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Summary

It has been a landmark year for artificial intelligence
(AI) and biotechnology. Perhaps the most notewor-
thy of these advances was Google DeepMind’s
AlphaFold2 algorithm which smashed records in pro-
tein structure prediction (Jumper et al., 2021, Nature,
596, 583) complemented by progress made by other
research groups around the globe (Baek et al., 2021,
Science, 373, 871; Zheng et al., 2021, Proteins). For
the first time in history, AI achieved protein structure
models rivalling the accuracy of experimentally
determined structures. The power of accurate pro-
tein structure prediction at our fingertips has count-
less implications for drug discovery, de novo protein
design and fundamental research in chemical biol-
ogy. While acknowledging the significance of these
breakthroughs, this perspective aims to cut through
the hype and examine some key limitations using
AlphaFold2 as a lens to consider the broader impli-
cations of AI for microbial biotechnology for the next
15 years and beyond.

A brief introduction

Given all the headlines surrounding AlphaFold2, it has
been almost impossible for scientists to escape expo-
sure to this major scientific breakthrough. Readers famil-
iar with how AlphaFold2 works are encouraged to skip
ahead. For those new to the topic, however, a brief intro-
duction into AlphaFold2 architecture and why it is so
groundbreaking is warranted. For a more in-depth

introduction, readers are referred to the original Alpha-
Fold2 paper (Jumper et al., 2021), and other educational
resources (EMBL-EBI, 2021; Greener et al., 2021; Per-
eira and Alva, 2021).
In late 2020, results from the Critical Assessment of

Protein Structure Prediction (CASP14) competition were
announced. AlphaFold2, the brainchild of Google’s sister
company, DeepMind, achieved a median backbone
accuracy within the width of one carbon atom for protein
structure prediction using primary amino acid sequences
as inputs (Jumper et al., 2021). Scientists have been
grappling with the protein folding problem for nearly half
a century; yet, AlphaFold2 marked the first time that
computational modelling achieved accuracy scores on
par with experimental results. While there are many rea-
sons behind the success of AlphaFold2, the meticulous
engineering, including an iterative refinement mechanism
and a new ‘attention’ architecture likely played a key
role. Put simply, AlphaFold2’s architecture enables it to
learn complex evolutionary sequence-to-structure rela-
tionships that simpler homology modelling methods can-
not capture.
In a nutshell, AlphaFold2 starts with an input that most

biologists are familiar with: a multiple-sequence align-
ment (MSA) of the query sequence against evolutionarily
related sequences. An important caveat is that for opti-
mal performance, the MSA must consist of at least 30
sequences. Therefore, AlphaFold2 may underperform
with inputs of unusual protein sequences with few homo-
logues or de novo designed antibodies or proteins. The
MSA is used to construct a ‘pair representation’ or con-
tact map of which amino acids are likely to interact and
build initial structural templates. The MSA and pair repre-
sentation are then passed as inputs into a neural net-
work with a Transformer architecture termed ‘Evoformer’.
Transformer models were first pioneered in the field of
natural language processing for sequence-to-sequence
translation, such as Japanese-to-English or other lan-
guage translation tasks. For AlphaFold2, the Transformer
model is used to iteratively exchange information
between the MSA and pair representations and refine
them as inputs for another neural network, the ‘structure
module’. The structure module predicts the 3D structure
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which is then iteratively fed back into Evoformer for sev-
eral rounds of refinement until a final model is achieved.
This is a vastly oversimplified summary and readers
seeking more details are encouraged to consult the sup-
plement of the original paper (Jumper et al., 2021). One
of the major takeaways from the feat of AlphaFold2 is
that there is no inherent magic involved. It is the combi-
nation of an impressive knowledge base, engineering
prowess, and compute capabilities at Google’s Deep-
Mind, now made available for the average user through
a web interface (Mirdita et al., 2021).

Peering into the black box

The immensity of the accomplishment of AlphaFold2 is
undeniable. The purpose of this perspective, however, is
to go beyond the well-deserved hype to examine the lim-
itations and future implications. One of the greatest chal-
lenges facing AI is model interpretability. Neural
networks are often referred to as black boxes due to
complex transformations occurring in hidden layers.
Although techniques, such as network deconvolution,
exist to try to tease apart the underlying features, model
interpretation remains a complicated process and active
area of research. The power of AI presents a double-
edged sword in that non-linear transformations in hidden
layers enhance predictive power but simultaneously ren-
ders the transformed features uninterpretable to humans.
Luckily, AlphaFold2 output (the coordinates for the 3D
structural model of a protein) can easily be visualized in
a way that is intuitive and interpretable for humans.
Numerous resources are available to interpret results
and the informative EMBL-EBI training webinar is espe-
cially recommended (EMBL-EBI, 2021). With AlphaFold2
now available for general users over web servers (Mir-
dita et al., 2021), it is more important than ever to under-
stand what AlphaFold2 output means, where it excels
and what the limitations are. A brief, non-comprehensive
summary of selected advantages and limitations are
listed in Table 1.
As with all AI applications, a healthy dose of scepti-

