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been essential to mitigate the advance of the pandemic in several countries. We developed
a mathematical model capable of capturing the dynamics of the SARS-CoV-2 dissemination
aligned with social distancing, isolation measures, and vaccination. Surveillance data from
the city of Rio de Janeiro provided a case study to analyze possible scenarios, including
non-pharmaceutical interventions and vaccination in the epidemic scenario. Our results

Keywords: . .. . . .. .
SARS-CoV-2 demonstrate that the combination of vaccination and policies of transmission suppression
Vaccination potentially lowered the number of hospitalized cases by 380+ and 66+ thousand cases,

COVID-19 respectively, compared to an absence of such policies. On top of transmission suppression-
only policies, vaccination impacted more than 230+ thousand averted hospitalized cases
and 43+ thousand averted deaths. Therefore, health surveillance activities should be
maintained along with vaccination planning in scheduled groups until a large vaccinated
coverage is reached. Furthermore, this analytical framework enables evaluation of such
scenarios.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the emergence of the SARS-CoV-2 virus, the COVID-19 pandemic has reached many countries causing millions of
severe cases and deaths (Tangcharoensathien et al., 2021). The need for interventions was necessary to mitigate the pandemic
by reducing dissemination and in the next phase by starting vaccination (Brauner et al., 2021; Perra, 2021). Even with a
phased vaccination, some measures remain essential such as social distancing and isolation of cases until extensive vaccine
coverage is achieved. Many authors in the literature have pointed out the importance of combining non-pharmaceutical and
pharmaceutical interventions to hinder the pandemic (Borchering et al., 2021; Gumel et al., 2021; Huang et al., 2021; Patel
et al,, 2021). However, these interventions are geographically determined, depending on diverse factors from each city to
be applied, having different outcomes in different regions and populations.
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Several models studied the impact of social distancing (Matrajt & Leung, 2020). Models range from understanding the
epidemiological mechanisms behind SARS-CoV-2 and also to predict the dynamics of the epidemic. Schematic and extensive
reviews by Wynants et al. (2020) and Padmanabhan et al. (2021) evaluates diverse models against their predictive capa-
bilities. As SARS-CoV-2 is a challenging disease in terms of modelling due to its diverse epidemiological mechanisms that
involve different comorbidities (Gude-Sampedro et al., 2021), heavy dependence on public health capacity (Garcia et al.,
2020), different impact by age groups (Wu & McGoogan, 2020), the role of asymptomatic individuals (Day, 2020), and is
heavily affected by several interventions (Zamir et al., 2020; Lai et al., 2020). Models in the literature have been specializing in
understanding not only the general dynamics but also the impact of each factor to tackle each problem assertively. Regarding
the diverse epidemiological scenario, models have been developed to enlighten the question of which are the high-risk
population where public health authorities could focus resources (Gude-Sampedro et al., 2021; Das, Upadhyay, et al., 2021,a).

Several non-pharmaceutical interventions require prior careful analysis since they involve not only the number of cases
and deaths, but many also address psychological issues (Adeniyi et al., 2022; Rahaman et al., 2020), the necessary resources
for their application, and other health issues related to them, due to the emergence of other diseases during the pandemic
(Rana et al., 2021; Shimizu et al., 2021; Torner, 2020). Nonetheless, these interventions have been of paramount necessity in
reducing the number of deaths and hospitalizations worldwide (Spinelli et al., 2021; Perra, 2021; Lai et al., 2020; Flaxman
et al., 2020; Zamir et al., 2020; Jorge et al., 2021).

Since the beginning of the pandemic, vaccination and other pharmaceutical interventions have been an object of study
(Huang et al., 2021). However, only recently more thorough vaccination has been reached in various countries. Understanding
the specific dynamics that separate the impacts of non-pharmaceutical and pharmaceutical interventions is still debated in
the literature. It demands a modelling task that requires careful exploration of different classes of individuals through age
groups, and their specificities (Wu & McGoogan, 2020).

