Skip to main content
. 2021 Dec 31;240:108072. doi: 10.1016/j.knosys.2021.108072

Table 3.

IR Results on epic-qa-dev. Ranking quality and recall oriented systems are evaluated with and without neural reranking, for both passage and document retrieval strategies. RR column (2nd) indicates if reranking is used or not and when used the value of k.

(a) IR Results on epic-qa-dev for passage retrieval using neural reranking over 5000 element ranking. Recall oriented (PRF fbt=125fbd=30) vs. ranking quality (NDCG) oriented (PRF fbt=125, fbd=10) systems.
PRF optimized for RR NDCG R@500 R@1K R@2K R@3K R@4K R@5K
NDCG no 0.3993 0.3991 0.5169 0.6252 0.6796 0.728 0.7599
R no 0.3855 0.4002 0.5059 0.6118 0.6842 0.7253 0.7665

NDCG 0.9 0.4157 0.4612 0.5787 0.6724 0.7238 0.7604 0.76
R 0.9 0.403 0.456 0.5665 0.6705 0.7195 0.7555 0.76288
(b) IR Results on epic-qa-dev for document retrieval using neural reranking over 5000 element ranking. Recall oriented (PRF fbt=30, fbd=40) vs. ranking quality (NDCG) oriented (PRF fbt=10, fbd=40) systems.
PRF optimized for RR NDCG R@500 R@1K R@2K R@3K R@4K R@5K
NDCG no 0.5781 0.6731 0.761 0.8214 0.8363 0.8487 0.8652
R no 0.5596 0.6651 0.7675 0.8255 0.8446 0.8598 0.8712

NDCG 0.1 0.5807 0.7041 0.7867 0.8342 0.8538 0.8655 0.8686
R 0.2 0.5691 0.7041 0.7661 0.8271 0.8538 0.8655 0.8709