
Special Issue Article

Bacterial metabolism and pathogenesis intimate
intertwining: time for metabolic modelling to come into
action

Juan Nogales1,2,** and Junkal Garmendia3,4,*
1Department of Systems Biology, Centro Nacional de
Biotecnolog�ıa, CSIC, Madrid, Spain.
2Interdisciplinary Platform for Sustainable Plastics
towards a Circular Economy-Spanish National Research
Council (SusPlast-CSIC), Madrid, Spain.
3Instituto de Agrobiotecnolog�ıa, Consejo Superior de
Investigaciones Cient�ıficas (IdAB-CSIC)-Gobierno de
Navarra, Mutilva, Spain.
4Centro de Investigaci�on Biom�edica en Red de
Enfermedades Respiratorias (CIBERES), Madrid, Spain.

Once relegated to the supply of energy and biosynthetic
precursors, it is now indubitable that metabolism medi-
ates most of physiological processes. In the context of
bacterial–host interactions where virulence is the out-
come (commonly termed bacterial pathogenesis) meta-
bolism expands far beyond its canonical role in bacterial
proliferation. In addition to all sorts of recognized molec-
ular determinants or virulence factors (toxins, flagella,
translocated effectors, adhesins, invasins, etc.), bacterial
pathogens are equipped with specific metabolic traits to
circumvent immune defenses and antimicrobial killing,
thus facilitating colonization and proliferation within their
hosts. As the implementation of high-throughput tech-
nologies elevates the pathogenesis field to the era of big
data, it concurrently creates considerable challenges for
our ability to interpret large data sets and identify factors
that impact infectious processes. Metabolic modelling is
emerging as a powerful tool allowing the integration and
coherent organization of large data sets into the context
of biological networks providing non-intuitive insights on
biological systems that experimental analysis alone

cannot provide. Here, we take a snapshot of the recent
understanding of bacterial metabolism and the bacterial–
host metabolic interplay during infection, and highlight
key outcomes and challenges for the practical implemen-
tation of bacterial metabolic modelling computational
tools in the pathogenesis field (summarized in Fig. 1).

Core involvement of bacterial metabolic
requirements, rewiring and interactions during
infection

Although the intimate association between bacterial
metabolism and successful survival within the host still
remains an underestimated aspect of bacterial virulence,
it is clear that the understanding of specific metabolic
adaptations during infection offers a multitude of new
opportunities for, among others, target identification for
drug development.

Bacterial metabolic requirements during infection

The increasing use of (multi)-omic strategies on ade-
quate in vivo models of infection greatly contributes to
our understanding of pathogen metabolic requirements
during infection. This is the case of in vivo transposon
insertion mutagenesis coupled to next-generation
sequencing (Tn-seq) analyses. The application of this
technology during mouse intestine colonization and on
piglet infection models of Campylobacter jejuni identified
crucial roles for genes involved in central metabolism,
nutrient acquisition or substrate utilization (De Vries
et al., 2017; Gao et al., 2017). Tn-seq screen of Strepto-
coccus pyogenes identified genes important for bacterial
fitness in human saliva involved in carbohydrate, amino
acid and inorganic ion transport/metabolism (Zhu et al.,
2017). Similarly, Tn-seq analysis highlighted the impor-
tance of glucose utilization for Serratia marcescens on a
murine model of bacteraemia (Anderson et al., 2017),
and unravelled similar metabolic responses by enterohe-
morrhagic Escherichia coli (EHEC) and Vibrio cholerae
during colonization of the infant rabbit colonic niche (Fu
et al., 2013; Warr et al., 2019). Emphasizing this idea,
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another recent example using a murine model of acute
pneumonia by Staphylococcus aureus identified a high
proportion of genes involved in metabolic processes

(tricarboxylic acid cycle (TCA), ATP production, purine
and pyrimidine metabolism) as important for bacterial
survival during infection (Kim et al., 2021).