In this work, we develop and evaluate how a model can capture the dynamics of the SARS-CoV-2 pandemic and compare
scenarios with and without interventions to better deal with the ongoing SARS-CoV-2 pandemic and understand the real
impact of these measures. Results consider specifically the dynamics of the pandemic in the city of Rio de Janeiro, Brazil, as a
case study. However, implications of the results are general, such that they could be extended to other similar cities. Also, as
non-pharmaceutical measures are essential to mitigate the effects of the pandemic, the perspective of controlling it comes
with vaccination. However, its policies and methods for application need yet to be systematically addressed. Health sur-
veillance should be maintained along with the planning for effective vaccination.

2. Methods
2.1. Model

We modelled different scenarios with an ODE-based compartmental model. In the model, susceptible individuals (S) can
evolve to exposed (E) condition when in contact with infected individuals. The group of infected individuals is divided be-
tween asymptomatic cases (Y), symptomatic cases (C), which includes both mild and moderate cases (Cx), which can evolve
to severe cases (H). This last group occurs from the evolution of the symptomatic group and, therefore, is considered to
represent hospitalized individuals. All infected individuals can evolve to death (D) or recovered (R). We have also included the
dynamics of vaccination for a single dose. Vaccination individuals (V) can evolve into Immunized (I) or non-immunized
individuals (Im). Each of these model classes is stratified by age groups, from 0 to 100 years, in 5-year intervals, added by
one last age group of higher than 100 years, in a total of 21 groups of distinct age ranges for each compartment of the model.

Vaccination is included in the model as susceptible individuals are vaccinated at a coverage rate of 7. These vaccinated
individuals will take a pre-determined time 7jmmun to develop immunity at a probability of p; when they evolve to immunized
status (I). Due to incomplete vaccine efficacy, we included the possibility of the vaccinated individual not developing the
required immunization and still being susceptible (Im). Although some individuals are to be considered non-immunized, as
reported by other authors (Hogan et al., 2020), these individuals are less likely to be infected, develop symptoms, be hos-
pitalized, and die. Therefore, these individuals evolve to different but relatable classes of individuals, as shown in Fig. 1 with
the classes that end with the letter “v”. The reduced parameters related to these different degrees of severity were previously
reported (Hogan et al., 2020).

The infection rate between susceptible individuals and symptomatic is 8, and with asymptomatic individuals is §4. When
they become exposed individuals, the time to evolve to infected is the incubation time 7j,.. At the end of this time, the in-
dividual has a probability ps of developing symptoms.

The time required for an asymptomatic individual to evolve to death is a; 1, whereas for the symptomatic individuals is
a~ L It is expected that & > a4 due to higher morbidity in the former case, besides the fact that asymptomatic individuals do
not present themselves as clinical cases. Symptomatic individuals can evolve to a severe case with a risk probability of ay. The
symptomatic (C) and severe cases (H) individuals are modeled separately due to their different epidemiological mechanisms
(Liu et al., 2020; Siordia Jr, 2020), and to allow the test of non-pharmaceutical methodologies that target these individuals
separately. The separation between these individuals is mainly based on their symptoms, e.g., mild/symptomatic and
symptoms requiring hospitalization. Severe cases exhibit clinical conditions for hospitalization, such as oxygen saturation
lower than 93%, dyspnea, or multiple organ failure (Wu & McGoogan, 2020; Betti & Heffernan, 2021; Musa et al., 2021;
Chevrier et al., 2021). Both can evolve to death (or the symptomatic case can evolve to the severe case) separately with
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Fig. 1. Schematic diagram of the model compartments.

different case-fatality ratios, as shown in the literature (Wu & McGoogan, 2020). It is vital to understand whether isolating
only the severe cases is an adequate measure to mitigate the pandemic or if we should apply a broader approach when
applying non-pharmaceutical interventions.

