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A B S T R A C T

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). It may cause serious ailments in infected individuals and complications may
lead to death. X-rays and Computed Tomography (CT) scans can be used for the diagnosis of the disease. In
this context, various methods have been proposed for the detection of COVID-19 from radiological images.
In this work, we propose an end-to-end framework consisting of deep feature extraction followed by feature
selection (FS) for the detection of COVID-19 from CT scan images. For feature extraction, we utilize three
deep learning based Convolutional Neural Networks (CNNs). For FS, we use a meta-heuristic optimization
algorithm, Harmony Search (HS), combined with a local search method, Adaptive 𝛽-Hill Climbing (A𝛽HC) for
better performance. We evaluate the proposed approach on the SARS-COV-2 CT-Scan Dataset consisting of
2482 CT scan images and an updated version of the previous dataset containing 2926 CT scan images. For
comparison, we use a few state-of-the-art optimization algorithms. The best accuracy scores obtained by the
present approach are 97.30% and 98.87% respectively on the said datasets, which are better than many of
the algorithms used for comparison. The performances are also at par with some recent works which use the
same datasets. The codes for the FS algorithms are available at: https://github.com/khalid0007/Metaheuristic-
Algorithms.
1. Introduction

COVID-19 is a contagious respiratory infection caused by SARS-
CoV-2. It was first detected in 2019 in Wuhan, China and was subse-
quently declared a global pandemic by the World Health Organization
(WHO) in March 2020. It has resulted in a large-scale global and
social disruption. Common symptoms include fever, dry cough, fatigue,
breathing difficulties, loss of smell and taste, and headache. Complica-
tions may result in pneumonia and acute respiratory distress syndrome.
The standard method for detection is by real-time reverse transcription
polymerase chain reaction (rRT-PCR). However, the time taken for the
results is high when taking into account the low sensitivity (Fang et al.,
2020). Therefore, conventional radiological imaging such as X-rays and
CT scans have also been widely used as an initial screening measure.
This is especially important considering the fact that it will take some
time before a significant portion of the population is vaccinated.

In the past few years, deep learning (DL) has become a popular
tool for automatically learning feature representations from the input
data. This is mainly due to the increase in computing capability in the
past years. Convolutional Neural Networks (CNNs) have been applied
to many image processing domains like classification, segmentation,
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etc. Several works have been proposed in the domain of medical image
analysis using CNNs where the methods achieve competitive results.
This demonstrates the robustness as well as the widespread adoption
of CNNs.

Whenever we have something in abundance, choosing the best one
or the required one becomes very difficult due to the time required for
searching from a huge search space. Similarly for a feature set used
for classification purposes, we may not need all the features as there
may be a lot of redundant features. For this case, choosing the best
combination of features from the original feature set can be a very
expensive operation because of the huge number of possible combi-
nations of features. Feature selection (FS) is about choosing the most
relevant features out of the existing features without compromising the
performance of the learning model. In recent days, meta-heuristic algo-
rithms have gained a lot of attention from the research community in
this particular field and proved their potential for producing competent
results.

In this work, we propose a two-stage framework for the detection of
COVID-19 in CT scan images. The first stage involves feature extraction
from the input image using a CNN model. Transfer learning is employed
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during the training stage to obtain improved and robust performance
due to the small quantity of training data. In the second stage, FS tech-
nique is applied on the features extracted in the first stage. This involves
the use of Harmony Search (HS), a global search algorithm, combined
with Adaptive 𝛽-Hill Climbing (A𝛽HC), a local search algorithm. The
roposed approach manages to greatly reduce the number of features
nd also leads to a better classification performance as indicated by the
btained results.

Recently, there are many works which use DL based features (CNNs
n many cases) for the detection of COVID-19 in radiological images like
T scans and X-rays. The main issue with the raw features in CNNs is
hat there may be some irrelevant or redundant features. Some features
ay be highly correlated while others or may be unimportant for the

inal prediction task. The elimination of the correlated and redundant
eatures can help in reducing the size of the features and also the
nference time. In some cases, this can also result in an improvement in
he classification performance. Hence, FS is considered as an important
ethod for improving the performance of such learning systems, even

hose using DL. Keeping this fact in mind, in the present work, the
ffect of FS is analyzed for COVID-19 detection from CT scan images.
mportantly, it is observed that a modest improvement is achieved over
he base feature extractor CNNs when FS module is incorporated in the
verall system.

In line with the above, works have been proposed where different
ptimization algorithms have been used to obtain an improvement in
erformance. Some of them are highlighted in Section 2. In the present
ork, we have mainly explored an optimization algorithm i.e., HS,
hereas the other works have focused on some different algorithms.
his choice is motivated by the No Free Lunch theorem (Wolpert &

Macready, 1997) which states that no single algorithm exists which can
guarantee the best performance on all sets of optimization problems.
Therefore, it is worthwhile to explore different algorithms and their
variants to find the best performing method for the problem under
consideration. Apart from the above, another motivating factor is to
explore the effect of local search when used with HS. In many cases it
has been found that optimization algorithms converge to a local optima
and also converge prematurely. In such scenarios, a local search method
like A𝛽HC can direct the search away from a local optima towards the
global optima. This will manifest as better detection accuracy, which is
observed to hold in the present case.

The SARS-COV-2 CT-Scan Dataset (Soares, Angelov, Biaso, Froes, &
Abe, 2020) and its updated version are used for training and testing
the proposed approach. The first dataset contains 2482 CT scans in
total among which 1252 scans are from COVID-19 positive patients
while the remaining 1230 scans are from COVID-19 negative patients.
The second dataset contains 2926 CT scans of which are from 2168
COVID-19 positive patients and the remaining 758 are from COVID-
19 negative patients. The proposed FS method consistently leads to a
reduction of more than 50% in the number of features. This reduces the
redundancy among the extracted features and also improves the overall
performance. The best accuracies of 97.30% and 98.87% are obtained
on the above two datasets using features extracted by the DenseNet201
and the Xception models respectively at a training to testing split of
85% to 15%.

In summary, the contributions of this work are as follows:

1. An end-to-end framework of feature extraction and FS is devel-
oped to detect COVID-19 from CT scan images.

2. Three state-of-the-art pre-trained CNN models (DenseNet, ResNet
and Xception) are utilized as feature extractors to obtain feature
vectors from the input images.

3. FS is performed by using a combination of an optimization
algorithm (HS) with a local search algorithm (Adaptive 𝛽-Hill
Climbing). Many meta-heuristic algorithms suffer from prema-
ture convergence to local optima, and in our case, to overcome
2

this problem, a local search method, 𝐴𝛽𝐻𝐶 is used with HS.
4. Experimental outcomes indicate that such a FS stage obtains
better results than when using only models or when using a
single optimization algorithm in the FS stage.

The remainder of the paper has been organized as follows: Section 2
provides a quick survey of prior works on the associated topics. Sec-
tion 3 discusses the proposed approach. Section 4 contains the results
and some relevant discussion followed by the concluding remarks in
Section 5.

2. Related work

The last decades have seen a marked increase in computing power
with the advent of graphics processing units (GPUs). This, along with
the availability of large datasets, has paved the way for the practical
applications of DL techniques. DL techniques are now extensively being
researched in the domain of computer vision along with others. They
have been applied to many areas in medical image processing.

For instance, medical image classification is a process where an in-
put image (2D or 3D) is classified into one of the several target classes.
The classes commonly represent disease types. Kermany et al. (2018)
have used a transfer learning based approach with an InceptionV3
network to classify age-related macular degeneration and diabetic mac-
ular edema in optical coherence tomography images. The authors show
that the network achieves performance comparable to that of human
experts. They have also shown the generalizability of their approach
by training the model to detect viral and bacterial pneumonia in chest
X-rays.

Several works (Maier, Syben, Lasser, & Riess, 2019) have also been
proposed in related medical realms like image segmentation, image
registration, computer aided diagnosis, simulation, reconstruction, etc.
Considering the above works, it is only natural for DL based research
works to be proposed in the domain of medical image processing to aid
in detecting COVID-19.

