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Abstract

Age is a major risk factor for cataract (ARC). However, the influence of aging on the lens
transcriptome is under studied. Lens epithelial (LEC) and fiber cells (LFC) were isolated from
young (3 month) and aged (24 month) old C57BL/6J mice, and the transcriptome elucidated

via RNAseq. EdgeR estimated differential gene expression in pairwise contrasts, and Advaita’s
Ipathway guide and custom R scripts were used to evaluate the potential biological significance
of differentially expressed genes (DEGS). This analysis revealed age-dependent decreases in lens
differentiation marker expression in both LECs and LFCs, with gamma crystallin transcripts
downregulating nearly 50 fold in aged LFCs. The expression of the transcription factors Hsf4

and Maf, which are known to activate lens fiber cell preferred genes, are downregulated,

while FOXE3, which represses gamma crystallin expression, is upregulated in aged fibers. Aged
LECs upregulate genes controlling the immune response, complement pathways, and cellular
stress responses, including glutathione peroxidase 3 (Gpx3). Aged LFCs exhibit broad changes

in the expression of genes regulating cell communication, and upregulate genes involved in
antigen processing/presentation and cholesterol metabolism, while changes in the expression

of mitochondrial respiratory chain genes are consistent with mitochondrial stress, including
upregulation of NDufa4l2, which encodes an alternate electron transport chain protein. However,
age did not profoundly affect the response of LECs to injury as both young and aged LECs
upregulate inflammatory gene signatures at 24 hours post injury to similar extents. These RNAseq
profiles provide a rich data set that can be mined to understand the genetic regulation of lens aging
and how this impinges on the pathophysiology of age related cataract.

Introduction

Aging is a complex process where genes and environment collaborate to yield progressive
tissue dysfunction that first hampers the quality of life, then an organism’s survival (da
Costa et al., 2016; Longo et al., 2015). While all tissues exhibit age related changes,

the ocular lens is a particularly good model to study tissue aging, as its major disease,
cataract, is recognized to sharply increase with advanced age (Chilibeck et al., 2020;
Flaxman et al., 2017; Rink, 1987). Many studies have described age-related changes in

the ocular lens including alterations in lipid composition (Borchman and Yappert, 2010),
decreases in antioxidants (Barnes and Quinlan, 2017), and increases in post translational
protein modifications including de-amidation, amino acid isomerization and proteolysis
(Ray, 2015). These processes likely collaborate to drive the elevations in protein aggregation
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and membrane damage which are recognized to drive the pathophysiology of age-related
cataract (ARC) (Harding, 2002; Michael and Bron, 2011; Truscott and Friedrich, 2019;
Uwineza et al., 2019).

While nuclear ARC is a disorder of the lens nucleus which consists of metabolically inactive
cells whose components were largely synthesized during fetal development/early childhood
(Augusteyn, 2010), cortical cataract is a disorder of fiber cells produced later in life. As fiber
cells are produced from epithelial cells throughout the lifespan, it has been hypothesized
that cortical cataract could result from acquired genetic or age-related changes in the lens
epithelium which would then propagate into fiber cells (Mesa et al., 2016; Pendergrass

et al., 2001; Wang et al., 2020; Worgul et al., 1989). Further, as the lens has an internal
circulation that delivers anti-oxidants and other protective molecules to the lens nucleus

and removes their “spent” derivatives (Mathias et al., 2007), age-related changes in the
biology of the lens epithelium have been hypothesized to have indirect effects on the
transparency of the lens cortex and nucleus (Fan et al., 2017; Wang et al., 2017). While
many laboratories have explored the idea that lens epithelial cells change their biology

with age, upon oxidative stress, or coincident with ARC via “candidate gene” investigations
(Periyasamy and Shinohara, 2017), the effect of aging on global gene expression in the lens
is understudied.