The parameters related to asymptomatic individuals, such as §4 and «4 are calculated through a product between a
reducing factor (Byambasuren et al., 2020) f3 and the original parameter for symptomatic individuals ¢ and «, respectively.
Regarding the individuals that were vaccinated but are not immunized, another reducing factor is considered (Palacios et al.,
2021), fi. This factor applies to reduce the infection rate § with the product § - f,. These individuals also have a reducing factor
applied to their hospitalization risk (Palacios et al., 2021), fyH.

The recovery of infected individuals (symptomatic and severe) is controlled by the recovery rate (Zhou et al., 2020) v, being
modified to yy in the case of severe cases. Severe cases are hospitalized and thus receiving proper assistance confronting the
sickness. The hospitalized individuals can recover after a determined period, controlled by the discharge time 74;c and
dyspnea time 7g4ysp. The discharge time is a median time where individuals who present a clinical recovery are therefore
termed as recovered individuals and are no longer hospitalized. In contrast, the dyspnea time is the time from illness onset to
dyspnea clinical condition (Zhou et al., 2020). We calculated the recovery rate of individuals (yy = de—myp) using both the
discharge and dyspnea time, as we considered a stochastic implementation of our model.

The ODE system which resumes this model is:

ds

E:—ﬁ(CJrH)S—ﬁAYS—nS (1)

dE E

= B(C+H)S + BAYS + Bfo(C+H)Im + B o YS — — (2)
t ’ Tinc

dc E ayC ayyC

a_E _ _nC 3

it~ T a(—y) T a7 2

dy E aayC

Yoy Ly 4

dt (1=rs) Tine 1 —aa(1-7) ! ®

dH agyC H ayyH (5)

dr 1 —ay(1-7) _7disc*7dysp_1*a(1 —YH)
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2.1.1. Social distancing interventions

The model enables the application of intervention measures with the social distancing of specific age groups. Social
distancing affects people in reducing the probability of encounters between infected and susceptible individuals. Thus, we
simulate this condition by reducing the infection rates 8, 84, 8; and Gy, for the specific age groups. Due to imperfect application
of social distancing intervention, each intervention is controlled by a success rate.

The fact that the model is stratified by age groups opens a new range of different scenarios, e.g. when applying the social
distancing intervention to younger age groups, we can simulate limitation of school activities. The reduction is applied to the
Rp value, from which the infection rates are calculated, by multiplying it with the reduction factor x = 0.65. The social
distancing applied to the 0—20 years old age groups is labeled SD-Y, when applied to the age groups higher than 60 years old is
labeled SD-E, and when we apply the reduction to all age groups, we label this condition as SD-A.

2.12. Isolation interventions
The application of isolation interventions is made by reducing the encounter probability between susceptible and infected
individuals. Different scenarios are tested in this work. In the lockdown scenario (L), we alter the susceptible flow equation to

ds
i = P =0)(C+H)S = Ba(1—0a1)YS —nS (11)
Another intervention possibility is when tests are applied to the individuals, and a quarantine is applied where symp-

tomatic cases are isolated with a probability ¢ and asymptomatic with a probability ¢4, this condition is labeled as TQ-C. In
this scenario, we modify the susceptible flow equation to

g:fﬂ(lfa)(C+H)SfﬁA(1fcrA)YanS (12)

If we only isolate the symptomatic cases (scenario TQ), we change the susceptible individuals flow equation to

%:75(170)(C+H)575AY57175 (13)

The scenario where we only isolate the severe cases is termed TQ-S, and we modify the susceptible flow equation to

ds

ai- —B(C+ (1 —0)H)S—B4YS—1nS (14)

The exposed, vaccinated, and partially immunized compartments are also changed as the susceptible flow, depending on
the applied scenario. Table 1 summarizes the parameters used in the model with their respective values and references. Only
four parameters were fitted to represent the SARI notification data for the city of Rio de Janeiro: the basic transmission rate ()
via Ry, and the three probabilities of isolation (for symptomatic cases (¢), asymptomatic cases (¢4) and lockdown scenario
(01)). The other parameters are recovered from the literature (Table 1).