The availability of a large amount of training data is important for
the performance and generalizability of DL models. Conventional aug-
mentation methods like rotation, flipping, etc. have been widely used
to increase the variety of the training data. However, such methods
are limited in their effectiveness because they produce slightly altered
samples from existing data. The work by Waheed et al. (2020) aims to
tackle this problem by generating synthetic images via a Auxiliary Clas-
sifier Generative Adversarial Network (ACGAN) based model termed as
CovidGAN. They show that including the synthetic images in a VGG16
classifier improves the performance of the model. The accuracy, F1
score, sensitivity and specificity improve to 95%, 0.95, 90% and 97%
respectively from 85%, 0.85, 69% and 95% respectively.

Several works also employ transfer learning to improve the perfor-
mance of DL models as opposed to training from scratch. For exam-
ple, Jaiswal, Gianchandani, Singh, Kumar, and Kaur (2020), in their
work, use DL models to classify CT scan images as COVID-19 infected
or normal. The models are originally trained on the ImageNet dataset.
After that, they have been trained on the SARS-CoV-2 CT scan dataset.
The authors have noted that the DenseNet201 based model performs
the best as compared to the VGG16, ResNet152V2 and InceptionRes-
NetV2 models. The reported training, validation and testing accuracies
are 99.82%, 97.40% and 96.25% respectively.

Rajaraman et al. (2020) use iterative pruning and ensembling af-
ter training the DL models to obtain improved classification perfor-
mance. They have proposed a pipeline to detect pneumonia-related and
COVID-19 related irregularities in chest X-rays. A notable stage in the
pipeline is the modality-specific training. The models are pretrained on
a pneumonia-associated chest X-ray dataset before being trained on the
data containing COVID-19 X-rays. The intuition is that, since COVID-19
data is scarce, the pretraining helps the models to learn domain-
specific features. This is very similar to transfer learning, though the

modality-specific training is applied to the models already pretrained
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on ImageNet. The authors report their accuracy and AUC as 99.01%
and 0.9972 respectively. The work by Dey, Bhattacharya, Malakar,
Mirjalili, and Sarkar (2021) is a similar recent work where an ensem-
bling technique is used which utilizes a Choquet Fuzzy Integral-based
approach.

From the above works, it is observed that DL based CNNs are very
popular for the purpose of feature extraction from images (X-rays, CT
scans, etc.). It is also noted that transfer learning is an useful technique
to deal with the lack of data, especially in emerging domains. However,
there are some limitations in CNNs: the hyperparameters need to be
carefully chosen, there may be redundancy in the extracted features,
etc. Several works have been proposed to mitigate these limitations.
In particular, it is noted that searching-based and optimization-based
algorithms have been used in many works to augment the performance
of DL models.

It is also important to note that in addition to CNNs, there are also
works reporting competitive results using other relevant approaches.
For example, the works by Yu, Lu, Guo, Wang, and Zhang (2020)
and Yu, Wang, and Zhang (2021) are a few examples where graph-
based CNNs have been used. The work by Garain, Basu, Giampaolo,
Velasquez, and Sarkar (2021) is another recent work for COVID-19
detection based on Spiking Neural Networks as opposed to DL based
networks.

As mentioned earlier, in recent times, optimization algorithms have
attracted a lot of attention from researchers. In particular, meta-
heuristic algorithms have seen a lot of improvement over the years.
Meta-heuristic is a genre of randomized algorithm where the algorithm
learns to find the optimal solution through the iteration process. Meta-
heuristic algorithms can be divided into multiple categories: single
solution based and population based (Gendreau & Potvin, 2005), nature
inspired and non-nature inspired (Fister Jr, Yang, Fister, Brest, & Fister,
2013), metaphor based and non-metaphor based (Abdel-Basset, Abdel-
Fatah, & Sangaiah, 2018), etc. From the ‘inspiration’ point of view,
these algorithms can roughly be divided into four categories (Nema-
tollahi, Rahiminejad, & Vahidi, 2019): Evolutionary, Swarm inspired,
Physics based, and, Human related.

FS is a binary optimization problem. In FS, the most relevant
useful features are chosen from the existing feature set. In the final
selected features, each feature of the existing feature set has only two
possibilities. It may either be included in the selected feature set or
excluded from the final feature set. So, there are a total of 2𝑁 (𝑁 being
the size of original feature set) possible combinations of selected feature
sets, and to find the best combination is indeed a challenging task.
Here, the meta-heuristic algorithm comes handy. The stochastic nature
of meta-heuristic algorithms helps find any optimum solution with a
reasonable time complexity. The algorithms mentioned in the previous
paragraph are all extensively used for FS. Ghamisi and Benediktsson
(2015), Huang, Cai, and Xu (2007) and Leardi (2000) are a few GA
based approaches for FS. Chakraborty (2008), Lee, Soak, Oh, Pedrycz,
and Jeon (2008) and Wang, Yang, Teng, Xia, and Jensen (2007) are
a few PSO based approaches for FS. One other FS related work is Ke,
Feng, and Ren (2008). One of the recently published works using meta-
heuristic algorithms on COVID-19 data is by Wu, Liao, Karatas, Chen,
and Zheng (2020). A few recent works utilizing local search based
algorithms are: Al-Betar, Hammouri, Awadallah, and Doush (2020),
Chatterjee et al. (2020) and Ghosh, Ahmed, Singh, Geem, and Sarkar
(2020). In Al-Betar et al. (2020) the authors have used a 𝛽-Hill Climbing
based method with a S shaped transfer function. Ghosh et al. (2020)
used 𝛽-Hill Climbing to improve performance of the Binary Selfish
Optimization Algorithm. On the other hand, a few recent works on HS
algorithms based FS are: Abualigah et al. (2020), Ahmed, Ghosh, Singh,
Geem, and Sarkar (2020), Saha et al. (2020) and Sheikh et al. (2020).
In these papers, the authors have used novel combinations of HS with
other meta-heuristic or local search methods. In Sheikh et al. (2020)
authors have used a novel hybrid method composed of HS algorithm
3

and Artificial Electric Field Algorithm (AEFA). In Ahmed et al. (2020),
the authors have used a hybrid method of HS algorithm and a Ring
Theory based evolutionary algorithm for FS.

Goel, Murugan, Mirjalili, and Chakrabartty (2020) have proposed
an Optimized CNN (OptCoNet) for the diagnosis of COVID-19 from
chest X-rays. The proposed model consists of typical feature extraction
components (convolution, pooling, etc.) and classification components
(fully-connected layers, dense layers, etc.). After that, the authors have
used the Grey Wolf Optimization algorithm for optimizing the hyperpa-
rameters of the CNN. The authors demonstrate that such an approach
performs better in comparison to state-of-the-art CNNs. Their dataset
consisted of chest X-rays of normal, pneumonia affected and COVID-19
affected patients collected from publicly available repositories. There
were 2700 images in total with 900 being COVID-19 images. A training
to testing split of 70% to 30% used. The authors reported the accu-
racy, sensitivity, specificity, precision, and F1 score values as 97.78%,
97.75%, 96.25%, 92.88% and 95.25% respectively.

Ezzat et al. (2020) have an approach where they select the optimal
hyperparameters for a pretrained DenseNet121 based model using
the Gravitational Search Algorithm (GSA). They have prepared a bi-
nary COVID-19 dataset by combining the Cohen COVID19 chest X-ray
dataset and the Kaggle chest X-ray dataset. The final dataset contains
two categories: positive and negative. The positive category includes
99 X-rays of patients affected by COVID-19. The negative category
includes 207 X-rays among which 104 are from healthy cases, 80 are
pneumonia affected cases and the remaining 23 are from cases affected
by other diseases like SARS, ARDS, etc. The data was divided into three
partitions for training, validation and testing with the ratios being 70%,
15% and 15% respectively. The authors report the accuracy and F1
score of their method as 98.38% and 98% respectively.

Elaziz et al. (2020) have proposed a two-stage framework con-
sisting of feature extraction followed by FS to classify X-rays into 2
classes: COVID-19 positive and COVID-19 negative. The features were
extracted from the image using Fractional Multichannel Exponent Mo-
ments (FrMEMs). A parallel implementation was used to speed up the
task of finding moments. Thereafter, the Manta Ray Foraging Optimiza-
tion (MRFO) algorithm based on Differential Evolution (DE) was used
to find the most significant features from the features obtained from the
feature extractor. The authors have used two datasets for the purpose
of evaluation. The first dataset that they use is a combination of two
datasets: the Cohen dataset and a pneumonia dataset from Kaggle. It
consists of 216 COVID-19 positive images and 1675 COVID-19 negative
images. The second dataset was collected by a team of researchers
in collaboration with doctors. It has 219 COVID-19 positive images
and 1341 COVID-19 negative images. The authors report accuracies of
96.09% and 98.09% on the first and second datasets respectively.

