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A growing list of Alzheimer’s disease (AD) genetic risk factors is
being identified, but the contribution of each variant to disease
mechanism remains largely unknown. We have previously shown
that elevated levels of reactive oxygen species (ROS) induces lipid
synthesis in neurons leading to the sequestration of peroxidated
lipids in glial lipid droplets (LD), delaying neurotoxicity. This neu-
ron-to-glia lipid transport is APOD/E-dependent. To identify pro-
teins that modulate these neuroprotective effects, we tested the
role of AD risk genes in ROS-induced LD formation and demon-
strate that several genes impact neuroprotective LD formation,
including homologs of human ABCA1, ABCA7, VLDLR, VPS26,
VPS35, AP2A, PICALM, and CD2AP. Our data also show that ROS
enhances Aβ42 phenotypes in flies and mice. Finally, a peptide
agonist of ABCA1 restores glial LD formation in a humanized
APOE4 fly model, highlighting a potentially therapeutic avenue to
prevent ROS-induced neurotoxicity. This study places many AD
genetic risk factors in a ROS-induced neuron-to-glia lipid transfer
pathway with a critical role in protecting against neurotoxicity.
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A lzheimer’s disease (AD) affects ∼2% of the United States
population and defines ∼70% of dementia cases (1). AD

is pathologically defined by the aberrant accumulation of
amyloid-β (Aβ) peptides into extracellular plaques and hyper-
phosphorylated tau into neurofibrillary tangles. Aβ has been
a major focus of how AD is initiated and has been a target
of therapeutic approaches (2), but many strategies aimed at
reducing Aβ accumulation have failed to mitigate disease pro-
gression (3). There is evidence that Aβ-plaques exist in some
individuals without consequence to cognition, supporting a
hypothesis that multiple insults combine to induce disease (4).

Much of the research focus in recent years has centered on
the identification of genetic risk factors of AD. Genome-wide
association studies (GWAS) have identified over 40 risk var-
iants associated with AD (5–10). Some of the variants from
these studies are in or near genes that encode proteins involved
in lipid regulation (e.g., TREM2, ABCA7) and clathrin-
mediated endocytosis (e.g., BIN1, CD2AP, AP2A2, PICALM,
and RIN3). How these genes affect the demise of neurons is
not yet clear (11). The highest genetic risk factor for AD,
Apolipoprotein E E4 (APOE4), is present in ∼40 to 60% of AD
patients, and is strongly associated with earlier disease onset
(11, 12) and impaired fatty acid metabolism (13). Homozygous
carriers for APOE4 are 8 to 12 times more likely to develop
AD than noncarriers (14), while individuals carrying the E2
allele of APOE (APOE2) have reduced risk of developing AD
(15). We hypothesize that APOE modulates AD risk by
mediating lipid transfer between neurons and glia and that the

reduced lipid transport capacity of APOE4 (16, 17, 18) limits
this transport.

Other insults, in addition to genetic variants, may modulate
severity and onset of disease, including oxidative stress caused by
accumulation of reactive oxygen species (ROS). ROS can dam-
age proteins, lipids, and nucleic acids (19, 20). When properly
regulated, ROS can provide beneficial effects to the cell (21, 22),
but proves damaging upon elevated levels of ROS, as with age or
when proper control mechanisms become depleted (20). Numer-
ous studies using postmortem tissue from individuals with pre-
clinical AD, mild cognitive impairment, and AD document ROS
elevation, including accumulation of peroxidated lipids (19,
23–27). Whether ROS is a cause or consequence of disease
remains an open question but it is evident that ROS production
is exacerbated by Aβ42-mediated neurotoxicity (23, 28) and per-
sistent neuroinflammation (29, 30). One hypothesis that ties
these studies together is that a vicious cycle between ROS and
Aβ production exists, thereby enhancing the speed and severity
of disease progression. Hence, it is important that we understand
the interactions between genetic variation and oxidative stress in
order to reveal the complex etiology of AD.

The complexity of AD pathogenesis and progression is fur-
ther illustrated by the observation that many AD risk genes are
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expressed in glia in addition to neurons, suggesting that disrup-
tions of these genes may impact multiple cell types in the brain.
There is increasing evidence for an important role of dysregula-
tion of glial lipid metabolism in AD (5, 31, 32). Interestingly,
Alois Alzheimer described “adipose saccules” in glial cells of
AD patients over a century ago (33, 34), but the link between
neurodegeneration and lipid droplet (LD) accumulation in glia
has only recently been documented by us and others (35–37).
LD formation has also recently been documented in aged
mouse microglia and is associated with defects in microglial
phagocytosis as well as increased ROS and proinflammatory
cytokine production (38). Recent evidence is quickly mounting
that lipids are inextricably linked with pathogenic mechanisms
in AD and other neurodegenerative diseases (39–41).

Insights in the process of LD formation in the nervous sys-
tem were gained using a fly model of ROS-induced photorecep-
tor neurodegeneration. In this model, neuron:glia interactions
can be readily probed due to the stereotypic morphology of the
fly retina in which photoreceptor neurons are surrounded by
pigment glia (SI Appendix, Supplementary Information and Fig.
S1A), with Drosophila glia having homolgous functions to verte-
brate glia (42). We show that elevated levels of ROS in neurons
induces the formation of glial LDs by transferring peroxidated
lipids produced in neurons to glia in a process mediated by the
apolipoprotein Glial Lazarillo (GLaz; homolog to human
APOD) (SI Appendix, Fig. S1B). Similarly, the transfer of lipids
from cultured vertebrate neurons that are stressed and physi-
cally separated from glia has also been documented to be
dependent on APOE (16, 18). Glial LDs are neuroprotective
when ROS levels are elevated (16, 35) (SI Appendix,
Supplementary Information). Defective mitochondria produce
ROS, which activates the JNK and SREBP transcription factors
that drive lipid synthesis. These lipids become peroxidated in the
presence of ROS and are subsequently exported to pigment glia,
where they are sequestered in LDs (SI Appendix, Fig. S1B).