Cataracts of all types are treated by surgery, most often consisting of an anterior
capsulotomy, followed by removal of the lens fibers by phacoemulsification, then
implantation of an intraocular lens (I0OL) prosthetic to restore vision (Olson, 2018). While
this is a very successful clinical intervention, it results in ocular inflammation (Juthani et
al., 2017), which, if uncontrolled, can result in negative sequelae such as macular edema
and retinal detachment (Kato et al., 2019; Shihan et al., 2019). Later, remnant lens epithelial
cells undergo a wound healing response where they proliferate and migrate while either
attempting to regenerate the lens or transdifferentiate into myofibroblasts (Wormstone et al.,
2009). While current surgical approaches and intraocular lens designs are generally effective
in keeping these cells out of the visual axis short term; longer term, they can escape their
sequestration at the capsular bag periphery and migrate into the visual axis leading to high
rates of posterior capsular opacification (PCO) by 5-10 years post cataract surgery (PCS)
(Apple et al., 2011; Lindholm et al., 2020; Ronbeck and Kugelberg, 2014). While younger
cataract patients develop more aggressive PCO than older ones (Elkin et al., 2016; Wu et
al., 2018), which has been related to differences in proliferative potential and cell signaling
efficiency of LEC (Dawes et al., 2013; Wormstone et al., 1997), the global mechanisms
underlying these observations have not been studied.

While numerous factors are known to influence aging, it is often difficult to disentangle

the relative contributions of environment, intrinsic aging mechanisms and genetic variation
among individuals in “free living” organisms such as humans. Many of these complexities
can be overcome by the study of aging in inbred laboratory mice as they are essentially
genetically identical to each other and are housed in controlled environmental conditions
(Ackert-Bicknell et al., 2015). Inbred C57BL/6 mice are commonly used in aging studies, as
it is one of two strains routinely maintained by the National Institute of Aging and are used
by the Nathan Shock Centers for investigations on the effects of senolytics on aging (Xu et
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al., 2018). Here, we use RNAseq to compare the global transcriptome of lens epithelial and
fiber cells freshly isolated from either young (3 months) or old (24 month) old C57BL/6J
strain mice, and investigate how age affects the acute response of lens epithelial cells to lens
fiber cell removal which models modern cataract surgery.

Materials and methods:

Mice

All studies using mice comply with the Association for Research in Vision and
Ophthalmology Statement on the Use of Animals in Vision Research and were approved
by the University of Delaware Institutional Animal Care and Use Committee. Twenty four
month old C57BL/6NIA mice (10 males and 10 females) were obtained from the National
Institute on Aging Biological Resources Colony in October of 2018. These animals are
derived from C57BL/6J foundation stock obtained from the Jackson Laboratory in 2016.
Ten week old C57BL/6J mice (10 males and 10 females, Stock # 000664) were obtained
from the Jackson Laboratory in October of 2018. In both cases, animals were housed at the
University of Delaware animal facility under a 14/10 hour light-dark cycle for two weeks
prior to tissue isolation. The eyes from all mice used in this study were of normal size and
did not manifest signs of the sporadic eye defects that have been reported in this strain
(Smith et al., 1994). The lenses from the 12 week old mice studied were transparent, while
most of the aged lenses used in this study showed refractive discontinuities consistent with
“nuclear sclerosis” and/or mild lens opacities as has been reported for 24 month old mice of
this strain (Wolf et al., 2005; Wolf et al., 2000).

Mouse cataract surgery model and tissue isolation

Surgical removal of lens fiber cells was performed on adult mice to mimic human cataract
surgery as previously described (Desai et al., 2010; Manthey et al., 2014b). Briefly, two
weeks after arrival at the University of Delaware, mice were anesthetized, a central corneal
incision made, and the entire lens fiber cell mass was removed from one eye by a sharp
forceps, leaving behind an intact lens capsule. The cornea was sutured and the eye restored
to normal shape with balanced saline solution. Twenty four hours later, mice were re-
anesthetized, and the surgery repeated on the other eye. Mice were then immediately
sacrificed and lens capsular bags isolated by dissection.

For RNA sequencing, lens capsular bags from either 24 hours post cataract surgery (PCS) or
zero hours PCS were pooled from five animals to make a single biological replicate, while
lens fiber masses from two independent animals were pooled per replicate. Four biological
replicates were created for each condition (3 month old versus 24 month old at zero hours,
24 hours, and lens fiber cells) and flash frozen on dry ice. Of these four replicates, two were
isolated from male animals and two from female animals in order to disentangle the effect of
sex as a biological variable in the analyses (Faranda et al., EER submitted).