Sahlol et al. (2020) have used an approach consisting of two stages:
feature extraction followed by FS. For the purpose of feature extraction,
they utilized the robust CNN architecture known as Inception. To filter
out the irrelevant features, they used a swarm-based FS method: a
combination of fractional-order calculus with the Marine Predators
Algorithm (FO-MPA). They used the same two datasets for evaluation
as the previously mentioned work by Elaziz et al. (2020). The authors
reported the accuracy and F-score values as 98.7% and 98.2% for the
first dataset, and as 99.6%, 99.0% for the second dataset.

Altan and Karasu (2020) have also used an optimization algorithm
based approach. Initially they converted each chest X-ray image to
grayscale and applied a 2D curvelet transform to obtain a feature
matrix. The coefficients in the feature matrix were then optimized
with the help of the Chaotic Salp Swarm Algorithm (CSSA). Finally,
a DL model, EfficientNet-B0, was used for the purpose of detecting
COVID-19 using the optimized features. The authors obtained accuracy,
specificity, precision, recall and F-Measure values of 99.69%, 99.81%,
99.62%, 99.44% and 99.53% respectively.

Soui et al. (2021) have developed a model to predict cases of
COVID-19 based on clinical symptoms and features. The authors have

used two datsets: (i) the Wolfram Data Research Repository (2020);
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Table 1
Some common issues that are present in recent works on Covid-19 detection.

Issue Description

Dataset quality This is perhaps the most important issue for COVID-19 detection methods (Ezzat, Hassanien, & Ella, 2020; Sen, Saha, Chatterjee,
Mirjalili, & Sarkar, 2021; Soui, Mansouri, Alhamad, Kessentini, & Ghedira, 2021). Current datasets are of comparatively smaller sizes
when compared to other benchmark medical datasets. Obtaining more data is difficult due to the privacy of patient data. As a result,
the quality of the predictions may reduced on data outside the training set. DL based approaches are more affected by this issue as
these kind of models easily overfit on small datasets. In addition to the quantity of data, there are various factors which reduce the
quality of the dataset. For example, radiological abnormalities may be different in different regions. However, most datasets have X-rays
or CT scans restricted to a single geography.

Feature extraction Recent methods extract features from the input images by one of the following techniques: classical techniques i.e., using feature
engineering, DL-based techniques or a hybrid of the previous two. Classical techniques generally produce inferior results when
compared to DL-based or hybrid techniques. At the same time, DL-based techniques are mostly black-box models and it is difficult to
interpret their results easily. Hence, it is a practical trade-off between classification performance and the explainability of the model,
both of which are important for medical image classification.

Parameter tuning Parameter tuning is an important stage in both meta-heuristic and DL-based approaches (Goel et al., 2020; Turkoglu, 2021) in which
the optimal values for the input parameters of a model are decided. The advent of various exhaustive and randomized tuning techniques
has automated the entire process. However, the tuning stage is still an important and time-consuming part of various methods which
contributes significantly to the performance. It is often difficult to find parameters which perform well on both training and testing data.

Heavyweight DL-based methods In general, DL based methods produce better results as compared to conventional methods. There are a few disadvantages associated
with them as mentioned above. However, many DL based approaches using the latest architectures like graph neural networks (Bhowal,
Sen, Yoon, Geem, & Sarkar, 2021; Biswas et al., 2021; Kundu, Singh, Ferrara, Ahmadian, & Sarkar, 2021; Kundu, Singh, Mirjalili, &
Sarkar, 2021; Yu et al., 2021) or spiking neural networks (Garain et al., 2021) require a lot of computational resources. This is also
valid for methods using techniques such as ensembling and pruning (Rajaraman et al., 2020). These methods are able to obtain very
high performance scores but their resource-hungry nature makes them uneconomical to use practically in many scenarios.

Computing environment This issue is especially common in methods where one step involves the use of DL and another step involves the use of meta-heuristic
algorithms. Some times, DL algorithms are implemented in Python while meta-heuristic algorithms are implemented in any other
language. This is because Python provides many features and libraries suited for implementing DL algorithms which other languages
may be lacking. This can sometimes produce a marked change in the results due to data-interchange issues like incompatible formats,
different representation of vectors, etc. Sahlol et al. (2020) are one of the first to mention this issue.

Limitations of FS Methods In various COVID-19 papers FS is also used like in Bandyopadhyay, Basu, Cuevas, and Sarkar (2021), Bhowal, Sen, and Sarkar (2021)
and Chattopadhyay, Kundu, Singh, Mirjalili, and Sarkar (2021). But there are a few disadvantages associated with each meta-heuristic
method and choosing the best meta-heuristic very critical Tuning the parameters of each algorithms is also a challenging task. For
example, Genetic Algorithm (GA) has a slower convergence rate and is less flexible. For Particle Swarm Optimization (PSO), it can be
difficult to define the initial parameter values. It also has a problem of premature convergence. In addition, Grey Wolf Optimizer
(GWO) may fail sometime to find optimal solution.
Fig. 1. A pictorial overview of the proposed work used for COVID-19 detection. HS and A𝛽HC denote the Harmony Search and Adaptive 𝛽-Hill Climbing algorithms respectively.
and (ii) the dataset provided in the work by Zoabi, Deri-Rozov, and
Shomron (2021). Both the datasets contain clinical and demographic
features like age, gender, presence of symptoms (cough, fever, etc.), and
so on. For FS, the authors have used the non-dominated sorting genetic
algorithm (NSGA-II) to select the best features. The objective function
that they have used considered a trade-off between two opposite objec-
tives: minimizing the number of features, and maximizing the weights
of the selected features. Finally, an AdaBoost classifier is used to obtain
the predictions. The authors have obtained accuracy and AUC values
of 85% and 87.16% on the first dataset, and of 95.56% and 96.87% on
the second dataset. The authors have also shown that their approach
of using NSGA-II provides a statistically significant improvement when
compared with some other approaches.

Turkoglu (2021) has developed a model for detecting COVID-19 in
4

chest X-rays termed as COVIDetectioNet. The work utilizes a pretrained
AlexNet based model for extracting features. Unlike some works which
use the outputs from the final fully connected layers as features, here
the outputs from the intermediate convolution layers are used as well.
The final feature vector is obtained via the concatenation of the indi-
vidual vectors obtained from all the intermediate outputs. For FS, the
Relief algorithm is used, and for classification, an SVM model is trained.
The dataset used is a combination of three individual publicly available
datasets and the final dataset consists of 6092 total X-rays of which
219 are from COVID-19 affected patients, 1583 are normal and the rest
are from pneumonia-affected individuals. The authors have obtained an
accuracy of 99.18%.

Sen et al. (2021) have proposed an approach for COVID-19 pre-
diction in chest CT images. The main idea is of performing the FS

in two stages. Initially, a CNN model has been trained to obtain the
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features. Thereafter, FS is carried out. In the first stage, two filter
methods called Mutual Information (MI) and ReliefF have been used for
FS, and the highest ranked features from the two algorithms are taken
as the selections. These features are then passed into the Dragonfly
algorithm (DA) for the selection of the most relevant features. Finally,
the classification is performed using an SVM model. The authors have
used two open access datasets to validate their model: the SARS-COV-
2 CT-Scan dataset and the COVID CT database. The authors have
obtained accuracy and F1 scores of 95.77% and 0.9579 on the first
dataset, and of 85.33% and 0.8281 on the second dataset.

Too and Mirjalili (2021) have proposed a novel wrapper based
method called Hyper Learning Binary Dragonfly Algorithm (HLBDA) for
FS. The authors have first established the better performance of HLBDA
with respect to some recent algorithms. Thereafter, the authors have
used the data provided in Iwendi et al. (2020) for FS and subsequent
COVID-19 prediction. The authors have reported an accuracy value of
92.21% using only three selected features.