Fig. 1. Genome-scale metabolic network reconstructions for bacterial pathogenesis: it is time to leave a mark. Fast evolving advances in the
genomics and metabolomics fields facilitate metabolic modelling of priority pathogens, of polymicrobial communities where key pathogens may
have a starring role, and of host–pathogen systems. Metabolic reconstructions can yield significant benefits when combined with various layers of
multi-omics information as part of integration strategies, further enriched by the predictive potential of machine learning computational tools. Such
integrative view will guide our experimental work to understand key metabolic traits in bacteria–bacteria or bacteria–host interactions where viru-
lence is the outcome. More importantly, we foresee that such integrative view will contribute to pave the way for developing new diagnostic, treat-
ment and surveillance procedures, seeking for their ultimate positive impact in the clinical management of bacterial infectious diseases.
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Host metabolism undergoes rewiring during bacterial
infection

The use of host nutrients and metabolic pathways by
cytosolic and vacuolar intracellular pathogens, and the
links between intracellular bacterial metabolism and the
expression of virulence genes required for such intra-
cellular replication, also keep being revealed (Eisenre-
ich et al., 2015; Conover et al., 2016; Sprenger et al.,
2018). Sophisticated modulation of the host metabolism
has been reported for Mycobacterium tuberculosis
which, during active disease, induces the expression of
indoleamine 2,3-dioxygenase (IDO), an enzyme
involved in tryptophan catabolism (Gautam et al.,
2018). In turn, S. aureus small colony variants (SCVs)
were found to impair the host immunity by activating
host cell glycolysis by the means of overexpressing
fumC, encoding an enzyme that catalyses the degrada-
tion of the glycolysis inhibitor fumarate (Wong Fok Lung
et al., 2020). Likewise, Citrobacter rodentium manipu-
lates the host metabolism by rewiring cellular bioener-
getics and cholesterol metabolism to evade innate
immunity and establish a favourable gut ecosystem.
Indeed, binding of C. rodentium to the gut epithelium
leads, among others, to upregulation of sugar transport,
aerobic glycolysis, production of phosphocreatine, acti-
vation of the cholesterol biosynthetic pathway and
upregulation of cholesterol efflux proteins, resulting in
higher levels of faecal cholesterol and a bloom of Pro-
teobacteria, thus, altering the composition of the gut
microbiota (Berger et al., 2017).

Bacterial metabolic rewiring upon host metabolite
sensing contributes to patho-adaptation

Pathogens adapt many methods of sensing the environ-
ment for numerous metabolites that they may encounter
within the host and use them for metabolic rewiring or
for translation to relevant transcriptional networks, to ulti-
mately facilitate colonization. Notably, molecular determi-
nants of bacterial metabolic adaptation and rewiring
during infection and chronicity are major outcomes of
recent elegant studies. This is the case for Salmonella
typhimurium, which harvests energy by anaerobic respi-
ration using microbiota-derived hydrogen (H2) as an
electron donor and fumarate as an electron acceptor
during gut colonization by the means of a cyclic strategy:
as fumarate is scarce in the gut, S. Typhimurium obtains
fumarate by the C4-dicarboxylate antiporter DcuABC-
mediated import and conversion of L-malate and L-
aspartate. Fumarate reduction yields succinate, which is
in turn exported by DcuABC in exchange for L-aspartate
and L-malate (Nguyen et al., 2020). Likewise, as the
host metabolite D-serine influences the outcome of

infection by repressing the type III secretion system of
EHEC, a conserved D-serine uptake system helps
E. coli sensing levels of the metabolite by regulating its
uptake from the environment in turn influencing global
gene expression (Connolly et al., 2016). Even more, 1,2-
propanediol whose production by the gut microbiota is
upregulated in response to murine colonization,
enhances C. rodentium in vivo fitness through a fine-
tuned coordination of type III secretion system and effec-
tor expression, thus, contributing to niche-specification
within the gut (Connolly et al., 2018). Another aspect
worth mentioning is the connection between the bacterial
acetylome and its metabolic rewiring during infection. As
shown for M. tuberculosis, a lysine acetyltransferase pro-
motes survival by altering the flux of carbon from oxida-
tive to reductive TCA reactions, which requires malate
dehydrogenase and maintains the redox state of the
NAD+/NADH pool (Rittershaus et al., 2018). For Kleb-
siella pneumoniae, lysine acetylation of multiple proteins
involved in central metabolism, specifically the glucose
6-phosphate dehydrogenase Zwf, drives a metabolic
boost leading to greater consumption of glucose in the
host airway and increased bacterial burden (Ahn et al.,
2021).
Great examples of pathogen adaptation to host