While ROS induction causes the eventual demise of photo-
receptor neurons, activation of neuronal lipogenesis, in the
absence of ROS, induces LD formation but not neurodegener-
ation (36). Hence, lipid peroxidation, but not lipid production
itself, causes photoreceptor neurotoxicity. The production and
transfer of lipids from neurons to glia is a highly dose-sensitive
process, as even single copy loss of critical glial LD formation
genes causes a significant reduction in glial LD formation (16,
36). Subtle alterations in expression of genes that affect glial
LD formation may lead to progressive loss of the neuroprotec-
tive effects associated with glial LD formation. LD loss, due to
loss of one copy of GLaz, is fully rescued by expression of
human APOE2 or APOE3. However, expression of human
APOE4 cannot restore glial LD formation and promotes neuro-
degeneration, suggesting that APOE4 is a loss-of-function
(LOF) allele for glial LD formation (16). Interestingly, a phar-
macological agonist of ABCA1 has been shown to restore
APOE4 lipidation and ameliorate Aβ42/tau pathologies in a
mouse model of human APOE expression (43, 44), but its role
in LD formation has not been explored.

Given the enrichment of AD risk-associated genes in lipid
handling and endocytosis from human GWAS (SI Appendix,
Supplementary Information), we tested whether these genes are
involved in glial LD formation and neuroprotection from ROS.
To test this hypothesis, we targeted candidate orthologs of AD
risk genes via RNAi using photoreceptor- or pigment glia-
specific expression drivers to determine the effect of loss of
these genes on glial LD formation and neurodegeneration (SI
Appendix, Fig. S1C). We demonstrate that the fly homologs of
AD risk genes (ABCA1, ABCA7, LRP1, VPS26, VPS35, PIC-
ALM, CD2AP, and AP2A2) play a role in the formation of glial
LDs, providing a mechanistic link by which AD risk genes may
affect neuronal demise. Additionally, we show that ROS

synergizes with Aβ42 to accelerate neuronal death in flies and
amyloid plaque formation in mice. Finally, we show that an
ABCA1 agonist peptide, previously shown to enhance the lipid-
binding properties of APOE4, restores glial LD formation in a
humanized fly model of APOE4. Together, these data place AD
risk genes in a functional pathway that connects ROS with LD
formation and Aβ toxicity.

Results
ABCA Transporters Are Required in Neurons for Glial LD Formation.
We have demonstrated that the apolipoprotein encoding gene,
GLaz, is required for the transfer of peroxidated lipids from
neurons to glia, but the proteins that are required for lipid
transfer across neuronal membranes to apolipoproteins remain
unknown. Among the AD risk genes are the genes encoding
the adenosine triphosphate-binding cassette transporter A1
(ABCA1) and A7 (ABCA7), lipid floppases that transfer lipids
from the inner leaflet to the outer leaflet of the cell membrane
making them available for export to APOE acceptor particles
(45–47). Missense variants in both ABCA1 and ABCA7 have
been associated with increased risk of developing AD (48–52)
and ABCA7 is known to facilitate clearance of Aβ (53).

To assess whether ABCA transporters function in glial LD for-
mation in the presence of neuronal ROS we used RNAi-
mediated knockdown to reduce ABCA gene expression in glia
and neurons. We induced photoreceptor-specific ROS production
by constitutive expression of RNAi targeting the mitochondrial
complex I gene, ND42 (36). Knockdown of ND42 in photorecep-
tors induces LD formation in pigment glia, which can be visual-
ized by Nile red staining (Fig. 1 A and D), but LD phenotypes are
not observed in the absence of ROS (SI Appendix, Fig. S2 A–D).
We then induced expression of RNAi targeting 7 of the 10 fly
ABCA genes for which RNAi constructs were available. All
selected RNAi constructs efficiently reduced the expression of
their respective targets (SI Appendix, Fig. S3A) and were
expressed in either photoreceptors, using Rh1-GAL4, or pigment
glia, using 54C-GAL4. We scored glial LD formation and
observed significantly reduced LD formation when Eato and
CG34120 (Fig. 1 B, C, and G), but not CG8908, CG31213,
CG1494, or ABCA3 were knocked down in photoreceptors com-
pared to control RNAi (Fig. 1A). In contrast, when these genes
were targeted in glia, no obvious reduction in LD formation was
observed (Fig. 1 E, F, and H). As loss of CG34120 in neurons
leads to loss of LDs, we refer to this gene as lipid droplet defective
(ldd). Collectively, these data demonstrate that two fly ABCA
transporters, Eato and ldd, are required in photoreceptor neurons
for glial LD formation. Using gene tree (SI Appendix, Fig. S4A)
and homology prediction tools (SI Appendix, Fig. S4B), we found
that the fly genes Eato and ldd are the best orthologs of human
ABCA1 and ABCA7 (SI Appendix, Supplementary Information ).