2.1. Limitations of present COVID-19 papers

In this subsection we highlight some limitations which are observed
in recent methods tackling COVID-19 detection from radiological im-
ages. The common issues are tabulated in Table 1.

3. Proposed approach

In this section we discuss our proposed approach. Fig. 1 gives a
high-level overview of the classification pipeline. First, the input CT-
scan images are used to train a CNN model which serves as the feature
extractor. The features are essentially the output from the layer just
before the layer containing the prediction probabilities. The features
are then used for FS using the HS and A𝛽HC algorithms to obtain
the most relevant features. Thereafter, the features are used to train a
classifier to obtain the final predictions i.e., whether the input CT-scan
image is COVID-19 positive or negative.

In the following subsections, we discuss each major stage of the
above pipeline in detail.

3.1. Feature extraction

For the purpose of feature extraction, we use a CNN based model (Le-
Cun et al., 1995). A CNN generally consists of convolutional layers and
pooling layers along with non-linear activation functions. The output
from the last convolutional layer is usually followed by a flattening
or global pooling layer to produce a 1D tensor. This is followed by
one or more dense layers. The last dense layer produces a 1D tensor
with dimension equal to the number of output classes and usually
has a softmax activation associated with it. It encodes a probability
distribution denoting the likelihood of the image belonging to any of
the classes. Modern architectures also use techniques such as batch
normalization (Ioffe & Szegedy, 2015) and dropout (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014) to improve network
performance.

Neural networks in general require a large quantity of input data to
produce good results and for generalizability of the trained model. This
is because of the problem of overfitting in small datasets, especially
in heavyweight networks. To mitigate this effect, many researchers
use transfer learning. It involves the use of knowledge gained in some
source domain and applying it to the target domain of interest. As it
is difficult to get a large amount of data (especially in new domains),
CNNs are rarely trained from scratch with random initialization. It
is common to initialize the weights of the base model with weights
obtained after training on another larger dataset, e.g. ImageNet.1 Here,

1 14 million+ images, http://www.image-net.org/.
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the base model refers to the CNN up to the flattening or global pooling
layer. The base model is then followed by custom dense layer(s) with
the last layer having the number of outputs as required in the target
task. In general, the base is used as a feature extractor with fixed
weights while the dense layers are trained as usual. Fine tuning is an
additional step where the entire network (including the base) is again
trained with a low learning rate.

In this work, we use two main modes of training. The first mode
(referred to as mode 1) uses transfer learning and fine tuning as
described above with a single dense layer following the global pooling
layer. In this mode, the dense layer following the global pooling layer
is trained for 40 epochs at a learning rate of 0.001 keeping the weights
of the base model frozen. Thereafter, the entire network is fine tuned
for another 10 epochs at a low learning rate of 0.0001.

In the second mode (referred to as mode 2), the dense layers are not
trained to convergence first. Instead, the entire network is trained for
40 epochs with a higher learning rate of 0.001 as compared to the fine
tuning step in the first mode. In both the modes, the ImageNet dataset
is used for the initialization of the weights of the base model and the
Adam (Kingma & Ba, 2014) optimization algorithm is used for training.
Mode 1 represents the conventional fine tuning approach with a low
learning rate. However, some recent works (Horry et al., 2020; Loey,
Manogaran, & Khalifa, 2020) have benefitted from higher learning
rates. Hence we also use mode 2 for the purpose of comparison.

We consider the following state-of-the-art CNNs for the purpose of
classifying the input images: ResNet152 (He, Zhang, Ren, & Sun, 2016),
DenseNet201 (Huang, Liu, Van Der Maaten, & Weinberger, 2017) and
Xception (Chollet, 2017).

The ResNet architecture was first proposed to tackle the common
challenges faced while training very deep neural networks. It adds skip
connections between layers which diminish the vanishing gradients
problem in deep networks and improve the overall performance. The
skip connections are highlighted in Fig. 2 as the ‘‘identity’’ path.

The DenseNet architecture is similar to the ResNet architecture.
Instead of skip connections, it consists of layers which are directly
connected to each other. Fig. 3 provides a pictorial representation of
the basic architecture. It can be seen (in the figure) that the output
of a particular layer is connected to all the subsequent layers. These
direct connections lead to parameter efficiency since the learning of
redundant features are avoided due to the direct connections. Another
advantage is that this leads to improved flow of information and
gradients through the network.

Xception presents an interpretation of inception blocks (used in the
Inception architectures (Szegedy et al., 2015)) as depthwise separable
convolutions. Fig. 4 shows a simplified schematic of an inception block.
Fig. 5 shows an equivalent reformulation of the inception block. When
each spatial convolution in Fig. 5 is applied per output channel, the
situation is almost the same as when using depthwise separable convo-
lutions. As compared to the InceptionV3 architecture, it obtains better
results on the ImageNet dataset despite having approximately the same
number of parameters. This indicates that the Xception architecture
makes more efficient use of the parameters.

The models considered above are all pre-trained on the ImageNet
dataset. It is also noted that all the models have a global (average)
pooling layer instead of a flattening layer. This is followed by a dense
layer having two classes each corresponding to COVID-19 positive and
COVID-19 negative respectively. The basic workflow and architecture
of the models is shown in Fig. 6.

Task 1 refers to the pretraining performed on the ImageNet dataset.
Task 2 refers to the training process on the CT scan dataset used in
this work. The base model architecture remains the same in both the
tasks. The only modification is a custom dense layer used in the final
task (Task 2) due to the mismatch in the number of output classes.
The output of the global pooling layer is the required feature vector in
our case, which is a 1D tensor. We obtain 1D tensors of dimensions

1920, 2048 and 2048 corresponding to the DenseNet, ResNet and

http://www.image-net.org/
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Fig. 2. A pictorial representation of the skip connections in the ResNet architecture (He
et al., 2016).

Xception models respectively. These feature vectors are used in the
next stage of FS as explained in the next subsection. Before that the
implementation details and the various parameters are summarized in
the next subsection.

3.1.1. Implementation details
The Tensorflow Keras framework is used to implement the feature

extractor CNNs. The three models used in the present work are imple-
mented in the above framework using the tf.keras.applications
module. The exact names of the classes are: ResNet152V2,
DenseNet201 and Xception. When instantiating the classes, the
include_top argument is set to False to indicate that custom
layers will be used at the end. The following layers are added at the
end of the base model: 2D global average pooling, batch normalization,
dropout (probability = 0.2) and a fully-connected layer with 2 output
units having a softmax activation.

The input images are loaded and partitioned using the data loader
modules available in the above framework. The images have been
partitioned into 2 parts: the training set and the test set. Models are
trained on the training set and evaluated on the test set. Furthermore,
20% of the training set are used as the validation set. The exact details
are mentioned in Section 4 since some aspects depend on the dataset
being used.

As mentioned previously, there are two modes used for training
the CNNs. The exact details and parameters involved are summarized
below:
6

Fig. 3. A pictorial representation of the dense connections in the DenseNet
architecture (Huang et al., 2017).

Fig. 4. A schematic diagram representing a simplified inception block (Chollet, 2017).
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Fig. 5. A schematic diagram representing a strictly equivalent reformulation of the
simplified inception block (Chollet, 2017).

Fig. 6. A schematic diagram of the feature extraction approach.

1. Mode 1: This is the classic transfer learning approach. At first,
a base model is initialized with the ImageNet weights. Then, the
base model’s parameters are freezed and the custom layers are
trained for 40 epochs with an initial learning rate of 0.001. After
that the weights of the base model are unfreezed, and the model
is trained for another 10 epochs at a reduced initial learning rate
of 0.0001.

2. Mode 2: Here, instead of freezing the weights, the entire model
is trained for 40 epochs with an initial learning rate of 0.001.

In both the modes, during training, the Adam optimizer is used for
raining, categorical cross-entropy is used as the loss function and the
educeLROnPlateau callback is used to reduce the learning rate by
factor of 10 if the loss does not improve for 10 epochs.

.2. Feature selection

In this section, the basic framework of the FS process is discussed.
7

efore that, we highlight the reasons for the selection of the algorithms
used in the present work. The reasons why HS algorithm is used along
with A𝛽HC are the following:

• HS is fast compared to other traditional meta-heuristic algo-
rithms.

• Unlike GA, HS improvises a new solution based on the whole
population rather than best two solutions, which may often lead
to premature convergence.