The parameter § is calculated from the previous definition of Ry value, the asymptomatic value (Byambasuren et al., 2020)
fa, the probability of developing symptoms (Byambasuren et al., 2020) ps, and the incubation time (Lauer et al., 2020) 7, with
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Table 1
Description of parameters in the model and values used in simulations with references.
Parameter Description Value
6 Infection rate Calculated using Ro
fa Asymptomatic factor 0.42 (Byambasuren et al., 2020)
B4 Asymptomatic infection rate fa-8
a Probability of successful isolation of symptomatic individuals 0.60
[ Probability of successful isolation of asymptomatic individuals 0.20
gL Probability of successful isolation during lockdown 0.75
ps Probability of developing symptoms 0.83 (Byambasuren et al., 2020)
a Death risk Depends on age group (Wu and McGoogan, 2020)
ay Hospitalization risk Depends on age group (Stokes et al., 2020)
ap Death risk of asymptotic individuals fa-a
Tdysp Time for dyspnea 7 days (Zhou et al., 2020)
Tdisc Discharge time 22 days (Zhou et al., 2020)
Tine Incubation time 5.1 days (Lauer et al., 2020)
¥ Recovery rate 1/6.5 (Zhou et al., 2020)
YH Recovery rate for hospitalized individuals Calculated using 7gisc and Taysp
I Immunization probability 0.493 (Palacios et al., 2021)
T Time to immunization 14 days (Palacios et al., 2021)
fv 6 reducing factor for I, individuals 0.163 (Palacios et al., 2021)
fon ay reducing factor for I, individuals 0.0 (Palacios et al., 2021)
Ro

= Tncrs T (= p5)0) (13)

Fig. 1 depicts a schematic diagram showing the model compartments.

2.1.3. Stochastic implementation

The model is implemented in a discrete-time fashion. Days were applied as the time units since cases are reported on a
daily basis and the change of interventions could be simulated on specific dates. However, the algorithm can use other time
units such as weeks, if adjusted parameters are applied. The algorithm requires initial values for the variables used in the
model. The transitions given in the equations in the ODE system are used to obtain the transition probabilities (Allen, 2017).
Typically, for each time step, all transitions are evaluated as probabilities and the number transitioning from a compartment
to the other linked compartments, including keeping the state, are drawn from a multinomial distribution. Multiple simu-
lations generate multiple sample paths, which are evaluated allowing to obtain mean values and intervals. Since the tran-
sitions follow distributions with the parameters used in the model, after multiple simulations the mean values are expected
very close to the deterministic realization. A stochastic simulation code was implemented using Rstudio (Racine, 2012)
Version 1.2.5042 with R software version 4.0.0 (http://www.r-project.org) was used for all calculations, data importation,
and curation.

2.2. Case study

Parameters of the model were adjusted to the number of cases and the dynamics observed in the municipality of Rio de
Janeiro. Data from Severe Acute Respiratory Illness (SARI) are compared to the results of new daily hospitalizations. In
contrast, data from Acute Respiratory Illness (ARI) notified cases are compared to the results of new daily cases. All notified
data is retrieved from the public database OpenDataSus (available at https://opendatasus.saude.gov.br/dataset).

