on memory stability and flexibility were observed at biologically 

plausible rates of new neuron addition (e.g., when new neuron addition corresponded to 

~0.2% of DG layer size).

4.2. Exploration of parameters

Exploring properties of new neurons in isolation allowed us to examine their distinct 

contributions to forgetting and subsequent learning (either new or reversal learning). We 

found that input connectivity had little impact on either forgetting or reversal learning. In 

contrast, changing output connectivity markedly impacted memory stability and associated 

reversal learning. Similarly, increasing excitability also promoted forgetting and enhanced 

reversal learning. While excitability has been related to temporal integration (across multiple 

episodes) [33], our findings here point to an additional role in regulation of memory 

stability. Finally, the range of learning rates that we used in our model were lower than 

typically explored in conventional machine learning applications. We did not observe any 

relationship between learning rate of new DG neurons and reversal learning performance, 

most likely because we examined this more restricted learning rate range.

Our neurogenic networks were better than static networks in the reversal learning task 

(where conflictual patterns are learned). This corresponds with previous work that found 

post-training increases in hippocampal neurogenesis facilitated conflictual learning in mice 

[24]. We also found that levels of forgetting were weakly, but significantly, correlated with 

subsequent learning in the reversal (or conflictual) learning, and this same relationship was 

observed in mice [24]. Since reversal learning is useful in non-static environments, this 

supports the notion that hippocampal neurogenesis is important for cognitive flexibility 

[48,55]. We also observed improved learning of new patterns (i.e., CD categorization), 

consistent with previous models that emphasize the impact of neurogenesis on encoding 

new information [29,31–34,56]. However, compared to the effects on forgetting and reversal 

learning, this effect was modest in magnitude. This is most likely because large networks 

(such as the one we used) can learn the relatively small number of simple categorizations 

quite efficiently. Future work testing the ability of neurogenesis to enhance performance on 

more difficult learning tasks may address this issue.

Forgetting in these types of models might be caused by new neuron addition, loss of mature 

neurons or some combination of both. In the adult rodent hippocampus, it is likely that 

both new neuron addition, and loss of mature granule cells occur concurrently. Indeed, in 

line with this idea, there is significant loss of developmentally-generated neurons (from P6) 

between 2 and 6 months of age in rats [50]. To investigate this, we incorporated both neuron 

addition and neuron loss in our model. Surprisingly, we found that forgetting was primarily 

driven by new neuron addition: In order to produce equivalent forgetting, neuron loss needed 

to be an order of magnitude higher than neuron addition.

These results suggest that the hippocampus is quite resilient to neuron loss. We suggest that 

three features of the network likely contribute to its sensitivity to neuron addition vs. neuron 

loss. First, network resiliency to neuron loss is most likely because replacement neurons 

are drawn from the next ranking neurons which also contain rich information. When we 
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forced the network to use low ranking cohorts of neurons for replacement then significant 

forgetting was observed (Supplemental Figure 2). Second, the output layer is a recurrent 

network. This allows our network to pattern complete, and therefore even impoverished DG 

inputs may be sufficient for successful recall. Third, for neuron addition, the new neurons do 

not contain any information (because they are randomly initialized) and therefore these new 

cohorts add only noise, which may overwhelm the ability of the recurrent network to pattern 

complete.

4.3. Comparison to other neurogenesis models

Other models have also examined the impact of neurogenesis on forgetting of hippocampus-

dependent memories [30,51]. These models have also found that neurogenesis promotes 

forgetting, but, for the most part, used much higher rates of neurogenesis (e.g., 5–30%). 

These rates exceed values reported in the human hippocampus [1–4] and the hippocampus 

of non-human mammalian species [6–10]. In contrast, we observed forgetting when the new 

neurons represented as little as 0.2% of the total DG layer. We suspect that network size 

may have contributed to the prevalence of forgetting at proportionally much lower rates 

of neurogenesis in our study. In our main network, the middle layer contained 5000 DG 

neurons, whereas previous models contained only 10–1000 [28,30]. When we systematically 

explored the impact of network size on forgetting rates, in small networks (500–1000 DG 

neurons), much higher rates of neurogenesis were similarly required to produce forgetting 

(~5–10%). Consistent with this, in other models with fewer DG neurons, much higher rates 

of neurogenesis rates were necessary to produce forgetting (5–30%) [30,51]. In contrast, the 

levels of neurogenesis where we observe forgetting in our model match those observed in 

adult rodents (e.g., 1–5% per month [37,57]), and estimated in humans (0.12% per month 

[38]).