• According to the No Free Lunch theorem (Wolpert & Macready,
1997), for no two algorithms can it can be proved that one is
superior than the other. Rather, only for a particular problem
can one meta-heuristic algorithm be proved to be better based
on experimental results.

• Almost all meta-heuristics suffer from the probability of prema-
ture convergence in local optima. To overcome this issue often a
local search method comes handy.

• For general HC and 𝛽HC, the value of 𝑁 has to be chosen
beforehand, if the value of 𝑁 is too large, the local search cannot
guarantee proper exploitation of the good element of the current
solution. Rather, in A𝛽HC the 𝑁 parameter is deterministically
updated during the search.

3.2.1. Harmony search
HS is an algorithm proposed by Geem, Kim, and Loganathan (2001).

The core concept of HS is influenced from the artificial phenomenon
of musical harmony. Musical harmony is composition various musical
tones, which is considered pleasing from an aesthetic point of view. In
musical harmony the relation between frequency of some tunes may
induce better aesthetic quality of the harmony. Musical performance is
the process to find the best aesthetically pleasing harmony, and this can
be achieved through practice. Similarly an optimization problem also
seeks the solution with best performance measured by the objective
function. HS Algorithm introduces Harmony Memory (HM) which is
just collection of harmonies. The HS algorithm follows few simple steps:

• Step 1: Initialize HM on randomized form.
• Step 2: Improvise new harmony from the HM on random basis.
• Step 3: If improvised outperforms worst performing harmony replace
it.

• Step 4: If stopping criterion is not met, continue from Step 2.

The key features of HS algorithms are:

• Unlike other nature-inspired meta heuristic algorithms, HS does
not require too much mathematical parameter setting.

• In the improvisation step, new harmony is generated purely based
on randomized stochastic method.

• In GA new cross-over generation is generated based on the two
best performing individuals in population, but in HS, a new
harmony is generated based on all the existing harmonies in
harmony memory. This may help HS algorithm to increase its
stochastic nature.

Due to the above reasons HS algorithm can find the global best solution
in lesser time than other meta-heuristic algorithms. However, it also
lacks some qualities. Because the proposed algorithm in Geem et al.
(2001) improvises new harmony solely based on the random initialized
HM, it lacks exploration qualities unlike other contemporary algo-
rithms. That is why in Mahdavi, Fesanghary, and Damangir (2007), an
improved HS algorithm is proposed, by introducing few mathematical
parameters, which in turn increases the fine-tuning of the algorithm.
The authors of Mahdavi et al. (2007) introduced two major additions
to standard HS algorithm. One is, Harmony Memory Consideration Rate
(HMCR) and other one is Pitch Adjustment Rate (PAR). Let, us define
the HM:
𝐻𝑀 = [𝐻1,𝐻2,… ,𝐻𝑁 ] (1)
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Where 𝐻𝑖 is 𝑖th harmony and 𝑁 is number of harmonies in HM. Again
he 𝑖th harmony can be refactored in the following way:

𝑖 = [𝐻1
𝑖 ,𝐻

2
𝑖 ,… ,𝐻𝐾

𝑖 ] (2)

here 𝐻 𝑗
𝑖 is the 𝑗th decision variable of 𝑖th harmony and the K is the

imension of solution vector.
Let, a new improvised harmony is denoted by 𝐻𝑖𝑚𝑝 = [𝐻1

𝑖𝑚𝑝,𝐻
2
𝑖𝑚𝑝,… ,

𝐻𝐾
𝑖𝑚𝑝] where, 𝜁 𝑖𝑢 ≥ 𝐻 𝑖

𝑖𝑚𝑝 ≥ 𝜁 𝑖𝑙 for each 𝑖 ∈ {1, 2,… , 𝐾}. Here, 𝜁 𝑖𝑢 and 𝜁 𝑖𝑙 are
he upper-bound and lower-bound of 𝑖th decision variable respectively.
he HMCR is defined as the rate of choosing values from solution
istory of HM. On the other hand, (1 - HMCR) denotes the rate of
hoosing any random value from the possible range of values of any
ecision variable. The HMCR undertakes values in range [0, 1]. For
xample, if HMCR undertakes the value of 0.75, that means 75% times
he decision values of an improvised harmony will be taken from the
M, and 25% times decision values will be random value from the

ange of that specific decision variable.

𝑖
𝑖𝑚𝑝 ←

{

𝑣𝑎𝑙 ∈ {𝐻 𝑖
1,𝐻

𝑖
2,… ,𝐻 𝑖

𝑁}, 𝑟𝑎𝑛𝑑() < 𝐻𝑀𝐶𝑅
𝑣𝑎𝑙 ∈ [𝜁 𝑖𝑙 , 𝜁

𝑖
𝑢], 𝑟𝑎𝑛𝑑() ≥ 𝐻𝑀𝐶𝑅

(3)

Now, 𝐻 𝑖
𝑖𝑚𝑝 for 𝑖 ∈ 1, 2, .., 𝐾 will undergo pitch adjustment. As, PAR

also takes values in range [0, 1] so pitch adjustment process is as
followed.

𝐻 𝑖
𝑖𝑚𝑝 ←

{

𝐻 𝑖
𝑖𝑚𝑝 ± 𝑅𝑎𝑛𝑑() ∗ (𝜁 𝑖𝑢 − 𝜁 𝑖𝑙 ), 𝑟𝑎𝑛𝑑() < 𝑃𝐴𝑅

𝐻 𝑖
𝑖𝑚𝑝, 𝑟𝑎𝑛𝑑() ≥ 𝑃𝐴𝑅

(4)

Where Rand() is the uniform random number generator which gives
values in the range of [0,1].

Algorithm 1 Pseudo code of HS algorithm
Input: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟,𝐻𝑀𝐶𝑅, 𝑃𝐴𝑅
Output: Best harmony 𝐻𝑏𝑒𝑠𝑡

1: Randomly initialize 𝐻𝑀(0)
2: for 𝑖𝑡𝑒𝑟 ← 1…𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
3: if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) ≥ 𝐻𝑀𝐶𝑅 then
4: 𝐻 𝑗

𝑖𝑚𝑝(𝑡 + 1) ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝜁 𝑗𝑙 , 𝜁
𝑗
𝑢 )∀𝑗 ∈ [1, 𝐾] {𝜆𝑗𝑙= lower bound, 𝜆𝑗𝑢=

upper bound}
5: else
6: for 𝑗 ← 1…𝐾 do
7: 𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒)
8: 𝐻 𝑗

𝑖𝑚𝑝(𝑡 + 1) ← 𝐻 𝑗
𝑖 (𝑡)

9: end for
10: end if
11: Let, 𝑤 be index of the worst harmony in 𝐻𝑀(𝑡)
12: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(ℎ(𝑡 + 1)) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐻𝑀𝑤(𝑡)) then
13: 𝐻𝑤(𝑡) ← 𝐻𝑖𝑚𝑝(𝑡 + 1)
14: end if
15: for 𝑖 ← 1… 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 do
16: if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 𝑃𝐴𝑅 then
17: 𝐻 𝑗

𝑖 (𝑡 + 1) ← 𝐻 𝑗
𝑖 (𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚(−1, 1) × (𝜁 𝑗𝑢 − 𝜁 𝑗𝑙 )∀𝑗 ∈ [1, 𝐾]

18: end if
19: end for
20: end for

Algorithm 1 is a comprehensive pseudo code for HS algorithm
onsidering HMCR and PAR. In case of FS, 𝜁 𝑗𝑙 = 0 and 𝜁 𝑗𝑢 = 1 ∀𝑗 ∈
1, 2,… , 𝐾. Here 𝐻 𝑗

𝑖 = 1 corresponding to selection of that 𝑗𝑡ℎ feature
in the reduced feature set represented by 𝑖th harmony and 𝐻 𝑗

𝑖 = 0
correspond to discarding of 𝑗𝑡ℎ feature from the reduced feature set.