Loss of LD formation is associated with neurodegeneration
(16, 36), and we therefore assessed whether RNAi targeting
of Eato and ldd would lead to an age-dependent neurodegen-
eration. The onset of neurodegeneration in Eato and ldd
knockdown flies exposed to neuronal ROS is evidenced by
rhabdomere malformation and loss at 20 d posteclosion (SI
Appendix, Fig. S5 A–C). We also assessed neurodegeneration
using the electroretinogram (ERG) assay upon neuronal or
glial knockdown of Eato and ldd in the presence of neuronal
ROS. ERGs serve as a functional readout of neuronal function
and viability (54). ERG amplitudes were quantified in young (5
d posteclosion) and aged (20 d posteclosion) flies. We observed
a significant reduction in ERG amplitude with age when Eato
and ldd were targeted in neurons, but not when these genes
were targeted in pigment glia (Fig. 1 I–L). We also observed
that neurodegeneration is dependent on the presence of
ROS, as the addition of the potent antioxidant N-acetylcysteine
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amide (NACA) rescued the loss of ERG amplitude phenotype
observed in the ABCA-targeted backgrounds (Fig. 1K). Together,
these data demonstrate that the ABCA transporters, Eato and
ldd, orthologs of the AD risk genes ABCA1 and ABCA7, are
required in neurons for glial LD formation.

The APOD Receptor, LRP1, and Retromer Proteins Are Required for
Glial LD Formation. Glial LD formation requires the glial-
secreted apolipoprotein, GLaz, but not the neuronally secreted
apolipoprotein, NLaz (16). Glial LD formation in a vertebrate
neuron:glia cocultures similarly requires the apolipoprotein,
APOE (18). As the uptake of lipidated apolipoproteins occurs
via endocytosis, we assessed the effects of reduced neuronal or
glial expression of genes involved in receptor-mediated endocy-
tosis of apolipoproteins on glial LD formation, beginning with
the apolipoprotein receptors, LRP1 and VLDLR (fly LRP1 and
LpR2) (55–57). RNAi targeting these genes was expressed in
photoreceptor neurons (Rh1-GAL4) or pigment glia (54C-
GAL4) in the presence of neuronal ROS to assess impacts on
glial LD formation (knockdown efficiency quantified in SI

Appendix, Fig. S3B; LDs not formed in the absence of neuronal
ROS in SI Appendix, Fig. S2 E and F). Targeting LRP1 in glia,
but not neurons, caused a significant reduction in LD formation
(Fig. 2 A, E, I, and J), but neither neuronal nor glial expression
of LpR2 RNAi, altered LD formation (Fig. 2 B, F, I, and J).
These data argue that LRP1 is required in glia for LD forma-
tion upon neuronal ROS.

We performed ERGs to assess if loss of LRP1 in glia impacts
age-dependent photoreceptor loss in animals with elevated levels
of ROS in neurons. Compared to control flies, glial but not neu-
ronal knockdown of LRP1 caused reduced ERG amplitudes in
an age-dependent manner, indicative of photoreceptor degenera-
tion (Fig. 2 K–N), which was confirmed by Nile red staining (SI
Appendix, Fig. S5 D and E). These data suggest that the apolipo-
protein receptor, LRP1, promotes glial LD formation and neuro-
protection by mediating apolipoprotein endocytosis.

The retromer has been linked to neurodegenerative disease,
including AD (58, 59), and serves critical cellular functions in
endocytosis and receptor recycling. We hypothesized that the
retromer may be important in LRP1 recycling to promote glial
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Fig. 1. Two ABCA transporters (homologs of human ABCA1 and ABCA7) are required in neurons for glial LD formation. (A–H) LD analysis in fly retina. To
induce ROS specifically in photoreceptor neurons, an RNAi against ND42, a mitochondrial complex I subunit, is expressed under the control of the ninaE (Rh)
driver. Animals are reared at 29°C under 12-h light/dark conditions for 24 h after eclosion, prior to isolation of retinas. ROS in photoreceptors induces glial LD
formation in control animals (A and D). The photoreceptor rhabdomeres stain positive with Nile red but photoreceptors (dashed lines) do not accumulate
LDs. In contrast, pigment glia accumulate LD (arrowheads). Knockdown of Eato and ldd in neurons (B and C), but not in glia (E and F), suppress LD formation,
quantified in (G and H, photoreceptor knockdown: black bars, pigment glia knockdown: gray bars), demonstrating a critical role for these genes in neurons
for LD formation. Mean ± SEM, one-way ANOVA with Tukey’s post hoc test **P < 0.01 compared to control, n ≥ 10 animals per genotype. (I–L) To assess the
functional consequences of LD loss, we performed ERGs at day 5 and day 20. Animals were housed at 29°C under 12-h light/dark conditions, n ≥ 10 animals
per genotype. Representative ERG traces from animals with genotypes indicated (I–J). ERG amplitude quantification (K and L, photoreceptor knockdown:
black bars, pigment glia knockdown: gray bars) show that neuronal knockdown of Eato and ldd lead to a severe reduction of ERG amplitude over time, indic-
ative of progressive neurodegeneration, that is rescued by the addition of the antioxidant NACA. Glial knockdown of either Eato or ldd does not affect ERG
amplitude. Mean ± SEM, one-way ANOVA with Tukey’s post hoc test *P < 0.05 and **P < 0.01 compared to control, n ≥ 10 animals per genotype.
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LD formation. To test this, we targeted the retromer genes
VPS26 and VPS35 via RNAi in our neuronal ROS model
(knockdown efficiency quantified in SI Appendix, Fig. S3B).
Vps26 and Vps35 RNAi were expressed in neurons or glia and
LD formation and ERG amplitude was assessed. We found
that loss of Vps26 and Vps35 in either neurons or glia leads to a
significant reduction in glial LDs, suggesting that the retromer
is required in both neurons and glia for LD formation (Fig. 2
C, D, and G–J). We also found no worsening of photoreceptor
function over time when Vps26 or Vps35 were knocked down in
neurons (Fig. 2 K and M). In contrast, knockdown of Vps26
and Vps35 in glia caused an age-dependent reduction in ampli-
tude indicative of neurodegeneration (Fig. 2 L and N). The lim-
ited defects of ERG amplitude upon targeting of these genes in
neurons suggests that ROS production or the response to ROS
production in neurons is blunted or delayed. Western blot anal-
ysis to quantify ROS levels provides support for this hypothesis
(SI Appendix, Table S1). The severe loss of ERGs documented
in Wang et al. (60) when Vps26 or Vps35 proteins are
completely lost in both photoreceptors and glia suggest an