Throughout the pandemic, the scenario was altered several times due to governmental decisions of applying the in-
terventions or making them more flexible and the incomplete adherence of the population. We evaluate how the model
behaves when we use the same quarantine severity as applied by the government for each period while comparing the results
to real-time data. Our approach is based on the Rio de Janeiro municipality and state real pandemic decrees, with slight
adjustments, as the accordance of the population to governmental decisions is not straightforward. We consider no inter-
vention done between 01 January 2020 and 15 March 2020 (day 1 to day 74). Starting from 16 March 2020 until 27 March
2020 (day 75 to day 86), we consider that this is the beginning of the pandemic, where the government started to apply some
intervention measures. The population's adherence to non-pharmaceutical interventions of the government in Brazil was not
strictly followed (de Moura Villela et al., 2021; Jorge et al., 2021; Szwarcwald et al., 2020), decreasing with the temporal
advance of the pandemic. Therefore, to model the notification data, we have considered the non-pharmaceutical in-
terventions during 2021 after the vaccination as adjustable when necessary. The different isolation and social distancing
scenarios are summarized in Table 2.

To better fit the model to the real notification data, we estimated initially Ry = 2.6, the reduction factor of the social
distancing during lockdown to be 0.75, the success in isolating symptomatic cases to be 0.60, while 0.20 for the asymptomatic
cases. Also, we considered that the first cases were imported on 11 February 2020. Reporting rate of severe cases (SARI) is 96%
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Table 2
Isolation and social distancing scenarios for the different data ranges throughout the years of 2020 and 2021.

Data range (DD.MM.YY) Isolation Social Distancing
16.03.2020—27.03.2020 TQ-S SD-Y + SD-E
28.03.2020—03.04.2020 TQ-S SD-A
05.04.2020—14.05.2020 TQ-C SD-A
15.05.2020—29.05.2020 L SD-A
30.05.2020—02.06.2020 TQ SD-A
03.06.2020—12.07.2020 TQ-C SD-A
13.07.2020—-02.09.2020 TQ-C SD-Y + SD-E
03.09.2020—22.09.2020 TQ-C SD-A
23.09.2020—31.10.2020 TQ-C SD-Y + SD-E
01.11.2020—16.11.2020 TQ-S SD-A
17.11.2020—21.11.2020 TQ-C SD-A
22.11.2020—-01.12.2020 TQ SD-A
02.12.2020—30.01.2020 TQ-C SD-A
31.01.2021-07.03.2021 TQ-S SD-A
08.03.2021—-18.03.2021 TQ-S SD-Y + SD-E
19.03.2021—02.04.2021 TQ SD-A
03.04.2021-06.04.2021 - SD-A
07.04.2021—-18.04.2021 TQ-S SD-A
19.04.2021-22.04.2021 TQ-C SD-A
23.04.2021-30.04.2021 TQ-S SD-A
01.05.2021-04.05.2021 TQ-C SD-A
04.05.2021—-14.05.2021 TQ-S SD-Y + SD-E
15.05.2021—-19.05.2021 TQ-C SD-Y + SD-E
20.05.2021—-30.06.2021 TQ-S SD-A

of the real cases, accounting for small under-reporting, whereas under-reporting of notified ARI disease cases is 20% of the
actual number of ARI cases. The number of SARI cases notified in the city of Rio de Janeiro, daily aggregated, is evaluated from
January to the end of June of 2021. This data range is considered an acceptable range to avoid the effect of dramatic sub
notification due to notification delay.

In order to evaluate the vaccination program, we used real vaccination data notification from the city of the Rio de Janeiro
applied to each group at the specific dates on which they were applied. Figures containing the reported vaccination data are
available in the supplementary material of this work. As our model accounts for only one dose of vaccination, we applied to
the simulations the dates of first dose to reach the different scenarios, using data from all applied vaccines. In Brazil, the
vaccination program covers both two-dose and single dose vaccines (Hung & Poland, 2021; Ranzani et al., 2021; Villela et al.,
2021). To capture the general mechanism provided by the pharmaceutical interventions, our approach has only the appli-
cation of a single dose program that also includes the infection-rate reduction (Hogan et al., 2020) and hospitalization risk
reduction (Palacios et al., 2021). Furthermore, the protection provided by the vaccination starts after the first dose (lacobucci
& Mahase, 2021; Tuite et al., 2021), although not full nor long-lasting, as these mechanisms help to represent the notification
data using only a single dose program simulation. Also, we analyzed the prevention of deaths and hospitalizations for
different scenarios considering the cumulative curves of each case using the equation for number of prevented (deaths or
hospitalizations) A(t),

A(t) = Aspeciﬁc(t) — Anon(t) (16)

where A(t) represents cumulative deaths or hospitalization at time t, specific refers to the specific scenario studied scenario,
and non represents the scenario without vaccination and restrictions.