Next generation RNA sequencing and bioinformatic analysis

Lens epithelial cell RNA was harvested using the RNeasy Mini Kit from Qiagen (Cat
No./ID: 74104), and lens fiber cell RNA isolated using the SV Total RNA Isolation System
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(Promega- Catalog number- Z3100). RNA libraries were prepared for sequencing using the
SMARTer® Stranded Total RNA-Seq Kit-Pico Input Mammalian (Takara Bio USA, Inc.,
Mountain View, CA, USA) and sequenced by DNA Link, USA (901 Morena Blvd. Ste 730
San Diego CA 92117, USA) on a NovaSeq 6000 (San Diego, CA, USA). Read pairs (101
nucleotides long) were aligned to the Ensembl primary assembly of the mouse GRCm38
genome (Yates et al., 2020) using Hisat2 with its default parameters (Kim et al., 2019).
Read pairs aligning to genomic features in the Ensembl Mouse version 101 GTF file were
quantified as gene level counts, using HTSeg-Count in union mode (Anders et al., 2014).
Length normalized abundance estimates (Fragments per Kilobase-Million (FPKM)) were
calculated from gene level counts using the total length of all known exons for a given gene,
after merging overlapping exons.

Samples were partitioned for TMM (Trimmed Median of Means) scaling (Phipson et al.,
2016; Robinson and Oshlack, 2010) and differential expression analyses performed based on
the objective of a particular contrast. For contrasts evaluating differences between epithelial
cells and fiber cells, and age effects in un-injured tissues, all samples collected at 0 hours
post-surgery were grouped together. For contrasts evaluating LEC injury responses, all LECs
samples were grouped together.

The “exactTest” method from the edgeR statistical package (version 3.30.3) was used to
estimate the magnitude and statistical significance of differential gene expression, with
robust dispersion estimates (Phipson et al., 2016; Robinson et al., 2010). Genes with

at least 10 mapped reads in at least four samples were considered to have “detectable”
levels of expression. Genes failing “detectable” criteria were removed prior to running

the “exactTest”, using edgeR’s “filterByExpr” function (Chen et al., 2016). Biologically
significant differentially expressed genes (DEGs) were defined as those exhibiting a
statistically significant difference in expression using Storey’s Q value to adjust for False
Discovery Rate (FDR < 0.05; (Storey and Tibshirani, 2003)), a difference in expression level
greater than 2 FPKM between conditions, Fold Change (FC) greater than 2 in either the
positive or negative direction and expressed at a level greater than 2 FPKM. (Manthey et al.,
2014a).

Pathway analyses

Pathway analysis was performed on all statistically significant DEGs defined as

those exhibiting a fold change = |2| and FDR < 0.05 using iPathwayGuide (Advaita
Bioinformatics, Plymouth Michigan, USA). This software package uses Impact Analysis,
an approach that considers and the directed interactions of DEG within a given pathway (as
defined by the Kyoto Encyclopedia of Genes and Genomes, KEGG, (Kanehisa et al., 2017),
Release 96.0+/11-21, Nov 20) and also whether more pathway participants are observed in
the DEG list than would be expected by chance (Ahsan and Draghici, 2017; Draghici et al.,
2007; Tarca et al., 2009). Gene ontology comparisons were made against the October 14,
2020 release of the Gene Ontology Consortium database (Ashburner et al., 2000).
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Tissue dysfunction associated with aging is a biological process influenced by the
environment, genetic background, and the passage of time (da Costa et al., 2016). In this
study, the effects of age are largely isolated from genetic variation as inbred C57BL/6 J
mice, which are expected to be nearly genetically identical except for sex chromosomes
(Taft et al., 2006), were used for study, while the environment was controlled by housing
animals at environmentally controlled animal facilities. The young lenses studied were
isolated from three month old mice, an age chosen because these animals are sexually
mature adults who have completed eye development and exhibit a crystallin profile
consistent with the adult lens (Ueda et al., 2002). The aged lenses were isolated from 24
month old animals, an age that 60-80% of animals from this strain can attain (Whitehead
et al., 2014). Comparisons of phenotypic hallmarks associated with age-related frailty
suggest that 24 month old C57BI/6J mice are physiologically similar to 70 year old humans
(Whitehead et al., 2014). All raw and processed transcriptome comparisons are available
from the Gene Expression Omnibus under accession number GSE166619. RNAsequencing
statistics for all samples including sequencing depth and read mapping can be viewed in
supplementary tablel.