additive or synergistic effect between neurons and glia and
argues that the retromer is required in both cell types to main-
tain neuronal health. While further probing of this mechanism
is warranted, these data suggest that the neurodegeneration
observed when glial retromer function is diminished may be
caused by reduced apolipoprotein receptor recycling, thus limit-
ing lipid uptake into glia.

Endocytic AD-Risk Genes Are Required in Glia for Glial LD Forma-
tion. A subset of AD-risk loci map in or near genes involved in
endocytosis, including BIN1, CD2AP, PICALM, AP2A2, and
RIN3 (61–63), suggesting that endocytosis may be important
for AD pathogenesis. It has been proposed that these genes
contribute to AD pathology through their well-characterized
function in synaptic transmission in neurons (64–67). However,
there is evidence endocytosis is required for glial LD formation
in vertebrate neuron:glia coculture (18). It remains unclear
whether endocytic inhibition in neurons, glia, or both cell types
causes LD formation inhibition. We therefore set out to exam-
ine tissue-specific roles for AD-associated endocytic genes in
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isolation of retinas. LRP1 is required in glia (E) but not in neurons (A) to form LD, whereas LpR2 is not required in either cell (B and F). In contrast, the ret-
romer proteins are required in both neurons and glia to form LD (C and D, G and H). Average LD number per ommatidium is quantified (I and J, photore-
ceptor knockdown: black bars, pigment glia knockdown: gray bars). Mean ± SEM, one-way ANOVA with Tukey’s post hoc test **P < 0.01 compared to
control, n ≥ 10 animals for each genotype. (K–N) ERG assays were performed to assess neurodegeneration. Representative traces from animals of geno-
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**P < 0.01 compared to control, n ≥ 10 animals for each genotype.
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LD formation. We hypothesized that endocytosis may play a
neuroprotective role by aiding the sequestration of toxic, per-
oxidated lipids from neurons into glial LD.

To examine a role for endocytic AD risk genes in LD forma-
tion, we examined LD formation and ERG phenotypes in ani-
mals in which homologs of AD-risk genes are targeted, via
RNAi, in neurons and glia in the presence of neuronal ROS
(knockdown efficiency quantified in SI Appendix, Fig. S3C; no
LD phenotypes are observed in the absence of ROS in SI
Appendix, Fig. S2 E and G–I). We found that knockdown of
cindr (CD2AP), Ap-2α (AP2A2), and lap (PICALM) in glia, but
not neurons, reduced LD formation (Fig. 3 A–J), thus implicat-
ing these genes as critical components of glial LD formation. In
contrast, reduced expression of spri (RIN3) and amph (BIN1)
in neurons or glia did not significantly affect LD production (SI
Appendix, Supplementary Information and Fig. S6). Evidence of
neurodegeneration is present by day 20 posteclosion in AP-2α,
lap, and cindr knockdown flies exposed to neuronal ROS (SI
Appendix, Fig. S5 D and F–H). We also observed an age-
dependent decrease in ERG amplitude upon glial targeting of
Ap-2α, lap, and cindr (Fig. 3 K–N). ERG amplitude deficits
were rescued by the addition of the antioxidant NACA (Fig.
3N), suggesting that ROS and gene dysfunction combine to
induce neurodegeneration. Altogether, these data demonstrate
that reduced glial endocytosis inhibits the neuroprotective
effects of glial LD formation and exacerbates neurodegenera-
tion upon elevated neuronal ROS.

ROS-induced LD formation is conserved in vertebrates (16,
18). We investigated whether knockdown of PICALM, (the
ortholog of lap) is required for LD formation in vertebrate glia.
To this end, we utilized an established mammalian cell coculture

system of rat neurons and astrocytes (68). We utilized lentivirus
to deliver three independent short-hairpin RNAs (shRNAs) to
reduce PICALM protein, compared to a nontargeting shRNA
control, in cultured astrocytes (Fig. 4 A and B). Independently,
we incubated neurons with a fluorescently labeled fatty acid ana-
log Red-C12 overnight and then cocultured the labeled neurons
with transduced astrocytes on different coverslips separated by
paraffin wax (Fig. 4C) (18, 68). We found a significant reduction
in the transfer of fluorescently labeled fatty acids from neurons
to astrocytes when gial PICALM levels are reduced (Fig. 4 D
and E). These data demonstrate that clathrin-mediated endocyto-
sis is critical for the internalization of neuron-derived fatty acids
in a mammalian culture system.

Aβ Synergizes with ROS in Flies and Mice. Aβ peptides are lipo-
philic and can bind the apolipoprotein receptor, LRP1, suggest-
ing that altered lipid transfer may also alter amyloidogenesis
(69, 70). Moreover, poorly lipidated APOE can aggregate and
act as seeds for Aβ plaques (69, 71, 72) and LOF mutations in
ABCA1 leads to decreased APOE lipidation and increased
amyloidogenesis (73, 74). As ROS-induced glial LD formation
is severely affected by AD-associated risk genes and peroxi-
dated lipids accumulate in pre-AD patients (23, 24, 26, 75), we
hypothesized that ROS-induced lipid peroxidation may exacer-
bate Aβ42-induced phenotypes.