3. Results

The model captured the dynamics of the epidemics in Rio de Janeiro successfully regarding the hospitalizations compared
to SARI notified cases (Fig. 2). As the model does not account for all the influenza-like illness, but it is limited to the SARS-CoV-
2 cases, there should be a difference between the notification data and the SARI notified cases, also due to some natural errors
within notification systems. To cover this problem, we considered a reporting parameter of 0.95 to data.

The model also presented a good fit to notification data when using the vaccination data. As expected, the combination of
vaccination, social distancing and isolation measures was responsible to significantly lower the number of SARI notified cases
throughout the years of 2020 and 2021 in Rio de Janeiro. However, if more restrictive measures were applied, the resulting
effect was clearly stronger.

After the beginning of the vaccination program, the downfall of the pandemic is advanced and accelerated, which is
evidenced by the observed inflection point. Abandoning social distancing, however, generates an increase in the number of
expected SARI cases as shown. As shown by a last peak of simulation data, the advancement of vaccination dates is
responsible to reduce the number of cases in a downward direction in conditions where a new peak would rise. If there were

236



N.CM. Valiati, D.AM. Villela Infectious Disease Modelling 7 (2022) 231-242

2000+

15001

10001

SARI Notified Cases

«Q
o
o

1
jan/2020 mar/2020 may/2020 jul/2020 sep/2020 nov/2020 jan/2021 mar/2021 may/2021 jul/2021 sep/2021 nov/2021 jan/2022
Date (monthl/year)

—&- Median —#- No Vac + Restriction —®- Notified Cases —“- Vac + Lockdown -#- Vac + Restriction
Fig. 2. Model results for new daily hospitalizations and cases of SARI in Rio de Janeiro. Notified cases of SARI in Rio de Janeiro are represented by black lines, other

colors represent the different simulated vaccination scenarios: vaccination with the applied restrictions (pink), no vaccination but applying the same restrictions
as the pink case (green), and vaccination with lockdown scenario (blue). Red lines represents the median values in each scenario.

1 | I
! 80000 1 +
60000 1 | 1 1
2 1 1 1 1
® i 1 ] 1
g ' 2 ' |
3 i ! § 60000 ' 1
*E 40000 1 ! =] I 1
g 1 1 B 1 1
° 1 1 k4 I 1
s ! I 3 | |
k] ' | £ 40000 | |
] 1 1 1 1 !
2000 1 ' < | g
3 1 | 1 1
= ¢ 1 1 1
f | 20000 f
0 ! ”
jan 2021 : apr 2021 jul ;021 oct 2021 jan 2022 jan 2021 ; apr 2021 jul I202| oct 2021 jan 2022
Date (monthlyear) Date (month/year)
— NovVac. Resicion == Vacenaon  Lockdown == Vaccston + Reticlon - Novae+ - =
(a) Prevented deaths in different scenarios. Vac- (b) Cumulative deaths in different scenarios. No
cination and Lockdown (blue), vaccination and vaccination and no restrictions (yellow), vaccina-
restriction (pink), and applying only the restric- tion and lockdown (blue), vaccination and restric-
tions, without vaccination (green) . tion (pink), and applying only the restrictions,
without vaccination (green).
400 500 1 1
1 1
» 1 1
§ s ' !
gE g, i |
88 85 1 !
£ 3% : !
;’ g 200 E E 300 . '
5 g % e 1 1
£ 32 : '
2 %10 7 = ' 1
2 g ' !
= 1 1
100 ! !
0 i T
| )
jan 2021 apr2021 jul2021 oct 2021 jan 2022 jan 2021 apr2021 jul 2021 oct 2021 jan 2022
Date (month/year) Date (monthlyear)
- - - w—No Vac + Restriction No Vac + Zero Restriction === Vac + Lockdown === Vac + Restriction
(c) Prevented hospitalizations in different scenar- (d) Cumulative hospitalizations in different scenar-
jos. Vaccination and Lockdown (blue)7 vaccina- ios. No vaccination and no restrictions (yellow),
tion and restriction (pink), and applying only the vaccination and lockdown (blue), vaccination and
restrictions, without vaccination (green) . restriction (pink), and applying only the restric-