metabolites have also been reported, as those for the
host-derived immunometabolite itaconate, abundant in
the infected lung. Itaconate induces Pseudomonas
aeruginosa membrane stress resulting in downregulation
of lipopolysaccharide (LPS) and upregulation of extra-
cellular polysaccharide (EPS). In turn, itaconate-
adapted P. aeruginosa accumulate lptD mutations
favouring itaconate assimilation and biofilm formation,
and accumulated EPS induces itaconate production by
host cells, thus, skewing the host immune response to
one permissive of chronic infection (Riquelme et al.,
2020). Moreover, itaconate inhibits S. aureus glycolysis
and selects for strains that redirect carbon flux to fuel
EPS synthesis and biofilm formation (Tomlinson et al.,
2021). Therefore, both P. aeruginosa and S. aureus, by
different mechanisms, adapt to the itaconate-dominated
immunometabolic response by producing biofilms asso-
ciated with chronic infection of the human airway. P.
aeruginosa was one of the first and still is a key subject
of bacterial patho-adaptive studies. Those include tack-
ling its metabolic rewiring during lung colonization to
show that reduction of growth rate and metabolic spe-
cialization are signatures of adaptive evolution occur-
ring through distinct evolutionary trajectories, and
highlight the importance of metabolism and its regula-
tory mechanisms for this bacterial ecological flexibility
and chronicity within the human airways (Turner et al.,
2014; La Rosa et al., 2018, 2019; Rossi et al., 2018;
Perinbam et al., 2020).
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Metabolic interactions in microbial communities:
broadening the picture is the way to go

These outstanding single-bacterial species studies jump
into the next level of complexity when microbial commu-
nities are considered. While the explosion of microbiome
analyses helps to identify individual microorganisms and
microbial communities driving human health and dis-
ease, the incredibly complex metabolic interactions
among microbial species in those communities pose
challenging questions. Such metabolic interactions have
all sorts of different outcomes resulting, for example, in
the complementary utilization of central metabolism by
having divergent requirements, as reported for E. coli
and Proteus mirabilis during urinary tract infection (Alteri
et al., 2015). Such interactions may also result in meta-
bolic cross-talk regulating virulence, as reported for Por-
phyromonas gingivalis and Streptococcus gordonii where
streptococcal 4-aminobenzoate/para-amino benzoic acid
(pABA) is required for maximal accumulation of P. gingi-
valis during oral polymicrobial infection (Kuboniwa et al.,
2017), or in metabolite cross-feeding and cross-
respiration also regulating virulence. This is the case of
Aggregatibacter actinomycetemcomitans and S. gor-
donni, where the later promotes virulence of the former
one by producing its preferred carbon source L-lactate,
and by enhancing the bioavailability of oxygen during
infection, in turn allowing A. actinomycetemcomitans to
shift from a primarily fermentative to a respiratory meta-
bolism that enhances its fitness (Ramsey et al., 2011;
Stacy et al., 2014, 2016).

Bacterial metabolic modelling claims a place in the
pathogenesis field

Here, without paying closer attention to the otherwise
extensive core theme of metabolic cross-talk between
host and pathogens (Olive and Sassetti, 2016; Traven
and Naderer, 2019), we intend to hint at the need for
complementary, synergistic and integrative approaches
to contextualize the myriad of data available and probe
key metabolic features governing the interactions among
bacteria and/or the host during infection. We reinforce
the notion that metabolic network reconstructions are
crucial tools for mapping these complex interactions
(Dunphy and Papin, 2018). Such reconstructions are
detailed representations of cellular metabolism, which
when derived from genomic annotations extend metabo-
lism at genome-scale. Thus, a genome-scale metabolic
model (GEM) is constructed through the systematic inte-
gration of genome annotation, -omics data sets and
legacy knowledge such as reaction stoichiometry, and
contains all metabolic reactions that can occur in a
specific organism with their associated metabolites,