To test this hypothesis, we utilized a well-characterized fly
line expressing a secreted form of human Aβ42 that, when
expressed in neurons, induces neurodegeneration at >30-d-old
flies (76). Wild-type flies and flies expressing Aβ42 in photore-
ceptor neurons (Rh1-GAL4 > AB42) were exposed to ROS, by
feeding flies very low doses of rotenone (a mitochondrial
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Fig. 3. AD-associated GWAS genes are
required in glia for LD formation upon
neuronal ROS induction. (A–J) LD analysis
in fly retina. ROS is induced in neurons and
RNAi directed against homologs of 5
GWAS genes in photoreceptor neurons
(A–D) or glia (E–H). Animals are housed at
29 °C under 12-h light/dark conditions for
24 h prior to isolation of retinas. Expression
of RNAi against any genes tested in neu-
rons do not affect the formation of LD in
glia significantly (A–D). In contrast, RNAi
targeting AP-2a, lap, and cindr in glia
reduced LD formation significantly (E–H) as
quantified (I, J, photoreceptor knockdown:
black bars, pigment glia knockdown: gray
bars). Mean ± SEM, one-way ANOVA with
Tukey’s post hoc test *P < 0.05 and **P <
0.01 compared to control, n ≥ 10 animals
for each genotype. (K–N) ERG assays were
performed, as above, to assess neurode-
generation. Animals are housed at 29 °C
under 12-h light/dark conditions, n ≥ 10
animals per genotype. Representative
traces (K and L) and amplitude quantifica-
tion (M and N, photoreceptor knockdown:
black bars, pigment glia knockdown: gray
bars) demonstrate that neuronal knock-
down of these genes does not affect ERG
amplitude. In contrast, glial knockdown of
these genes led to a reduction in LD forma-
tion (AP-2a, lap, and cindr) also led to a sig-
nificant reduction of ERG amplitude in aged
animals, showing an age-progressive neurode-
generation, which is rescued by the addition
of the antioxidant NACA. Mean ± SEM, one-
way ANOVA with Tukey’s post hoc test **P <
0.01 compared to control, n ≥ 10 animals for
each genotype.
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complex I inhibitor) or control food for 10 d (77). This concen-
tration of rotenone induces a minor elevation of ROS (16, 36),
but no substantial neurotoxicity and very few LD are observed
after 10 d (Fig. 5 A, D, and G). Animals expressing secreted
Aβ42 (using Rh1-GAL4) do not exhibit obvious signs of neuronal
death in the fly retina and accumulate very few glial LDs within
the same 10-d time frame (Fig. 5 B, E, and G). In contrast,
Aβ42-expressing animals fed 25 μM rotenone exhibit robust glial
LD accumulation (Fig. 5 C, F, and G). The number of LDs
observed in these flies decreased between days 1 and 10, indica-
tive of lysis of the LDs, which is associated with cell death as the
peroxidated lipids escape from the LD (16, 36). We also observed
severe morphological defects of the photoreceptors and glia at
day 10 upon rotenone feeding in the Aβ42-expressing flies com-
pared to any other condition tested (Fig. 5 H–K). The degenera-
tion of the retina in Aβ42 with rotenone flies at day 10 is also
associated with a severe loss of ERG amplitude compared to
control (Fig. 5 L–N). These data demonstrate that Aβ42 strongly
synergizes with ROS to induce neuronal death.

We next tested for an interaction between ROS and amyloid in
a vertebrate model using the well-characterized 5XFAD mouse,
which expresses mutant human APP and PSEN1 and causes Aβ-
plaque formation that has been documented as early as 4 mo of
age (78). As rotenone preferentially induces dopaminergic neuro-
toxicity and is historically used to model PD (79), we instead
induced ROS by rearing animals in hyperoxia (80), as evidenced
by elevated 4HNE levels by Western blot analysis (SI Appendix,
Fig. S7A). We assembled cohorts of male and female heterozy-
gous 5XFAD mice and wild-type littermate controls and sub-
jected them to either hyperoxic (55% O2) or normoxic (∼21%

O2) conditions for 3 mo beginning at the age of 1 mo (for power
analysis, see SI Appendix, Supplementary Information and Table
S2). Sagittal brain sections of the mice were stained for Aβ accu-
mulation using established immunohistochemistry techniques
(81). We quantified plaque number and size in three regions of
the brain: the cortex, subiculum, and hindbrain. In each of these
regions, plaque size observed in 5XFAD mice was significantly
increased in hyperoxia-treated animals when compared to
normoxia-treated animals and plaque number was significantly
elevated in the cortex and subiculum of hyperoxia-treated animals
(Fig. 5 O–V and SI Appendix, Fig. S7 B and C), suggesting that
elevated ROS exacerbates amyloid plaque formation. Taken
together, the data from flies and mice provide evidence for a
feed-forward mechanism between ROS and Aβ and suggest that
AD phenotypes may be due to interactions between multiple risk
factors, including ROS.