tions, without vaccination (green).
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hospitalization curves of this scenario was our reference to calculate the absolute the number of prevention.

no flexibilization during vaccination, no peaks would be observed. The number of cumulative and prevented deaths and
hospitalizations, are shown in Fig. 3.
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As shown in Fig. 3, the vaccination had a major role in reducing the number of hospitalizations and deaths due to SARI. The
reduction in number of cases after vaccination and suppression policies, compared to a no-policy scenario, was 380+
thousand hospitalized cases and 66+ thousand cases, considering until June 2021. Vaccination is expected in this case to avert
more than 230+ thousand hospitalized cases and 43+ thousand deaths.
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238



N.CM. Valiati, D.AM. Villela Infectious Disease Modelling 7 (2022) 231-242

The prevented deaths and hospitalizations are only observed to remain high when the vaccination is applied, which is a
direct result of the long-term protection provided by the vaccine. The contrary is observed when only social distancing or
other non-pharmaceutical interventions are applied, as new peaks maintain high number of deaths and hospitalizations.

As shown in Fig. 4, there is a marked difference in the effectiveness of each intervention alone. Social distancing alone had
a less pronounced effect than the quarantine of cases, except for the quarantine of only the severe cases (TS), which had a
minimal delaying effect at the peak. A combination of mitigation policies makes significant impact in the peak of number of
cases.

As our model is stratified by age groups, we also observe how the different interventions change the number of deaths and
hospitalizations by age, as shown by Fig. 5. The quarantine of all cases, the social distancing of all individuals, and the
combination of this intervention with the quarantine of symptomatic cases are the three most effective interventions, as also
seen by Fig. 4. In all cases, despite isolating or distancing different age groups, the pattern of hospitalizations and deaths
regarding age groups is very similar. The major difference is observed in delaying the pandemic peak and the pandemic's
length, broadening its profile through time but not through age groups. Hospitalizations are centered around older groups,
mainly individuals around 60 years old and older, in all interventions.

Also, in Fig. 5, despite profile similarity across age groups, some age groups are more affected since the beginning of the
pandemic and at the end. There is a distortion of the profile's rectangular shape observed in almost all scenarios in favor of a
more oval-oriented shape, which is more pronounced in the SD-A and TQ, only TQ, and only TQ-C scenarios.

4. Discussion

The main objective of NPI interventions is to mitigate the effect of the pandemic for proper health care attention to mild
and severe cases. Independently from the nature of the intervention (social distancing or isolation of cases), as expected and
seen in many studies (Matrajt & Leung, 2020; Ferguson et al., 2020; Flaxman et al., 2020; Prem et al., 2020), delaying the
epidemic peak is a consequence of the reduction in transmission intensity.