cism is required when interpreting the output. For users
viewing AlphaFold2 models, a useful piece of advice
summed up succinctly by Dr. Jon Agirre at the University
of York is, ‘Get rid of the spaghetti, trust the fusilli’. In
other words, regions of AlphaFold2 models which are
coloured orange or red indicate disordered ‘spaghetti’
regions which have a low level of prediction confidence
relative to folded blue ‘fusilli’ regions. An example is
shown in the AlphaFold2 model of titin (Fig. 1), the lar-
gest known human protein, visualized using the open-
source modelling software ChimeraX (Pettersen et al.,
2021). This coloured distinction is a major advantage of
AlphaFold2 since it indicates to users which regions of

models can be trusted or not and helps guide experi-
mental investigations.
Taking a broader perspective on the limitations, I

argue that AI can assist with, but will generally fall short
of, making truly novel biological discoveries without addi-
tional empirical validation. AI predictions are rooted in
what is already known. To explore new regions of
sequence space and characterize proteins of unknown
function, experimentalists will continue to play a critical
role. As an example, intrinsically disordered regions of
proteins (IDPs) are estimated to encompass over 30% of
sequences which are 30 amino acids or longer sampled
from the human proteome (Necci et al., 2021). This esti-
mate is now further bolstered by AlphaFold2 modelling
of all human proteins (Tunyasuvunakool et al., 2021),
with many regions of orange spaghetti overlapping with
those regions that are predicted to be intrinsically disor-
dered. In the case of IDPs and other regions of proteins
that are highly flexible, classical techniques, such as
nuclear magnetic resonance spectroscopy, will remain
essential to track the range and timescales of protein
dynamics. Cryo-electron microscopy is another powerful
method for structural analysis of macromolecular com-
plexes which is a task where AlphaFold2 currently falls
short. Overall, I anticipate one of the greatest barriers
facing the advance of AI is its limited ability to predict
the ‘unknown unknowns’.

Table 1. Summary of selected advantages and limitations of Alpha-
Fold2.

Advantages Limitations

� Accuracy often comparable
to experimentally
determined structures

� Provides first structural
insights into families
of proteins with
limited or no available
structural data, including
impressive performance
with transmembrane
proteins

� High-quality AlphaFold2
models can aid
experimentalists in
solving previously
‘unsolvable’ X-ray
datasets by molecular
replacement

� Monumental implications
for fundamental scientific
research, drug discovery,
de novo protein design,
protein engineering
and more

� Optimal for predicting single-
domain structures – some
suitable workaround options
available for heteromers and
multi-domain complexes

� Cannot predict post-translational
modifications, for example,
glycosylation, methylation,
lipidation or modifications to
install non-canonical amino acids

� Currently limited predictions for
intrinsically disordered protein
regions

� Currently limited efficacy for
predicting structural dynamics
and effects of point mutations
on structural stability
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AI and the reproducibility crisis

It is clear that AlphaFold2 and other AI advances have
tremendous potential for biotechnology when users are
aware of the limitations. But can AI also improve scien-
tific reproducibility? Many of us bench scientists have
experienced the gut-wrenching moments when proto-
cols that worked reliably for months suddenly and inex-
plicably produce a different result. The reality is that
many experimental variables cannot be perfectly con-
trolled. Aside from obvious human errors, the difference
between a failed and successful experiment can come
down to subtle discrepancies between laboratory per-
sonnel when pipetting or performing a certain tech-
nique. When moving from the bench to animal models
or translational human studies, it is often even more
challenging to reproduce results due to high costs and
long timescales. This lack of reproducibility undermines
credibility and leads to a distrust of science in the gen-
eral public. Although the scientific process itself is rigor-
ous and often inherently self-correcting, AI can further
help standardize the process through automation of
experimental design, protocols, quality control and data
analysis.
I optimistically predict that in the next 15 years and

beyond, we will see a corresponding rise in experimental
reproducibility as more steps in protocols use robotic
rather than human arms and code workflows rather than
copy-and-pasted spreadsheets. Added benefits include
improved safety due to fewer accidents and fewer
exhausted personnel carrying out long experiments by
hand in the laboratory. Yet another bonus will be a
reduction in common overuse injuries among laboratory

personnel from performing repetitive tasks like pipetting.
Nonetheless, a high level of biological variability will
always plague experiments involving living organisms. In
this context, the scalability of high-throughput methods
enabled by AI will provide higher statistical power to
decipher biological signals through the noise. High-
throughput screening methods will, in turn, generate lar-
ger training datasets to feed into AI models and enable
iterative design–build–test–learn cycles.
On the other hand, AI faces its own challenges with

reproducibility. In a survey of artificial intelligence papers
presented at major conferences, only 6% out of the 400
papers surveyed included complete, open-source code
(Hutson, 2018). In the case of AlphaFold2, the code was
not made open source until nearly one year after the ini-
tial report, and the release was likely sped up by pres-
sure from the scientific community. Open-source code
not only improves reproducibility, but also crowdsources
the development process so that third-party researchers
can contribute to existing AI tools. The release of
RoseTTAFold (Baek et al., 2021), with accuracy scores
nearing AlphaFold, is one example of how community
contributions are essential to keep the AI ecosystem
accountable and healthy. Among a selection of other
useful frameworks, the principles of Findability, Accessi-
bility, Interoperability and Usability (FAIR) offer a solid
foundation for data and code management across the
disciplines of biology and AI (Wilkinson et al., 2016). In
practice, this can be enforced through a combination of
easy access to raw data and metadata, well-
documented code with good test coverage and version
control and a web interface enabling access for pro-
grammers and non-programmers alike. For more