proteins and genes. When used in combination with
algorithms such as Flux Balance Analysis (FBA) (Orth
et al., 2010), GEMs can predict phenotype from geno-
type (Gu et al., 2019; Fang et al., 2020). Since the
reconstruction of the first GEM of Haemophilus influen-
zae (Edwards and Palsson, 1999), hundreds of novel
bacterial GEMs are being generated through automatic,
semi-automatic or manual means as new genomes are
sequenced. This high interest in GEMs has led in the
last decade an increasing number of applications (Gu
et al., 2019; Fang et al., 2020), and large community-
driven efforts towards the standardization of modelling
formalisms and GEM reproducibility and reuse (Lieven
et al., 2020). Today, the field is mature and ready for
addressing new challenges.
Regarding bacterial pathogenesis, GEMs are promis-

ing tools to elucidate microbial metabolism in response
to environmental perturbations, precise interactions
among bacteria and between bacteria and their hosts.
Therefore, it is not surprising that they are seen by many
as critical tools to address the system level understand-
ing of pathogens metabolism and the host–pathogen
metabolic interplay (Jansma and El Aidy, 2021; Jean-
Pierre et al., 2021). In addition, GEMs can be used to
test the effectiveness of treatment before clinical trials. In
this regard, GEMs can be used as systems pharmacol-
ogy platforms for drug target screening-prioritization, as
targeting pathways implicated in the metabolism of
essential nutrients utilized during infection can interfere
with microbial growth in the context of disease (Chavali
et al., 2012; Mienda et al., 2018; Richelle et al., 2020).
Metabolic reconstructions are, therefore, in the front of
multidimensional data integration strategies by combin-
ing various layers of information into multi-omics
approaches with genomic, transcriptomic, metabolic and
protein structural data sources. It is not surprising that
GEMs-based analyses have been already applied to the
priority pathogens Acinetobacter baumannii, K. pneumo-
niae and P. aeruginosa to delineate candidates with fea-
tures relevant for target selection. Even more, such
computational methodologies allow the accurate predic-
tion of the flux through each reaction in the network in
response to disturbed gene expression profiles. In the
context of antibiotic resistance, the integration of gene
expression data as additional constraints within GEMs
thus makes possible the system level understanding of
the metabolic reprogramming occurring during antibiotic
exposure (Bartell et al., 2017; Presta et al., 2017; Ramos
et al., 2018; Zhu et al., 2018; Cesur et al., 2020).
Another key aspect is the applicability of genome-

scale metabolic network models from an epidemiological
perspective, for systematic evaluation of clinical strains
with hundreds of polymorphisms and strain specific
metabolic configurations. As shown for E. coli, S. aureus
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and Salmonella, GEMs enable a systems approach to
characterize the pan and core metabolic capabilities of
key pathogens, to define the metabolic essence of a
bacterial species, and delineate growth differences that
may shed light on the adaptation process to a particular
niche or colonization site during infection (Monk et al.,
2013; Bosi et al., 2016; Seif et al., 2018). This approach
could allow the use of personalized treatment targeted
on the strain-specific metabolic traits unravelled by mod-
elling, paving the way for developing treatments more
specific than the current ones, thus, avoiding unspecific
strategies and reducing the emergence of drug resis-
tance.

Bacterial community metabolic modelling: great tools for
polymicrobial infection studies

The power of computational modelling when tackling
complex microbial communities is also emerging
(Garc�ıa-Jim�enez et al., 2021). The combined use of 16S
rRNA sequencing data collected from clinical samples
and in silico methods for community metabolic modelling
and analysis provides a large array of novel biological
insights, which have remained elusive so far. For
instance, model-based analyses were applied to predict
mutualistic interactions (pathogen–pathogen and
pathogen–commensal) driving community composition in
polymicrobial chronic wound infections by the means of
cross-feeding of organic acids, alcohols and amino acids
(Phalak and Henson, 2019). Similarly, GEMs analysis
provided new insights into the metabolic determinants of
pathogen dominance in the cystic fibrosis lung (Henson
et al., 2019). GEMs are also great tools acting as com-
putational scaffolds for the integration of growth and
transcriptomics data from infections caused by multiple
species. This notion, when applied to interrogate the
growth capabilities of V. cholerae in single infections and
coinfections with enterotoxigenic E. coli (ETEC), which
co-occur in a large fraction of diarrhoeagenic patients,
showed that V. cholerae growth capabilities are
enhanced in the presence of ETEC through cross-fed
metabolites made available to V. cholerae by ETEC
(Abdel-Haleem et al., 2020).