3.2.2. Adaptive 𝛽-Hill Climbing
Hill Climbing (HC) is a simple local search algorithm. But, it has

some flaws like it may not able to find the global solution. To overcome
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this flaw in Al-Betar (2016), an improved HC algorithm called 𝛽HC
was proposed. In 𝛽HC the local search has two operators, ℵ - operator
(Neighborhood operator) and 𝛽 - operator. The ℵ - operator randomly
chooses a neighboring solution of an existing solution. Suppose, ℎ =
[ℎ1, ℎ2,… , ℎ𝐾 ] is an existing solution, we can find an local solution
ℎ̇ = [ℎ̇1, ℎ̇2,… , ℎ̇𝐾 ], with respect to the existing solution in the following
way:

ℎ̇𝑖 = ℎ𝑖 ± 𝑈 (0, 1) × ℵ ∀𝑖 ∈ [1, 𝐾] (5)

Here 𝑁 denotes highest possible distance between existing solution and
neighboring solution. U(0, 1) generates random number in range of [0,
1]

The 𝛽-operator is inspired by the uniform mutation operator of GA.
The 𝛽-operator manipulates the local solution in following way:

ℎ̈𝑖 ←

{

ℎ𝑟𝑎𝑛𝑑 𝑖𝑓 𝑟𝑎𝑛𝑑() < 𝛽
ℎ̇𝑖 𝑒𝑙𝑠𝑒

(6)

where ℎ𝑟𝑎𝑛𝑑 is a value in the range of [𝜁 𝑖𝑙 , 𝜁
𝑖
𝑢]. 𝛽 is a number in range

of [0, 1] and rand() generates random value in range of [0, 1]. The
erformance of 𝛽HC largely depends on parameter settings, which
eans coming up with best possible values 𝛽 and ℵ. And this require lot

f experimentation. To avoid this step Adaptive 𝛽HC is proposed in Al-
etar, Aljarah, Awadallah, Faris, and Mirjalili (2019), which takes away
o the additional step of experimentation to find the best possible value
f 𝛽 and ℵ. In A𝛽HC algorithm 𝛽 and ℵ are represented as function
teration value. Suppose ℵ(𝑡) is the value of ℵ at 𝑡th iteration.

(𝑡) = 1 − 𝑡
1
𝑘

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
1
𝑘

(7)

Where MaxIter is the maximum iteration and k is a constant value.
𝛽(𝑡) is the value of 𝛽 in 𝑡th iteration.

𝛽(𝑡) = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) ×
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
(8)

Where 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 are lower-bound and upper-bound of 𝛽 respec-
tively. If ℎ̈𝑖 have better performance than ℎ𝑖, then ℎ𝑖 is replaced with
̈ 𝑖 in the population.

.2.3. Fitness function
The fitness function used to judge the quality of a particular solution

s defined below:

𝑖𝑡(𝐻) = 𝜚 × 𝑐𝑎𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐻) + (1 − 𝜚)(1 −
|𝐻|

𝐾
)

Here H is the harmony for which the score is being calculated, 𝜚 is a
constant in range [0, 1]. |𝐻| represents the number of selected features
n the harmony. 𝑐𝑎𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐻) is a function which computes clas-
ification accuracy for the selected features represented by Harmony
.

In our proposed method we have used 𝜚 = 0.99 and KNN classifier
ith 5 neighbors as a classifier for 𝑐𝑎𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐻).

.2.4. Implementation details
The implementation of the FS2 part is done in MatLab. For the

ther meta-heuristic based algorithms used, we have used Py_FS3,4 open
ource library in python.

. Results and discussion

In this section, we first highlight the two datasets that are used
or evaluating the proposed approach. Thereafter, the results and some
elevant discussions are presented.

2 https://github.com/khalid0007/Metaheuristic-Algorithms.
3 https://pypi.org/project/Py-FS/.
4
 https://github.com/Ritam-Guha/Py_FS.

https://github.com/khalid0007/Metaheuristic-Algorithms
https://pypi.org/project/Py-FS/
https://github.com/Ritam-Guha/Py_FS
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Algorithm 2 Pseudo code of the hybrid of HS and 𝐴𝛽𝐻𝐶 algorithms
Input: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟,𝐻𝑀𝐶𝑅, 𝑃𝐴𝑅, 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥𝑎𝑛𝑑𝐾
Output: Best harmony 𝐻𝑏𝑒𝑠𝑡

1: Randomly initialize 𝐻𝑀(0)
2: for 𝑖𝑡𝑒𝑟 ← 1…𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
3: if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) ≥ 𝐻𝑀𝐶𝑅 then
4: 𝐻 𝑗

𝑖𝑚𝑝(𝑡 + 1) ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝜁 𝑗𝑙 , 𝜁
𝑗
𝑢 )∀𝑗 ∈ [1, 𝐾] {𝜆𝑗𝑙= lower bound, 𝜆𝑗𝑢=

upper bound}
5: else
6: for 𝑗 ← 1…𝐾 do
7: 𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒)
8: 𝐻 𝑗

𝑖𝑚𝑝(𝑡 + 1) ← 𝐻 𝑗
𝑖 (𝑡)

9: end for
10: end if
11: Let, 𝑤 be index of the worst harmony in 𝐻𝑀(𝑡)
12: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(ℎ(𝑡 + 1)) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐻𝑀𝑤(𝑡)) then
13: 𝐻𝑤(𝑡) ← 𝐻𝑖𝑚𝑝(𝑡 + 1)
14: end if
15: for 𝑖 ← 1… 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 do
16: if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 𝑃𝐴𝑅 then
17: 𝐻 𝑗

𝑖 (𝑡 + 1) ← 𝐻 𝑗
𝑖 (𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚(−1, 1) × (𝜁 𝑗𝑢 − 𝜁 𝑗𝑙 )∀𝑗 ∈ [1, 𝐾]

18: end if
19: end for
20: 𝑡 = 0
21: ℎ = 𝐻𝑏𝑒𝑠𝑡
22: while 𝑡 ≤ 𝑀𝑎𝑥𝑡 do
23: ℎ} = ℎ

24: 𝐶𝑡 =
𝑡
1
𝑘

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
1
𝑘

25: ℵ(𝑡) = 1 − 𝐶𝑡
26: 𝑅𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ∈ (1, 𝐾)
27: ℎ′𝑅𝑛𝑑𝐼𝑛𝑑𝑒𝑥 = 𝑇 𝑟(ℎ′𝑅𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ± ℵ(𝑡))
28: ℎ′′ = ℎ′

29: 𝛽(𝑡) = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) ×
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
30: for 𝑡𝑡 = 1, ...., 𝐾 do
31: if 𝑟𝑎 ≤ 𝛽𝑡 then
32: ℎ′′𝑡𝑡 = ℎ𝑡𝑡
33: end if
34: end for
35: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(ℎ) ≤ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(ℎ′′) then
36: ℎ = ℎ′′

37: end if
𝑡 = 𝑡 + 1

38: end while
39: end for

4.1. Datasets used

The SARS-COV-2 CT-Scan Dataset5 (Soares et al., 2020) is the first
used for training and testing the proposed approach. It is referred to
as dataset 1 in the subsequent text. It contains 2482 CT scans in total
among which 1252 scans are COVID-19 positive while the remaining
1230 scans are COVID-19 negative. For this dataset, the ratio of the
training set to the test set is 85% to 15%. Fig. 7 shows some sample
images from the dataset.

The authors of the first dataset also released a second updated
dataset6 on Kaggle. This is referred to as dataset 2 in the subsequent
sections. From this dataset, 758 CT scans from healthy patients (15
CT scans per patient on an average) and 2168 CT scans from COVID-
19 affected patients (27 CT scans per patient on an average) are used

5 https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset.
6 https://www.kaggle.com/plameneduardo/a-covid-multiclass-dataset-of-

ct-scans.
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Fig. 7. Some sample CT images from the SARS-COV-2 CT-Scan Dataset.

for training and testing the models. In this dataset, the scans from
different patients are clearly separated into different folders. As a result,
to construct the training and test splits, we split at the same ratio of
85% to 15% randomly at the folder level instead of the file level. This
helps to prevent scans from the same patient from occurring in both
the training and test sets, though the splits may not be entirely as per
the required ratio. The final training set contains 643 normal scans
and 1840 COVID-19 affected scans, and the final test set contains 115
normal scans and 328 COVID-19 affected scans.

4.2. Preprocessing

The images are resized to fixed dimensions of 224 × 224. Online
data augmentation is employed while training the CNN based feature
extractors to improve the diversity of the training data. Offline data
augmentation generally increases the size of the dataset by a large
amount which greatly affects the time taken to train the models and run
the FS algorithms. As a result, online augmentation is considered as a
good approach because it can achieve the same effect of data diversity
without requiring new image files on the system. This also reduces the
training time.