A Pharmacological ABCA Agonist Peptide Rescues APOE4-Induced
Phenotypes. Using a humanization strategy in which the fly apoli-
poprotein, GLaz, is replaced with expression of human APOE,
we previously reported that the AD-associated APOE4 allele was
much less capable of mediating the transfer of peroxidated lipids
from neurons to glia (16). The ABCA1 receptor has previously
been shown to drive APOE lipidation (43, 82) and a small
ABCA1 agonist peptide, CS6253, restores APOE4 lipidation and
ameliorates amyloid plaque and tau phenotypes in mammals (43,
83). Given that neuronally expressed ABCA1 and ABCA7 ortho-
logs in the fly are critical for glial LD formation (Fig. 1), we
hypothesized that CS6253-induced elevation of ABCA activity
may restore LD formation in APOE4 humanized flies.
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We generated a fly line that expresses a genetically encoded
version of CS6253 (43, 44, 83). The peptide sequence was
cloned downstream of a secretion signal to enable peptide
release from the cell (76). Expression of the peptide was driven
by the GLazT2A-GAL4 allele, thus allowing it to be expressed in
the same temporal and spatial pattern as GLaz. Neuronal ROS
was induced by expressing an RNAi against Marf, the fly homo-
log of Mitofusin, under control of the ninaE (Rh) promoter,
which induces high levels of glial LD accumulation (16). As
reported, heterozygous GLazT2A-GAL4 animals have significantly
reduced LD production (16) and expression of the peptide
does not alter LD formation in this background (Fig. 6 A and
E). Peptide expression in either the APOE2 or APOE3 back-
ground does not elevate LD production beyond what is already
present without expression of the peptide (Fig. 6 B, C, F, G, I,
and J), suggesting that some maximal amount of LDs have
been generated in the presence of APOE2 or APOE3. In con-
trast, expression of the peptide in the APOE4 background
restored LD formation (Fig. 6 D and H–J). These data suggest
that the ABCA1 peptide, CS6253, promotes APOE4 lipidation,
thus restoring glial LD formation. Furthermore, neurodegener-
ation as visualized by loss of photoreceptor rhabdomeres (SI
Appendix, Fig. S8 A and B) and ERG amplitude deficits (SI
Appendix, Fig. S8 C–F) is also rescued by this peptide in the
APOE4 background. Together, these data implicate a similar
mechanism of APOE lipidation in the fly, as has been reported
in vertebrate models, and are consistent with the critical role
for fly ABCA transporters (ldd and Eato) in LD formation and
neuroprotection.

Discussion
In this study, we uncovered a pathway in which neurons and
glia interact to form LDs upon neuronal ROS (Fig. 6K), which
is neuroprotective. This process requires ABCA transporters
(Eato and ldd) and the retromer (VPS26 and VPS35) in neu-
rons together with GLaz (16, 68), glial receptor-mediated endo-
cytic proteins (LRP1, PICALM, CD2AP, and AP2A2), and the
retromer (VPS26 and VPS35) in glia. Notably, the genes identi-
fied in this study have been implicated in AD and other neuro-
degenerative diseases (5, 6, 44, 58, 84). Our data implicate a
LOF model in which AD risk-associated variants exacerbate
disease by limiting lipid transfer and peroxidated lipid seques-
tration into glial LD. While there is growing evidence that
mutations in several AD risk genes are partial LOF mutations
(50, 85–88), we do not rule out that alternative mechanisms,
including gain-of-function, are at play in AD, which warrant
further exploration. The data presented herein are consistent
with the hypothesis that disease is cumulatively and synergisti-
cally induced by genetic variants (e.g., LOF variants that dis-
rupt neuron-to-glia lipid transfer) together with other cellular
insults (e.g., neuronal ROS).

It has been well documented that ROS levels are elevated
with age and in AD (89). Neurons have limited antioxidant
capacity and activate various cellular mechanisms in response
to ROS (90). Indeed, antioxidant activity is reduced in AD
patients and the use of antioxidants as a treatment for AD has
been proposed previously, although with mixed outcomes
(91–94), possibly because the treatments were initiated too late
in the course of disease or unable to fully penetrate the
blood–brain barrier. Understanding how ROS protection is
mediated and how these responses go awry may reveal ways to
exogenously potentiate the antioxidant response. Regardless of
the cause of ROS (e.g., age, environmental stress, or genetic
perturbations), oxidative stress may initiate disease in an indi-
vidual with a previous genetic predisposition to disease, such as
APOE4. Other AD risk genes involved in lipid handling and
endocytosis may affect the transport of peroxidated lipids from

neurons into glia, thus elevating risk for the development of
disease. We have shown that the blood–brain barrier crossing
antioxidant, NACA strongly suppresses the formation of per-
oxidated lipids and LD accumulation in flies (16 and this study)
and warrants further exploration in disease.

The effects of neuronal ROS served as a platform in which
we examined AD-associated risk factors, including ABCA
transporters and proteins involved in endocytosis. We found
that ABCA transporters in the fly are required in neurons for
glial LD formation (Fig. 1). ABCA transporters implicated as
risk factors for AD might mediate the export of peroxidated lip-
ids from neurons to glia to protect neurons from the toxic
effects of ROS-induced lipid peroxidation in disease. It is note-
worthy that loss of either ABCA protein in flies leads to a loss
of LD formation and neurodegeneration. This observation may
suggest that these proteins function in a dimer or other higher-
order complex or that they have different substrates, which are
both required for LD formation, such that loss of either protein
reduces LD formation. After lipid export from neurons via
ABCA proteins, glial LD formation requires several endocytic
factors in glia (Fig. 3).