Fig. 1. ChimeraX (Pettersen et al., 2021) visualization of human muscle protein, titin. Titin is 34,350 residues in length, and the model was pro-
duced by combining 29 segment structures, 1400 amino acids each, from the AlphaFold database. Details and code to reproduce the visualiza-
tion available here: https://rbvi.github.io/chimerax-recipes/big_alphafold/bigalpha.html, courtesy of Tom Goddard, ChimeraX.
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information on AI reproducibility, we refer readers to sev-
eral articles (Stodden et al., 2016; Hutson, 2018; Haibe-
Kains et al., 2020).
In a widely cited survey of more than 1500 scientists

on reproducibility, more than half identified ‘low statistical
power’ or ‘specialized techniques that are difficult to
repeat,’ as major causes of irreproducible results (Baker,
2016). As described above, automation enabled through
AI can assist with both of these factors. What AI cannot
assist with, however, is ‘pressure to publish’ and ‘selec-
tive reporting,’ which more than 60% of respondents said
always or often contributed to irreproducibility. These
latter two challenges are symptomatic of high-stakes
academic environments and poor mentor–mentee rela-
tionships, neither of which are likely to be solved by AI.
This speaks to a broader truth that many come to recog-
nize throughout their careers: it is not typically the tech-
nology, but rather the social problems that ultimately
hamper progress.

Looking to the future: the next 15 years

As our ability to construct accurate structural models from
primary sequence grows, a natural question is, what
comes next? The potential applications of AlphaFold2 are
only limited by one’s imagination. One area of active
research is the leap from predicting protein structure to
function. For applications in drug discovery and design,
pre-print servers are already overflowing with in silico
studies using AlphaFold2 to model compound–protein,
peptide–protein and protein–protein interactions (Bryant
et al., 2021; Tsaban et al., 2021; Wang and Dokholyan,
2021). Basically any of the current limitations of Alpha-
Fold2 (Table 1), including post-translational modifications,
multi-domain complexes, intrinsically disordered regions
and structural dynamics, are opportunities for new devel-
opments in the field. One particularly promising direction
is improving the prediction of conformational dynamics,
ranging from allosteric regulation of protein domains to
the movement of individual active site residues. Ligand-
binding regions of proteins tend to be highly flexible and
deviate from standard protein-folding rules. These regions
are also critical for determining protein function and sub-
strate specificity and correspondingly, drug design. While
AlphaFold2 performs remarkably well at overall structure
prediction, the next level is to use AI to accurately predict
the dynamics of key amino acid residues that move dur-
ing interactions with a substrate.
Looking beyond AlphaFold2 to consider AI broadly, I

envision a future in which AI enables enhanced repro-
ducibility and predictability in biological experiments.
Experimental systems involving living organisms rarely
behave as expected. AI can remedy this by using
design–build–test–learn cycles to train models to better

predict and understand the natural world. This builds on
the engineering principles established in the field of syn-
thetic biology in which functional biological units are
modelled, tested and characterized as components of
larger living devices. AI also requires a shift in the scale
of data from tens of data points to hundreds of millions
of data points. High-quality, large datasets are key to
more reliably model and predict biological outcomes.
Ultimately, this vision manifests itself as the coupling of
‘artificial’ AI engineering principles with the ‘natural’
sciences to open new frontiers for scientific exploration.

The human factor

For the future of AI for biotechnology, the continued
importance of the human factor cannot be overempha-
sized. Many have hailed the rise of AI applications in
biology as the beginning of a progression towards all
biologists hunched over their computers rather than
studying organisms in the laboratory or nature. Will
biotechnology ever become a completely in silico disci-
pline with experiments fully automated by robots? Some
bench scientists have voiced fears that their jobs will be
replaced by AI and their skill sets rendered useless. I
would argue the opposite: that AI frees scientists from
some of the more repetitive tasks to address larger
questions in science. We experimentalists will always
find curious new ways to get our ‘hands dirty’ at the
bench or in the field. Experiments are especially impor-
tant at the intrinsically disordered regions between scien-
tific domains where we do not yet have contact maps of
the key interactions. It is only through the combination of
AI and the critical design of experiments by humans that
scientific knowledge will advance. This sentiment is well
summarized by Lindsey Backman, PhD candidate and
HHMI Gilliam fellow at MIT, who writes about ‘the power
of combining computational methods like Alphafold with
traditional experimental methods like crystallography.’
Indeed, as Backman emphasizes, ‘it’s an exciting time to
be a structural biologist.’
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