Effect of aging on the lens epithelial cell transcriptome

Comparison between the young and aged LEC transcriptome revealed 226 genes to be
significantly differentially expressed (differentially expressed genes, DEGS) by at least two
fold (false discovery rate (FDR) corrected P value < 0.05), with 83 of these downregulated
and 143 upregulated (Figure 1A). Filtering this list further for genes that meet previously
described criteria for likely “biological significance” (minimum expression level of 2 FPKM
in either condition, at least 2 FPKM absolute change in expression level, (Manthey et al.,
2014a)) revealed 111 DEGs (see supplemental Table 2).

Inspection of the DEG list revealed that the mRNA levels of several - and y—crystallins
downregulate, with the most dramatic changes (85-348 fold) seen in the mMRNAs encoding
the gamma-crystallins (yB, yC, yD, yE, yF) which are encoded by the linked genes of the
mouse y—crystallin cluster residing on Chromosome 1 (Duncan et al., 2004; Graw, 2009).
As other genes known to exhibit lens preferred expression such as MIP (Bassnett et al.,
2009) were also downregulated in aged lens epithelial cells, the gene list was compared to
data residing in iSyTE, a bioinformatics tool capable of assessing whether genes exhibit
lens-preferred expression (Kakrana et al., 2018; Lachke et al., 2012). This analysis revealed
that 24 of the 111 biologically significant DEGs (17 of the DEGs downregulating with
aging) exhibit lens preferred expression in 56 day old mice (Table 1).

A prior study assessed age-associated changes in histone H3 lysine 4 tri-methylation
(H3K4me3), a marker of open chromatin, in the mouse lens and identified 613 promoter
peaks that either decrease or increase in H3K4me3 in 800 day old mouse lenses (Zheng et
al., 2015). Comparison of these peaks with the list of 111 genes exhibiting “biologically
significant” differences in expression in aging lens epithelial cells in the present study
revealed 20 genes in common. For 18 of these, the direction of their expression change
correspond to that predicted from the change in H3K4me3 of the gene’s promoter (Table 2).

Exp Eye Res. Author manuscript; available in PMC 2022 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Faranda et al.

Page 6

Ipathway guide analysis of the DEGs identified in aged LECs using DEG lists for which
normalization by TMM scaling was done based on all epithelial samples did not reveal
strong signals for enriched pathways, although they included complement/coagulation
(p=1.5 X 107°) and cytokine/cytokine receptor interactions (p=3 X 1073), (data not shown).
Determination of genes differentially expressed in aged LECs using unnormalized pairwise
comparisons revealed that the most impacted KEGG pathways included cytokine-cytokine
receptor (Figure 1B, 1C; p=1.5 X 1075) and complement/coagulation (Figure 1D, 1E; p=9.4
X 1077), while many DEGs map to the gene ontology term “immune system process”(not
shown; p=1 X 10716),

Effect of aging on the lens fiber cell transcriptome

Comparison between the young and aged LFC transcriptome revealed 2145 genes to

be significantly differentially expressed by at least two fold (false discovery rate (FDR)
corrected P value < 0.05), with 832 of these downregulated and 1313 upregulated. Filtering
this list further for genes that meet previously described criteria for likely “biological
significance” (minimum expression level of 2 FPKM in either condition, at least 2 FPKM
absolute change in expression level) revealed 703 DEGs, (178 upregulated genes, 525
downregulated; Figure 2A,; see supplemental Table 3 for list).

Similar to the lens epithelium, the expression of all six genes of the gamma-crystallin cluster
(cryga-crygf) found on mouse chromosome 1 are profoundly downregulated (44-56 fold) in
aged lens fiber cells. Comparison of these 703 DEGs with the iSyTE database (Kakrana et
al., 2018; Lachke et al., 2012) revealed that 82 of the genes downregulated and 19 of genes
upregulated with aging are predicted to exhibit preferential expression in the lens at 56 days
postnatal (Table 3).