BIN1 is a membrane fission protein that regulates endocytic
vesicle size in vertebrates, but it has been implicated in APP
processing, as well as tau degradation (61, 95, 96). In flies, the
ortholog of BIN1, Amphiphysin (Amph), regulates transverse
tubule formation in muscles, which was also shown to be affected
in vertebrate mutants (97), but Amph has not been implicated in
endocytosis in flies to our knowledge (98, 99). Interestingly,
increased expression of BIN1 mediates AD risk by modulating
tau pathology (100), which is consistent with our data as we
observed no impact on LD formation upon BIN1 loss in our
assay (SI Appendix, Fig. S5). CD2AP is a scaffolding protein that
has been implicated in endocytosis and vesicle trafficking as well
as APP sorting and processing in flies and vertebrates (101–103).
However, severe LOF alleles of the fly ortholog of CD2AP, cindr,
affects synapse maturation as well as synaptic vesicle recycling
and release when lost (104). PICALM is a clathrin assembly pro-
tein that has been implicated in the import of γ-secretase and
APP processing, as well as tau build-up (61, 105). The fly ortho-
log of PICALM, like-AP180 (lap), acts as a clathrin adaptor to
promote clathrin-coated vesicle formation and restrict coated ves-
icle size as well as the efficacy of synaptic vesicle protein retrieval
(106). AP2A2, a member of the AP-2 adaptor protein complex,
aids in assembling endocytic components in flies and vertebrates,
and is an AD risk factor (62, 107). Finally, RIN3 is a Rab5 gua-
nine nucleotide exchange factor important for recruiting CD2AP
and BIN1 to endosomes has been implicated in APP accumula-
tion and tau phosphorylation regulation (63). Based on our data,
the fly orthologs of three endocytic genes (CD2AP, AP2A2, and
PICALM) play critical functions in glia for LD formation (Fig.
3). Historically, because many endocytic AD-risk genes are
known to play a critical role in synaptic transmission, it is thought
that their role in AD pathology is related to the function of these
genes in neurons. However, single-cell RNA sequencing data-
bases provide evidence for enriched expression of many of the
endocytic AD-risk genes in mouse/human glia (108, 109), and
our data indicate that fly and vertebrate glia are highly sensitive
to partial loss of these genes (Figs. 3 and 4). Hence, even a subtle
loss of the encoded proteins in human glia may have different
consequences than would a severe loss at synapses in model
organisms or cells.

As endocytic vesicles are processed in the cell, the retromer
is critical for protein recycling, including cell surface receptors
and rhodopsin (rh) (60). We observed reduced LD formation
when retromer function was targeted via RNAi in both neurons
and glia (Fig. 2). However, neurodegeneration was only
observed when the retromer was lost in glia, suggesting differ-
ent roles for retromer in neurons than in glia. In glia, the
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Fig. 6. An ABCA1 agonist peptide rescues LD formation in the presence of APOE4. (A–J) LD analysis in fly retina. ROS was induced in photoreceptor neu-
rons, as previously reported (17, 40), using an RNAi against marf, the fly ortholog of mitofusin, under the control of ninaE (Rh). Animals are reared at
29 °C under 12-h light/dark conditions for 24 h prior to isolation of retinas; representative images of ≥10 animals per genotype. We utilized a previously
characterized allele of Glial Lazarillo (GLaz-T2A:GAL4). LD formation is inhibited in GLaz-T2A-GAL4/þ flies but can be restored by expressing human
APOE2 or APOE3, but not APOE4. An ABCA1 agonist peptide was genetically encoded in the fly and expressed in the human APOE variant flies to assess
LD formation. Expression of the peptide does not affect LD formation in the presence of APOE2 or APOE3, but fully restores LD formation in the APOE4
expressing flies (E–H) and quantified (I and J, no peptide: black bars, + peptide: gray bars) showing that LD formation is strongly enhanced by the pep-
tide. Mean ± SEM, one-way ANOVA with Tukey’s post hoc test **P < 0.01 compared to control, n = 10 to 15 animals for each genotype. (K) Model of LD
accumulation and players identified in this study. We propose a model in which genetic (loss of ABCA, endocytic, or retromer genes) together with ROS
sensitize neurons to the presence of amyloid accumulation to induce neurodegeneration. It is likely that this synergy between multiple insults exacerbates
neuronal loss in disease. We demonstrated that lipid transfer between neurons and glia requires neuronal ABCA transporters, a glial apolipoprotein
receptor, and the retromer, which is required for LRP1 recycling. We propose that endocytosis of lipid particles are processed through lysosomes upon
endocytosis. Lysosomes degrade Aβ42 while the lipids are shuttled to the endoplasmic reticulum (ER) to form LD. Hence, this transport of peroxidated lip-
ids and Aβ42 provides a dual protective effect.
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receptor, LRP1, is critical for LD formation (present study)
and the retromer is required for LRP1 recycling to the mem-
brane for efficient uptake of lipid particles (110), implicating a
critical role for retromer-mediated recycling of LRP1 for glial
LD formation. In neurons, loss of retromer may lead to pro-
gressive neurodegeneration but neurons may be less sensitive
to this loss, as knockdown of Vps26 in both glia and neurons
causes more severe neuron loss than knockdown of Vps26 in
glia alone (73 and this study). It is becoming increasingly evi-
dent that the retromer plays critical roles in the maintenance of
neurons in AD (58) and its function in glia in the context of
AD warrants further exploration.