Our model additionally differed in a number of other important ways from previous models. 

First, we maintained the approximate ratio of neurons within the EC → DG → CA3 

trisynaptic circuit. Second, in our model the DG was sparsely connected, and we imposed 

sparse activity in this layer, matching sparse activation of the dentate that is observed in 
vivo [43,44]. The sparse connectivity additionally allowed us to explore how varying levels 

of integration of newborn neurons impacted forgetting and conflictual learning; something 

that was not possible in previous models that were fully-connected (see below). Third, 

we incorporated recurrency in the output layer. Recurrency allows for pattern completion, 

even with impoverished inputs, and mimics the autoassociative architecture of CA3 [58,59]. 

Despite recurrency making the network more resistant to changing inputs (i.e., resistant to 

forgetting), we still observed significant forgetting at low rates of neurogenesis, and even 

after overtraining.

Previous studies have established that new neurons transiently differ from their 

developmentally generated neighbors. For example, they receive fewer input connections 

from the EC, and send more output connections to the CA3 than their mature counterparts. 

Moreover, they are highly excitable (they have a greater probability of firing) [11,12] 

and also more plastic (are more readily able to undergo LTP) [60,61]. One of the core 

advantages of our model was that we were able to systematically explore how each of these 
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features contribute to forgetting. We found that neurogenesis alone (without incorporating 

the properties of new neurons) causes forgetting and enhanced reversal learning. However, 

building the properties of new neurons into our model further exacerbated these effects.

4.4. Limitations of the model

4.4.1. Backpropagation learning algorithm and multi-trial learning task—
Theoretical accounts of the role of the hippocampus emphasize its role in episodic learning, 

in which experiences are rapidly encoded in ‘one shot’ [62], without the need for multiple 

trials. In contrast, the learning algorithm used in our model required multiple exposures 

to the input-output pairings, and therefore learning was much more gradual in nature 

and required many trials. We note, however, that some forms of hippocampus-dependent 

learning are more incremental in nature, and perhaps related to the type of learning 

algorithm we use here. This includes many forms of maze learning (e.g., water maze [63], 

radial arm maze [64], Barnes maze [65,66]), non-spatial mapping (e.g., continuous tonal 

maps [67]), category learning (e.g., visual categorization [68]) and paired associate learning 

[69]. Indeed, post-training elevation of hippocampal neurogenesis induces forgetting of 

single-trial learning memories (e.g., contextual fear conditioning) [22,53], as well as multi-

trial learning memories (e.g., water maze [22,24], PAL [Epp et al, this issue]).

4.4.2. Implementation of neurogenesis—In our model, neurogenesis was 

implemented as a one-time addition of new neurons after learning AB categories, but 

before learning new (CD) or conflicting (BA) categories. However, it is likely that there is 

an impact of neurogenesis across time, such that a heterogeneous population of immature 

neurons born at different timepoints, and thus different stages of maturity, may support 

memory in more nuanced ways than captured in our model. Related to this issue, previous 

models concluded that neurogenesis protects, rather than overwrites, old memories [31–33]. 

In these models, neurogenesis was steady-state (i.e., occurred continuously) as the network 

encoded successive memories. Moreover, the properties of new neurons depended on their 

age−/− younger new neurons were transiently more plastic, but plasticity levels declined as 

neurons aged. Accordingly, memories that occurred close together in time were encoded 

by overlapping populations of highly plastic, new neurons, but memories that occurred 

further apart in time were encoded in separate populations of highly-plastic, new neurons. 

This allowed new learning to occur without impacting old learning. In contrast, in our 

network, we modeled a situation where there was a net gain in neurogenesis levels following 

learning. As discussed above, we suggest that new neurons added noise to the network 

and the degraded already stored information. Consistent with our findings, when one of 

these previous models implemented neurogenesis as a net gain (rather than steady-state), 

forgetting of previously learned information was also observed (see Fig. 5E–G, [33]).