Comparison of the 613 genes previously reported to exhibit age-related changes in
H3K4me3 in the lens(Zheng et al., 2015) with the list of 703 genes exhibiting “biologically
significant” differences in expression in aging lens fibers in the present study revealed 54
genes in common. For 48 of these, the direction of their expression change corresponds to
that predicted from the change in H3K4me3 of the gene’s promoter (Table 4).

Notably, the list of lens enriched genes whose expression is altered in aging lens fibers
included three transcription factors with known roles in regulating genes important for lens
phenotype. Maf, which is a transcription factor that is necessary for the initial stages of fiber
cell differentiation, is downregulated 1.8 fold (p=3.8 X 1078), and HSF4, a transcription
factor important for the later steps in lens fiber cell differentiation, including gamma
crystallin expression (Cui et al., 2013; Fujimoto et al., 2004; Min et al., 2004), was
downregulated 2.8 fold (p=2X107°) in aging lens fibers. Conversely, FOXE3, a transcription
factor important for lens epithelial maintenance (Blixt et al., 2000; Medina-Martinez et al.,
2005), while being implicated in the repression of gamma crystallin expression (Landgren et
al., 2008), was 4.2 fold upregulated (p=1.3X1073) in aging lens fiber cells.

Comparison of genes differentially regulated in the newborn HSF4 null lenses (He et al.,
2010), with the genes differentially expressed in aged lens fibers revealed that 63 of the
downregulated DEGs in the aging lens were also downregulated in the HSF4 null lens,
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while only 1 of the upregulated genes was upregulated in the HSF4 null lens (Table 5).
Comparisons between genes previously reported as differentially regulated in newborn lens
fibers upon FoxE3 upregulation (Landgren et al., 2008) and DEGs in aged lens fibers
revealed that these sets have 71 genes in common (Table 6), 64 of which are downregulated
in both aged lens fibers, and young lens fibers that over express FOXE3.

Ipathway guide analysis of the DEGs identified in aged lens fibers revealed that the most
impacted KEGG pathways included antigen processing and presentation (Figure 2B,C), P=
1.6 X 1074) and cholesterol metabolism (Figure 2D, E, P= 0.003) while cataract is the
disease most strongly associated with the DEGs (not shown, FDR corrected P value= 2.8 X
1077). The DEGs in aged lens fibers map to numerous KEGG or gene ontology terms, with
ones potentially significant to the biology of the aging lens including cellular calcium ion
homeostasis (p=0.001; Figure 3A), cellular senescence (p=0.023; Figure 3B), the respiratory
chain complex (p=0.03; Figure 3C) and glycolysis/gluconeogenesis (p=0.056; Figure 3D).

The effect of aging on the response of lens epithelial cells to a surgery modeling
extracapsular cataract extraction

We have previously demonstrated that young adult lens epithelial cells robustly upregulate
the expression of proinflammatory cytokines and receptors within 24 hours post surgery
(post cataract surgery, PCS) in a mouse model of posterior capsular opacification (PCO)
(Jiang et al., 2018). Here, similar to the results obtained from C57BL/6Hsd mice,

young C57BL/6J LECs dramatically reprogram their transcriptome by 24 hours PCS
(Supplemental table 4) with iPathway guide analysis revealing that the cytokine/cytokine
receptor pathway as being the most impacted (p=1.1 X 1078). As the prevalence of

PCO is higher in younger patients than older (Elkin et al., 2016; Wu et al., 2018), the
difference in gene expression between 0 and 24 hours PCS was also evaluated in aged LECs
(Supplemental table 5). The primary elements of the injury response were preserved in aging
LECs, with cytokine-cytokine receptor pathways still significantly impacted (p=1.1 X 1078).

There were 997 genes where a biologically significant difference in expression between

0 and 24 hours PCS was observed in both young LEC and in aged LEC. Of these

997 intersecting genes, all 653 that upregulate 24 hours after injury in young LEC also
upregulate in aged LEC. Likewise, the remaining 344 genes down regulate after injury in
both age groups. There were no biologically significant genes where the 24 hour injury
response in young LEC contradicted that of aged LEC. (653 genes were upregulated and 344
downregulated at 24 hours PCS, Supplemental Table 6.

Comparison between gene expression levels in young and aged LECs at 24 hours PCS
revealed that only 73 genes (35 upregulated and 38 downregulated) met the thresholds
indicative of “biologically significant” changes in expression (Supplemental table 7). Of
these, 8 of the genes with lower expression in aged 24 hour PCS LECs were also
downregulated in uninjured aged LECs, while 8 other genes were upregulated in both 0
hour and 24 hour PCS aged LECs.