In addition to the identification of critical LD genes, which
overlap with AD risk genes, the data presented here provide a
hypothesis for the nonlinear relationship between amyloid burden
and clinical severity of disease. Human Aβ42 expression induces
neurodegeneration in Drosophila (76), as well as neurological and
behavioral phenotypes in mice (78, 111). Notably, production of
low levels of ROS or Aβ alone causes a very slow, progressive
neurotoxicity. In flies, overexpression of Aβ42 causes neuronal
death after ∼30 d (76), but we observed that combining low levels
of ROS in Aβ42-expressing flies strongly exacerbated neurode-
generation and elevated ROS enhanced Aβ deposition in 5XFAD
mice (Fig. 5). It is noteworthy that Aβ and peroxidated lipids both
bind APOE (72, 112), providing a possible mechanism of ROS/
Aβ42 synergy. Importantly, APOE4 cannot be adequately lipi-
dated, and lipidation of APOE is required for Aβ42 binding
(113–115). Thus, APOE4 would be unable to properly clear per-
oxidated lipids and Aβ42, strongly accelerating the demise of neu-
rons. Enhancement of APOE4-mediated lipid clearing could be
attained by the ABCA1 agonist CS6253, which restored LD for-
mation in APOE4 flies but did not affect APOE2- or APOE3-
mediated LD formation (Fig. 6)

It is noteworthy, given the robust interaction between cellular
ROS and amyloid (Fig. 5), that the efficacy in disease modeling
in mammals may be enhanced by the addition of ROS, which is
currently lacking in the AD field. The addition of ROS in mam-
malian models comes with various challenges, including the use
of toxic drugs (i.e., rotenone) or bulky and expensive equipment
(i.e., hyperoxia chambers). Genetic factors that induce ROS may
be a more viable option to improve AD models. A study using a
mouse model of Leigh syndrome, in which the gene NDUFS4 is
knocked out thereby reducing activity of complex I, demonstrated
that elevated ROS production induces early lethality (116, 117).
These mice have numerous LD in astrocytes and microglia prior
to the onset of neuronal loss (36). In hypoxia, these mice live
much longer (>170 d) than when reared in normoxic conditions
(no animals survived past 75 d) (118). Thus, the addition of ROS
by genetic means by, for example removing a single copy of
Ndufs4, may prove a viable method to induce ROS in existing
AD mammalian models. It is worth noting that the fly ortholog of
NDUFAF6 (sicily in flies), another cause of Leigh syndrome, is
associated with elevated ROS (16) and was the first mutant in
which we observed accumulation of LD in glia (16). Currently,
NDUFAF6 has been reported in three GWAS as a risk factor for
AD (5, 119, 120), providing further evidence for a link between
ROS, LD, and AD.

Although age and mitochondrial dysfunction are obvious
potential sources of ROS in AD patients, there may be numer-
ous other conditions that induce ROS production and
subsequent lipid peroxidation, LD formation, and neurodegen-
eration (121). A careful examination of ROS in AD patients
and inclusion of ROS in animal models may help begin to pro-
vide mechanistic insight into the etiology and progression of
AD. We predict that when ROS levels rise, it becomes

increasingly difficult for glia to sequester peroxidated lipids into
LD, promoting the demise of neurons. Thus, therapeutic
approaches aiming to induce glial uptake of lipids to alleviate
ROS and clear amyloid should also include approaches to neu-
tralize ROS, such as NACA, to eliminate the long-term conse-
quences of oxidative damage.

Materials and Methods
Information regarding strains, reagents, and tools used in this study can be
found in SI Appendix, Supplementary Information and Table S3. Drosophila
melanogasterwere raised on standardmolasses-based laboratory diet at 22 °C
under constant light conditions, unless otherwise indicated. UAS-ArgosSS::
Peptide transgenic flies were generated using standardmethods (122). Experi-
ments usingMus musculuswere carried out under the approval of the Animal
Care and Use Committee at Baylor College ofMedicine.

Whole-mount Nile red and Toluidine blue staining of fly retinas (36, 76),
ERG assays (123, 124), as well as RNA extraction, cDNA synthesis, and qRT-PCR
were performed as previously described (125). Animal perfusion, sectioning,
and immunohistochemistry was performed as in Sillitoe et al. (81). Hippocam-
pal cultures were generated from postnatal day 0 to 1 Sprague-Dawley rats
obtained from Charles River Laboratories that arrived at our facility 1 wk prior
to birth. These experiments were approved by the Canadian Council of Animal
Care at the University of Alberta (AUP#3358). Cultures were prepared as previ-
ously described (18, 126). See SI Appendix, Supplementary Materials and
Methods for additional details pertaining to these studies.

Quantification and Statistical Analysis. FIJI (127)was utilized to visualizefly reti-
nal and mouse brain images and all genotypes were blinded prior to quantifica-
tion. LDs with diameter ≥0.5 μM were manually quantified from fly retinal
images. Amyloid plaque number frommouse brain images was manually quanti-
fied and amyloid sizemeasurements were taken using the “Measure” tool in FIJI.
LabChart 8 (AD Instruments) was used to view and measure the amplitude of
ERG traces. Quantification datasets were assembled in Microsoft Excel 365 for
computation ofMean± SEMand one-wayANOVAanalysiswith post hoc Tukey’s
test. For quantification, ≥10 animals per genotype were used unless otherwise
indicated. Adjusted P values with a statistical significance cutoff at *P < 0.05 and
**P < 0.01. Statistical analysis of knockdown efficiency in rat cells used the
Kruskal–Wallis test with Dunn’s posttest using a significance cutoff at *P < 0.05.
Analysis of lipid transfer utilized one-way ANOVA with Dunnett’s posttest using
a significance cutoff at ***P < 0.001. Post hoc power analyses were performed
using GPower 3.1 (128) and effect size (Cohen’s d) was calculated using the for-
mula Cohen’s d= (M2�M1) =SDpooled, where SDpooled= �((SD1

2 + SD2
2) = 2).

Data Availability. All data are included in the main text and SI Appendix.
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