5. Conclusions

Low rates of hippocampal neurogenesis have been reported in humans and non-human 

mammalian species [1]. Despite these low rates hippocampal neurogenesis, manipulations of 

hippocampal neurogenesis in rodents have consistently altered cognitive function, including 

forgetting. Our findings here showing that forgetting and conflictual learning are impacted 
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by relatively low numbers of new neurons (especially in larger networks), is consistent 

with this perspective. Moreover, these low rates of hippocampal neurogenesis have a greater 

effect when incorporating the unique physiological and anatomical properties of immature 

adult-generated neurons, such as enhanced plasticity, excitability and hyperintegration. We 

predict that at the scale of biological networks (~1,200,000 neurons in the rodent DG), small 

changes in hippocampal neurogenesis are sufficient to profoundly impact cognitive function.
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Fig. 1. 
Implementing neurogenesis in an ANN. (A) An illustration of our neurogenesis model and 

general properties of model. The three layers represent the EC, DG and CA3 in sequential 

order. Mature (orange) and new (green) DG hidden neurons receive inputs from the EC 

and send projections to the CA3 in a sparse manner. Furthermore, the CA3 is modelled 

as an RNN which has recurrent connections to itself. (B) The categorization task involves 

generating A and B input patterns that draw from subsets of the neurons arbitrarily assigned 

to A or B output patterns. These patterns are split into training (50) and test (25) sets. 

(C) The learning curve of the network on the AB categorization task. The network is able 

to produce the correct output patterns (~70% solid line) well above chance levels (~10%, 

dashed line). This is the mean learning curve across 20 initializations of the model. (D) An 

illustration of the experimental design. Networks were first trained on AB categorization, 

followed by the addition of new neurons to the DG (neurogenesis). Models with and without 

neurogenesis were then tested on the AB categorization. (E) An illustration of how the 

network learns and performance is measured. As the network is presented input patterns, 
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we measure the Hamming distance between the actual and expected outputs and convert the 

measure to an accuracy.
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Fig. 2. 
Forgetting impairs retrieval of categorization memory. (A) Illustration of forgetting 

experiment.(Left) Networks were first trained on AB categorization, followed by the 

addition of new neurons to the DG (neurogenesis). Models with (neurogenesis) and without 

neurogenesis (baseline) were then tested on the AB categorization. The difference in 

performance between baseline and neurogenesis is captured by the variable dforget. (Right) 

We vary pnew between 0 and 0.10, which is the amount of new neurons added as a 

proportion of the DG size (5000). (B) Plot of test error as we vary pnew. Networks with 

neurogenesis have worse performance as more neurons are added. We use a value of pnew 

= 0.05 in all subsequent experiments unless otherwise indicated. (C) Plot of mean dforget 

with overtraining on increasing training data (solid line). (D) Plot of mean dforget with 

overtraining for more epochs (solid line).
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Fig. 3. 
The impact of input and output connectivity on forgetting. (A) Illustration of forgetting 

experiment. Networks were first trained on AB categorization, followed by the addition of 

new neurons to the DG (neurogenesis). Models with neurogenesis and without neurogenesis 

(static) were then tested on the AB categorization. We varied the connectivity of the 

hidden layer’s input and output connections between 0 to 10X (relative to input/output 

connectivity of the mature neurons). (B) Plot of the varying effects of normal, hypo and 

hyper-integration of input and output connections vs. static (i.e., no neurogenesis or none). 

Left: Input connectivity significantly decreased AB categorization (Accuracy × Condition 

[F(1, 10) = 88.65, p = 3.50 × 1010]) where high (hyper), low (hypo) and normal levels 

of input connectivity were not significantly different. Right: There was a significant effect 

of output connectivity on AB categorization (Accuracy × Condition [F(1, 10) = 200.10, 

p = 2.17 × 1006]) whereby hyperintegration of output connectivity increased forgetting 

(p < 0.001, Tukey HSD post-hoc test), and hypointegration decreased forgetting (p < 

0.001, Tukey HSD post-hoc test) relative to the normal levels of output connectivity. 

(C-E) Plots of performance at varying levels of input (C), output (D) and concurrent input/

output (E) connectivity. Low rates of input connectivity were sufficient to cause forgetting. 

However, increasing levels of input connectivity did not produce further forgetting. Low 

rates of output connectivity were sufficient to cause forgetting, and forgetting increased with 

increased output connectivity. Similarly, forgetting increased when both input and output 

connectivity were varied concurrently.
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Fig. 4. 
The impact of neuronal excitability on forgetting. (A) Illustration of forgetting experiment. 

We varied the excitability of the pool of immature neurons between 0 to 10X that of 

the mature neurons. (B) Illustration of excitability in our model. Neurons are constrained 

by a KWTA rule such that only a sparse set of neurons (0.05 of the DG) with the 

highest activities are able to pass on information to the next layer. New neurons can 

have this sparsity reduced (hyperexcitability) or increased (hypoexcitability) beyond 0.05. 