For augmentation, the ImageDataGenerator7 module in Ten-
sorflow Keras is used. The applied augmentation techniques include:
random rotation up to 45 degrees, random height and width shifts up
to a factor of 0.2 of the height or width of the entire image, random
zoom up to a factor of 0.2 and random horizontal flip. All the images
are normalized from the range of [0, 255] into the range of [0, 1].

The exact arguments corresponding to the above are as follows:

1. Random rotation: rotation_range=45
2. Random height and width shifts:

height_shift_range=0.2, width_shift_range=0.2
3. Random zoom: zoom_range=0.2
4. Procedure for filling points outside image boundaries:

fill_mode=‘nearest’
5. Random horizontal flip: horizontal_flip=True
6. Rescale factor: rescale=1/255

7 https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/
image/ImageDataGenerator.

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/plameneduardo/a-covid-multiclass-dataset-of-ct-scans
https://www.kaggle.com/plameneduardo/a-covid-multiclass-dataset-of-ct-scans
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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Table 2
Parameter values used for all the meta-heuristic algorithms.

Algorithm Parameters

GA Mutation rate = 0.3, Crossover rate = 0.4
PSO weight = [1 0]
GWO a = [2 0]
WOA a = [2 0]
BBA L = 1, PER = 0.15, 𝛼 = 0.95, 𝛽 = 0.5
HS HMCR = 0.9

Table 3
The average time taken per iteration for each of the CNN feature extractors applied
on two datasets. Times reported correspond to a 14 GB NVIDIA GPU.

Model Time taken

Dataset 1 Dataset 2

DenseNet201 38.7 s 44.7 s
ResNet152 50.9 s 58.9 s
Xception 40.6 s 48.7 s

4.3. Performance metrics

In this subsection, a brief discussion is presented on the various
metrics used for quantifying the performance of the algorithms used
for comparison.

The most common basic metric used is accuracy. It represents the
fraction of the CT-scans in the test set that are correctly identified
as normal or COVID-19 affected. In real-world scenarios, this is the
primary metric for any computer-aided prediction method. A higher
accuracy is essential for any method to be used as an initial screening
measure. In the following subsections, the accuracy is presented, as well
as the increase in accuracy obtained over the basic feature extractor
CNNs. Ideally, the FS algorithm should provide a decent increase over
the base extractor, and also have a good enough accuracy to be used
in real-world scenarios.

Apart from accuracy, the next important metric is the number of
selected features. A lesser number of selected features means that
the inference time will reduce considerably. At the same time, this
reduction in the number of features should also preserve the accuracy
since we have a lesser number of features during prediction. It is
expected that the FS algorithm will provide a good accuracy score while
selecting the least number of features. This can be thought of as a trade-
off between the quality of predictions (accuracy) and the inference time
(number of selected features).

4.4. Parameter settings

In addition to HS, we also use some notable meta-heuristic algo-
rithms like GA (Whitley, 1994), PSO (Kennedy & Eberhart, 1995),
GWO (Mirjalili, Mirjalili, & Lewis, 2014), Whale Optimization Al-
gorithm (WOA) (Mirjalili & Lewis, 2016) and Binary Bat Algorithm
(BBA) (Mirjalili, Mirjalili, & Yang, 2014) for the purpose of comparison.
Table 2 highlights the parameters associated with the above algorithms.
The values are set experimentally.

Here L is loudness and PER is pulse emission rate of a bat.

4.5. Execution time

The execution times for the CNN based feature extractors on the
two datasets are reported in Table 3. The common trend is that
the DenseNet201 model takes the least time per iteration while the
ResNet152 model takes the most time. The Xception model takes
slightly more time per iteration (around 2 s to 4 s more) than the
DenseNet201 model.

The average execution time for FS per iteration of meta-heuristic
algorithm is approximately 23.13 s for the featureset with 2048 features
10

and 19.66 s for the featureset with 1920 features.
Table 4
Accuracies and F1-scores of the DL models on the test partition of dataset 1.

Mode Model Accuracy (%) F1 score (%)

Mode 1
DenseNet201 93.93 93.93
ResNet152 93.12 93.12
Xception 91.90 91.90

Mode 2
DenseNet201 93.52 93.53
ResNet152 92.18 92.17
Xception 94.34 94.34

Table 5
The results of feature selection (FS) in mode 1 on dataset 1.

Model FS algorithm Accuracy (%) % increase

DenseNet201

GA 95.54 1.61
PSO 94.33 0.40
GWO 95.54 1.61
WOA 93.11 −0.82
BBA 94.73 0.80

HS 95.54 1.61
HS + A𝛽HC 95.54 1.61

ResNet152

GA 94.33 1.21
PSO 94.73 1.61
GWO 94.73 1.61
WOA 95.14 2.02
BBA 93.52 0.40

HS 94.33 1.21
HS + A𝛽HC 95.14 2.02

Xception

GA 96.76 4.86
PSO 95.95 4.05
GWO 96.35 4.45
WOA 94.73 2.83
BBA 95.95 4.05

HS 96.35 4.45
HS + A𝛽HC 97.16 5.26

4.6. Results on dataset 1

Table 4 shows accuracies and F1-scores of the DL models on the
testing partition of the dataset. Apart from the Xception model, it
is noted that the performance is quite similar in both the modes of
training. The performances of the DenseNet and ResNet models are
slightly lower in mode 2. The Xception model, however, performs much
better in mode 2 where the learning rate is higher.

The proposed FS method has performed the best with all of the 6
deep features in comparison to the other state-of-the-art methods like
GA, PSO, WOA, GWO and BBA.

Table 5 shows the improvement in accuracy on the basic DL models
obtained after FS in training mode 1. It is noted that there is a marked
improvement in the accuracy after FS is carried out. Additionally, apart
from the DenseNet model, all the models benefit from the inclusion of a
local search in the FS process. The Xception model obtains the highest
accuracy of 97.16% and also the greatest increase in accuracy. For the
DenseNet model, however, there is no improved performance with the
inclusion of the local search with the HS algorithm. This indicates that,
in this particular case, the initial search converged to the optimal local
configurations.

Table 6 highlights the reductions in the number of features after
performing FS in training mode 1. It is observed that the percentage
reduction in the number of features is more than 50% in all the cases.
The entry with the greatest accuracy in Table 5 is Xception using HS
and a local search. It has a reduction percentage of 55.42% which is
the lowest among the other entries.

Table 7 shows the accuracy improvements on the basic DL models
obtained after FS in training mode 2. Unlike mode 1, here we note that
the accuracy increases for all the models. The DenseNet model achieves
the best accuracy of 97.30%.
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Table 6
The reduction in the number of features after FS (FS) in mode 1 on dataset 1.

Model FS algorithm No. of features % reduction

initially finally

DenseNet201 HS 1920 800 58.33
HS + A𝛽HC 1920 786 59.06

ResNet152 HS 2048 793 61.28
HS + A𝛽HC 2048 888 56.64

Xception HS 2048 781 61.86
HS + A𝛽HC 2048 913 55.42

Table 7
The results of feature selection (FS) in mode 2 on dataset 1.

Model FS algorithm Accuracy (%) % increase

DenseNet201

GA 95.68 2.16
PSO 96.49 2.97
GWO 96.49 2.97
WOA 96.49 2.97
BBA 95.95 2.43

HS 96.77 3.25
HS + A𝛽HC 97.30 3.78

ResNet152

GA 92.18 0.00
PSO 92.72 0.54
GWO 92.45 0.27
WOA 92.18 0.00
BBA 92.45 0.27

HS 92.45 0.27
HS + A𝛽HC 94.34 2.16

Xception

GA 95.95 1.61
PSO 96.76 2.42
GWO 95.68 1.34
WOA 95.68 1.34
BBA 95.95 1.61

HS 95.42 1.08
HS + A𝛽HC 96.22 1.88

Table 8
The reduction in the number of features after feature selection (FS) in mode 2 on
dataset 1.