Integrated host–pathogen genome-scale reconstructions

Finally, building integrated host–pathogen genome-scale
reconstructions is an ultimate goal to optimize the
extraordinary capabilities of metabolic modelling in com-
bining -omic as well as physiology data for mechanistic
analyses of metabolism. These ideas have been devel-
oped to get further insight into M. tuberculosis or S.
typhimurium host interactions (Raghunathan et al., 2009;
Bordbar et al., 2010; Raghunathan and Jamshidi, 2018).

Such methods keep evolving towards not only elucidat-
ing the role of the host environment on pathogen meta-
bolism during the course of an infection, but also the
impact of pathogen infection on the host within a single
computational model, and improve as human metabolic
network reconstructions continue to be curated.

Challenges in the integration of metabolic modelling
in bacterial pathogenesis research

Although we are moving towards a widespread adoption
of metabolic modelling tools in the bacterial pathogene-
sis field and, therefore, in the antimicrobial industry, we
identify key aspects restraining their routine implementa-
tion. Our limited knowledge of the environment condi-
tions within the host niche and its changes upon disease
limits our ability to perform accurate bacterial growth
simulations within different host-mimicking media. Paral-
lel advances in the fields or tissue metabolomics and
lipidomics will surely contribute to overcome such limita-
tions. Main limitations of GEMs include the steady state
assumption, which implies that the study of temporal and
evolutionary scenarios, often of critical importance in
bacterial infections, is largely hampered. However,
recent advances in modelling formalisms including hybrid
approaches such as dynamic flux balance analysis
(dFBA) and their multiple extensions are largely con-
tributing to extend the applicability of GEMs to transient
behaviours (Scott et al., 2018). In addition, the continue
development of large-scale kinetic models derived from
GEMs driven by methods for the full-scale kinetic param-
eter estimation such as the ORACLE framework (Misko-
vic and Hatzimanikatis, 2010), will provide in the short
time a new generation of metabolic models suitable for
the analysis of dynamic transitions and evolutionary tra-
jectories within bacterial infections.
So far, the analysis of high-dimensional biological data

is largely limited by the lack of proper tools. However,
during the last decade, developments within the field of
machine learning in data visualization, deep neural net-
works, data fusion, model interpretation and more have
resulted in new tools that hold great promise for dealing
with disparate -omics data sets. Host–pathogen metabo-
lism mathematical models will also be greatly benefited
from machine learning, as it is becoming an unprece-
dented tool for the correct interpretation and exploitation
of -omic data (Reel et al., 2021). In fact, these two com-
putational frameworks are in the process of being com-
bined based on their complementary characteristics and
common mathematical bases (Zampieri et al., 2019).
These ideas are under development in the systems
metabolic engineering field, aiming to engineer produc-
tion host’s biological networks for overproducing valuable
materials in a sustainable manner. Recent studies are
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also developing new approaches that integrate the
power of deep learning with metabolic modelling to allow
for a mechanistic interpretation of the genetic associa-
tions discovered by machine learning. This is the case
of a computational pipeline that combines machine
learning with genome-scale metabolic models to under-
stand the systemic relationships between genetic deter-
minants of antibiotic resistance and metabolic adaptation
and rewiring mechanisms beyond annotated drug resis-
tance genes for the opportunistic pathogen E. coli
(Pearcy et al., 2021).
We foresee that metabolic modelling and deep learn-

ing will be progressively incorporated in the microbial
pathogenesis research field where, complemented with
comparative genomics, genetic interaction or protein
structural analyses, will greatly contribute to predict the
biological meaning of the variability in genetic content
and metabolic capabilities across clinical isolates, infer
specific selection pressures driving the outcome of the
infection process, guide experimental work and ulti-
mately guide procedures to improve the clinical manage-
ment of infectious diseases.
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