(C) Plot of the varying effects of normal, hypo- and hyperexcitability of new neurons. 

Excitability significantly decreased AB categorization in the neurogenesis group (Accuracy 

× Excitability [F(1, 10) = 220.76, p = 4.97 × 1008]) whereby hyperexcitability increased 

forgetting (p < 0.001, Tukey HSD post-hoc test), and hypoexcitability decreased forgetting 

(p < 0.001, Tukey HSD post-hoc test) relative to the normal levels of excitability. (D) Low 

rates of excitability were sufficient to cause forgetting, and forgetting increased with reduced 

sparsity of the new neuron population.
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Fig. 5. 
Forgetting moderately predicts reversal learning enhancement. (A) Illustration of the 

experiment (left). dforget and dlearn calculated from Test 1 and Test 2, respectively, between 

neurogenesis and static groups (right) (B). Plot of Training 2 of reversal learning curves 

for 250 initialized neurogenic and static models. (Inset) Plot of the performance of the 

same neurogenic networks after adding neurons, compared to static networks. (C) Plot of 

dlearn vs. dforget of the 250 simulations of reversal learning on BA categorization, fit with 

a linear regression (r = 0.133, p = 0.007). (D). Plot of Training 2 of new learning curves 

for 250 initialized neurogenic and static models. (Inset) Plot of the performance of the same 

neurogenic networks after adding neurons, compared to static networks. (E) Plot of dlearn 

vs. dforget of the 250 simulations of new learning on C, D categorization, fit with a linear 

regression (r = −0.04, p = 0.4).
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Fig. 6. 
Exploring parameters involved in neurogenesis-mediated enhancement in reversal learning. 

(A) Illustration of the experiment. Excitability, plasticity, and input and output connectivity 

of new neurons are varied independently. (B) Plot comparing the performance of static 

and neurogenesis networks when varying plasticity (Group × Learning Rate [F(2, 20) = 

0.51, p = 0.477]). (C) Plot comparing the performance of static and neurogenesis networks 

when varying excitability (Group × Excitability [F(2, 20) = 179.48, p = 3.43 × 1030]). 

(D) Plot comparing performance of static and neurogenesis networks when varying input 

connectivity (Group × Input connectivity [F(2, 20) = 32.98, p = 5.46 × 1086]). (E) 

Plot comparing performance of static and neurogenesis networks when varying output 

connectivity (Group × Output connectivity [F(2, 20) = 199.34, p = 1.10 × 1031]). (F) Plot 

comparing performance of static and neurogenesis networks when varying both input and 

output connectivity (Group × Both Input/Output Connectivity [F(2, 20) = 0.25, p = 0.617]); 

Tran et al. Page 30

Behav Brain Res. Author manuscript; available in PMC 2021 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6F). All parameters of new neurons are shown as a relative value to values used for 

mature neurons. All plots show the mean and standard error of the mean of reversal learning 

across 20 experiments for each parameter. Horizontal dashed lines indicate performance of 

static networks. Shaded regions indicate the parameter range from values used in mature 

neurons to those used in immature neurons for figures 5,7,8 (vertical dashed lines).
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Fig. 7. 
Addition drives forgetting and reversal learning enhancement. (A) Heatmap of the dforget 

across varying fractions of loss and addition. Diagonal indicates balanced loss and addition. 

(B) Heatmap of dlearn across varying fractions of loss and addition. Each cell represents the 

mean of 20 experiments with different model initializations.
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Fig. 8. 
Forgetting and enhanced reversal learning at varying rates of neurogenesis and model 

size. (A) Illustration of experiment. (B) Left: Heatmap of dforget across different rates 

of neurogenesis and network sizes using mature neuron properties in new neurons. 

Right: Heatmap of dforget across different rates of neurogenesis and network sizes using 

biologically-inspired properties of new neurons. Each cell is the mean dforget of 5 

experiments with different model initializations. (C) Plot of the minimum pnew where a 

dforget is observed in B at different network sizes when using the mature neuron properties 

(gray) or new neuron properties (red). (D) Heatmap of dlearn across different rates of 

neurogenesis and network sizes. Each cell is the mean dlearn of 5 experiments with different 

model initializations. (E) Plot of the minimum pnew where a dlearn of 0.10 is observed in 

D at different network sizes when using the mature neuron properties (gray) or new neuron 

properties (blue).
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