Impact analysis identified few pathways with likely biological relevance as differentially
regulated in aged versus young LECs at 24 hours PCS (Figure 4A) although some genes
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involved in PI3K/Akt pathways (p=0.004; Figure 4B) and human papilloma virus infection
(p=0.002; Figure 4C) were significantly impacted. However, a significant proportion of these
DEGs map to the gene ontology terms “regulation of cell motility” (p= 8.5 X 1075, Figure
4D) and “cell population proliferation” (p= 1.0 X 107>; Figure 4E), cell behaviors likely to
be relevant to PCO pathogenesis.

Discussion

The increased risk of cataract development with age was recognized in antiquity and was
first rigorously documented in a large patient cohort by Edward Jackson in 1898 (Jackson,
1898). The biochemical, metabolic, and structural changes that the lens undergoes with
aging have been studied since the mid-twentieth century (Green and Solomon, 1957; Heydt,
1930; Lerman and Zigman, 1965). Subsequently, the effects of aging on the structure of lens
proteins (Lampi et al., 2014; Ozaki and Mizuno, 1992; Ray, 2015) and lipids (Borchman
and Yappert, 2010), as well as oxidative stress responses in the lens (Brennan et al., 2012),
have been intensely studied. However, while aging has been recognized to influence the
transcriptome of many tissues (Aging Atlas, 2021; Srivastava et al., 2020), this has been
less studied in the lens, and the Gene Expression Omnibus contained no publically available
aging lens transcriptome comparisons prior to this study. The RNAseq study presented here
provides global insights into the effects of age on gene expression in the lens, and may
reveal some underlying mechanisms for previously documented age-related changes in lens
physiology and wound healing responses.

The aging lens downregulates the mRNA levels of many genes exhibiting “lens preferred”

expression.

Comparisons between the transcriptomes of young adult and aged LECs and fibers revealed
that genes of the linked gamma crystallin cluster on mouse chromosome 1 were the most
profoundly affected by age, with decreases in expression ranging from 40 to 340 fold.
While this was initially surprising, this corresponds to a prior report that found significant
decreases in mRNAs derived from these linked gamma crystallin genes in the Swiss CF
mouse lens over the first year of life (Treton et al., 1988). As little gamma-crystallin protein
was detected in cortical fibers of adult human and bovine lenses as well (Anderson et al.,
2020), this suggests that the profound loss of gamma crystallin mMRNA from the aging adult
lens is a general feature of mammalian lens aging. In addition to the gamma crystallin
MRNAs, aged LECs also express lower levels of other mMRNAs encoding fiber cell markers
including beta-crystallins and MIP. A prior report also found that adult mouse LECs express
modest amounts of these MRNAs, although they are apparently not translated efficiently
(Wang et al., 2004), so their loss from LECs may not affect LEC function. However, prior
proteomic analysis of adult human lens epithelium did detect high levels of both alpha-

and beta-crystallin proteins in these cells leading the authors to speculate that they have
important functions in LECs (Wang-Su et al., 2003).

Aged lens fibers also profoundly downregulate the expression of mMRNAs encoding
numerous genes known to be important for lens physiology and function, including most
crystallins, MIP (Bassnett et al., 2009; Chepelinsky, 2009), Bfspl (Song et al., 2009), Lim2
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(Irum et al., 2016), and Grifin (Ogden et al., 1998), as well as Birc7 (De Maria and Bassnett,
2015) and Hopx (Vasiliev et al., 2007), two markers of late lens fiber differentiation. This
suggests that the cortical fibers differentiating in late life may have a profoundly different
protein composition than the fibers comprising the remainder of the lens due to changes
in protein expression, not just post-translational modification. Notably, lens fiber protein
composition has been previously shown to be dependent on cellular birthdate as fB2- and
vS-crystallin are not appreciable components of primary and secondary fibers produced
during embryonic development of rodents, but become major components of postnatal
cortical fibers (Carper et al., 1986; Ueda et al., 2002), a pattern that was also recently
reported in the human lens (Anderson et al., 2020). The functional consequences of lens
fibers produced in old age undergoing such a profound downregulation of lens preferred
gene expression are unclear though as these cells would not be expected to contribute
directly to the refractive power of the lens as they reside behind the iris.