Model FS algorithm No. of features % reduction

initially finally

DenseNet201 HS 1920 870 54.68
HS + A𝛽HC 1920 807 57.96

ResNet152 HS 2048 833 59.32
HS + A𝛽HC 2048 838 59.08

Xception HS 2048 848 58.59
HS + A𝛽HC 2048 876 57.22

Table 8 highlights the reductions in the number of features after per-
orming FS in training mode 2. Like mode 1, the reduction percentages
re greater than 50% in all the cases.

Table 9 compares the performance of the proposed approach with
ome state-of-the-art methods. It is noted the present method is com-
arable in terms of accuracy with the methods considered.

From the above observations, it can be seen that the proposed
ethod is able to reduce more than 50% of the original number of

eatures. Parallelly, this also leads to an improved classification perfor-
ance. It can therefore be said that the feature vectors obtained from

he CNN models contain some inherent redundancies. Removing the
nsignificant features not only leads to a saving in terms of memory and
ime, but also produces an increase in overall performance in terms of
he detection accuracy. This is especially important in the medical field
here rapid but highly accurate results are of paramount importance.

We can observe from Table 7 that the proposed method outper-
orms almost all the FS methods considered here for comparison in
11

enseNet201 and ResNet152 feature sets. Only for the Xception feature
Table 9
Comparison of the proposed approach with some state-of-the-art approaches on dataset
1.

Method Accuracy (%)

DenseNet201 + transfer learning 96.25(Jaiswal et al., 2020)
Explainable DL (xDNN) 97.38(Soares et al., 2020)
COVID-Net + contrastive training 90.83(Wang, Liu, & Dou, 2020)
CNN + bi-stage FS 95.77(Sen et al., 2021)
CNN 94.98(Jin et al., 2020)
Norm-VGG16 96.39(Ibrahim, Youssef, & Fathalla, 2021)
COV-CAF 97.59(Ibrahim et al., 2021)

Proposed 97.30

Table 10
Accuracies and F1-scores of the DL models on the test partition of dataset 2.

Mode Model Accuracy (%) F1 score (%)

Mode 1
DenseNet201 92.74 91.27
ResNet152 93.88 91.95
Xception 90.93 89.10

Mode 2
DenseNet201 90.70 89.47
ResNet152 89.80 87.25
Xception 93.42 91.59

set PSO outperforms proposed method with a slight margin. How-
ever, this can be considered as an outlier because the present method
outperforms PSO in all other cases. The reason behind the proposed
method’s good performance can be attributed to the good exploitation
capabilities for the HS method. Other meta-heuristic methods take into
consideration a few best agents from the population. HS takes into
consideration all of the agents to generate the new offspring, which
can give HS an edge over he other methods. Coupled with A𝛽HC,
HS can simply perform very well over various feature sets. As the
proposed FS method outperforms state-of-the-art and popular meta-
heuristic methods, it can be useful for helping the medical professionals
in screening COVID-19 from radiological inputs.

4.7. Results on dataset 2

Table 10 shows the accuracies and F1-scores obtained by the DL
models on the testing partition of the dataset. The accuracies obtained
by the models are close to each other, but like the previous dataset,
there are clear leaders in each mode. The ResNet152 model achieves
the best accuracy and F1-score in mode 1 whereas in mode 2, the
Xception model achieves the best accuracy and F1 score. It is an
interesting observation that in both the datasets, Xception performs the
worst in mode 1 and the best in mode 2 when considering the initial
results.

Table 11 shows the results after applying the FS algorithms. Here,
the best accuracy overall is obtained by the present FS approach
when using the feature from the Xception model trained in mode 1
(conventional transfer learning).

4.8. Statistical test

Here, we report the results of a statistical test that is conducted to
show that the results obtained by the present method are statistically
significant. Specifically, the Wilcoxon rank-sum test (Carrasco, García,
Rueda, Das, & Herrera, 2020) is used for this purpose. The above test
examines the null hypothesis that two sets of measurements are drawn
from the same distribution essentially indicating that the performance
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Table 11
The results of FS on dataset 2. The Model + Mode column indicates in brief the feature
extraction model and the testing mode. D, R and X denote the DenseNet201, ResNet152
and Xception models respectively. M1 and M2 denote mode 1 and mode 2 respectively

Model + Mode FS algorithm Accuracy (%) % increase

D + M1
HS 94.84 2.1
HS + AEFA 95.23 2.49
HS + A𝛽HC 95.23 2.49

R + M1
HS 95.23 1.35
HS + AEFA 96.44 2.56
HS + A𝛽HC 96.82 2.94

X + M1
HS 96.14 5.21
HS + AEFA 98.59 7.66
HS + A𝛽HC 98.87 7.94

D + M2
HS 92.06 1.36
HS + AEFA 92.51 1.81
HS + A𝛽HC 92.51 1.81

R + M2
HS 92.07 2.27
HS + AEFA 92.74 2.94
HS + A𝛽HC 92.74 2.94

X + M2
HS 95.71 2.29
HS + AEFA 96.14 2.72
HS + A𝛽HC 97.62 4.2

Table 12
The p-values obtained from the Wilcoxon rank-sum test on the dataset
1 in mode 1 when comparing the present method in the best setting
(Xception features) with the other algorithms.

FS algorithm 𝑝-value

GA 0.0001
PSO 0.0001
GWO 0.0001
WOA 0.0001
BBA 0.0001
HS 0.0001

Table 13
The p-values obtained from the Wilcoxon rank-sum test on the dataset
1 in mode 2 when comparing the present method in the best setting
(DenseNet201 features) with the other algorithms.

FS algorithm 𝑝-value

GA 0.0001
PSO 0.0001
GWO 0.0001
WOA 0.0001
BBA 0.0001
HS 0.0001

of the two models being considered are similar to each other. The
alternative hypothesis is that values in one sample are more likely to
be larger than the values in the other sample. A 𝑝-value of less than
0.05 indicates that the null hypothesis is rejected at the 5% significance
level.

Tables 12 and 13 highlight the p-values obtained from the Wilcoxon
test on dataset 1. It is observed that the p-values are less than 0.05 for
all of the algorithms considered for comparison on dataset 1. Thus the
alternative hypothesis holds here: the present method achieves higher
accuracy than the other methods.

4.9. Findings

Here we summarize the important observations from the above
experiments:

• Using FS on features extracted via CNNs provides a noticeable
improvement in the detection accuracies. This is true for almost
all the FS methods considered here.
12
• The present approach using HS + A𝛽HC for FS is able to con-
sistently outperform several standard algorithms like GWO, PSO,
BBA, etc.

• Integration of a local search (A𝛽HC) is able to provide a consider-
able boost to model accuracy over the basic HS algorithm without
local search.

• The final performance after FS cannot be predicted using the ini-
tial accuracies obtained from the CNNs. In our case, the Xception
model in training mode 1 is such an example. It obtains the least
accuracy by itself, but shows the best performance when FS is
used.

5. Conclusion

In this work, we propose an end-to-end framework for detecting
COVID-19 from CT scan images. The proposed approach consists of two
stages: feature extraction followed by FS. The feature extraction stage
utilizes CNN models to obtain a feature vector from the input images.
We use three state-of-the-art CNN architectures: DenseNet, ResNet and
Xception as feature extractors in this stage. Thereafter, a FS stage is
applied to filter out insignificant features from the obtained feature
vectors. A combination of an optimization algorithm, called HS, with a
local optimization algorithm, called A𝛽HC, is employed in this stage.

The experimental results indicate that a FS stage using an optimiza-
tion algorithm is able to improve on the performance of the feature
extractor CNNs. Furthermore, it is also observed that the inclusion of
the local search improves the classification accuracy in most of the
cases. The best accuracy scores obtained by the present approach (HS
and local search via A𝛽HC) are 97.30% and 98.87% respectively on the
two datasets.

One limitation of the proposed approach is that it may not be able
to detect CT scans as COVID-19 positive in the very early stages of
infection. This is mainly due to the fact that there may not be any
significant artifacts in these kind of scans. Thus, the CNNs used here
may not be able to find suitable features. In future work, we aim
to tackle this limitation by improving the feature extraction stage.
Optimization algorithms can be introduced in the feature extraction
stage as well to improve performance. Meta-heuristic approaches may
be used to tune the parameters of the CNNs. In addition to this,
techniques such as ensembling, pruning, attention, etc. can explored
in order to make the feature extractors more robust.
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