As demonstrated, when comparing different interventions, there is a considerable difference between the isolation of both
symptomatic and asymptomatic cases and isolating only the symptomatic cases, with the former intervention being a more
successful application. Further, if we combine isolation with social distancing interventions, a better result is reached in
reducing the number of hospitalizations and delaying the peak of new cases. This result highlights the importance of an
enforced isolation measure, as the asymptomatic cases also impact the transmission dynamics. The correct identification and
consequently isolation of these cases pose a problem which has been discussed in the actual pandemic (Gandhi et al., 2020;
Nishiura et al., 2020), in some cases, following the correct procedure to identify and isolate these cases were responsible for
ending the pandemic (Day, 2020). The isolation of only the severe cases did alter significantly the dynamics, demonstrating
the importance of having a model in which mild and severe cases are studied separately, as they have marked differences in
their epidemiology (Liu et al., 2020; Siordia Jr, 2020) besides having some studies indicating some similarities (Wu &
McGoogan, 2020; Yilmaz et al.,, 2020). The isolation of only symptomatic cases was more effective when applied together
with the social distancing of all age groups. Therefore, it is imperative to recognize the importance of transmission by
asymptomatic individuals.

Comparing the applied social distancing measures, results here show a very marked difference between the isolation of all
age groups against the isolation of only young or elderly individuals and the severity of SARS-CoV-2 among elderly individuals
higher than younger individuals (Siordia Jr, 2020; Wu & McGoogan, 2020). However, there must be a very careful distinction
between the severity of cases and the epidemiological dynamic imposed by the different groups, the isolation of only the
elder individuals is not sufficient to significantly halter the pandemic. As shown in the model, isolating the elderly group may
give a false impression of protection to these individuals, as this intervention is not sufficient to effectively control the
epidemic. Therefore, only the social distancing of all age groups at an early stage acts to avoid severe cases.

The social distancing of all age groups had similar performance compared to the isolation of both symptomatic and
asymptomatic cases, as shown by Fig. 4. This interesting result indicates that the early recognition and application of broad
interventions to the population are the most effective measures to be studied. In regard to the social distancing, all age groups
should be taken into account, in agreement with other modeling studies (Ferguson et al., 2020; Flaxman et al., 2020).
Regarding the isolation intervention, all cases should be included in the measure, including asymptomatic cases, which can
only be reached through successful testing. This highlights the importance of mass testing individuals exposed to the SARS-
CoV-2 pandemic.

The value of 2.6 for the Ry is within the range of the estimated value for other studies and even other areas (Abbott et al.,
2020; Coelho et al., 2020; Li et al., 2020; Wu et al., 2020; Yue et al., 2021). Despite the significant number of interventions,
either a social distancing or isolation intervention, the best approach is clearly the combination of both measures. This is
shown where the SD-A intervention combined with the TQ isolation measure produced the best results.

Despite all of the interventions, combined or not, there is a growing concern about the social and economic distress of a
population during interventions (Ashraf, 2020; Fernandes, 2020). It is also imperative to develop pharmaceutical in-
terventions to reduce the posed threat by the virus infections. Also, initiatives such as the vaccines being developed and the
fundamental understanding of how the virus acts biologically are essential to this end. Therefore, it is crucial to model beyond
the dynamics of only non-pharmaceutical interventions.
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Non-pharmaceutical interventions also demonstrate through Fig. 2 that they have the merit of controlling the direction,
evolution, and severity of the pandemic and should be studied and applied whenever possible. However, pharmaceutical and
non-pharmaceutical interventions need to be considered altogether during the pandemic. Considering these results, it is clear
that the vaccine has a long-term effect on the population. Comparing the last peaks obtained by the results, although
vaccination did not control the direction of the pandemic, it was directly responsible to diminish the number of cases and
deaths effectively.

In all scenarios, the phased rollout of the vaccination program should be along with maintaining social distancing and case
isolation. Abandoning the quarantine shows to be a most critical scenario, in which there is a considerable increase in the
number of hospitalizations. The only condition where the pandemic maintains its downward strategy during the vaccination
program is combining social distancing and isolation.

This is a crucial moment to study and show that we must yet consider the application of strict interventions of social
distancing, isolation, and vaccination as the risk of SARS-CoV-2 transmission is present in multiple countries. The modelling
in this work shows that effective control of the COVID-19 pandemic requires a combination of these efforts.
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