Some genes differentially expressed in aged LECs and fibers DEGs were previously found
to undergo changes in H3K4me3 methylation the aging lens

The ability of a gene to be transcribed depends on both the presence of transcription factors
able to influence the activity of the basal transcription machinery, and the gene’s promoter
being in a region of “open” chromatin which allows transcription factor access to their
DNA binding sites. A prior study investigated whether the distribution of “open” chromatin
changes in the aging mouse lens using patterns of H3K4 trimethylation as a marker

(Zheng et al., 2015) since this modification has been reported to mark active transcriptional
start sites, particularly of genes important for cell and tissue identity (Benayoun et al.,
2014). Comparison of the resulting 613 H3K4me3 promoter peaks genes, with the genes
differentially expressed in LECs and fibers during aging revealed that 20 LEC and 54 fiber
DEGs also exhibit age-dependent changes in H3K4me3, the vast majority of which occur
in the direction expected if this methylation is a mark of transcriptionally active promoters.
However, we also found that the mRNA levels for many of the other genes reported to

have changed H3K4me3 in the aging lens were very low, suggesting that they were not
appreciably transcribed in the adult lens, while the mRNA levels for others did not change
during aging. This is not necessarily unexpected as steady state mMRNA levels are regulated
by multiple mechanisms, only one of which is chromatin accessibility.

Known regulators of lens development are differentially expressed in aging lens fibers

As the gene regulatory networks responsible for lens fiber cell phenotype are among the
best characterized in vertebrate development (Anand and Lachke, 2017; Cvekl and Zhang,
2017), the DEGs in aged lens fibers were interrogated for genes known to regulate lens
fiber cell biology. FGF signaling is the best characterized pathway regulating lens fiber
cell differentiation as the deletion of FGFR1-FGFR3 expression from the lens abolishes
fiber cell differentiation (Zhao et al., 2008). While the expression levels of these canonical
receptors are not altered, the expression of Ictl, which encodes a klotho family member that
may allow lens cells to respond to endocrine FGFs, is downregulated 3 fold in the aging
lens. Notably, clic5, the only gene whose expression is profoundly affected by deletion of
Ictl from the mouse lens (Fan et al., 2018), downregulates 5 fold in the aging lens as well.
Similarly, fgfrl1, which encodes the protein FGF receptor-like 1, that may facilitate ligand
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independent FGFR signaling (Silva et al., 2013), downregulates three fold in the aging lens.
As Ictl and fgfrl1 downregulation in the Prox1 null lens is correlated with downregulation in
ERK signaling and defects in fiber cell preferred gene expression (Audette et al., 2016), this
suggests that diminished FGF signaling could contribute to the downregulation of lens fiber
preferred genes with aging.

Inspection of the DEGs in aging lens fibers for key transcription factors regulating

lens development revealed that the mRNA encoding Hsf4, a protein that regulates lens
development/homeostasis from late embryonic development into adulthood (Fujimoto et
al., 2004; Min et al., 2004), was downregulated in aged lens fibers. Notably, comparisons
between the DEGs of aging fibers with those previously found to be differentially expressed
in newborn lenses lacking HSF4 (He et al., 2010) revealed humerous common genes,
including validated HSF4 target genes such as fas (Gao et al., 2017), -yS-crystallin (Shi

et al., 2009), and Hmox1 (Liao et al., 2018). In addition, the downregulation of Maf,

a transcription factor essential for lens fiber cell differentiation and crystallin expression
(Kawauchi et al., 1999; Kim et al., 1999), correlates with the downregulation of many
crystallin genes in the aging lens. Conversely, FOXE3, a transcription factor critical for
maintenance of the undifferentiated state of lens epithelial cells (Blixt et al., 2000; Medina-
Martinez et al., 2005), upregulates in aged lens fibers, while numerous DEGs in aged
fibers overlap with those previously reported in lens fibers overexpressing FOXE3 (Blixt et
al., 2000; Landgren et al., 2008). These data imply that that the downregulation of Hsf4
and Maf coincident with the upregulation of FoXE3 expression could drive the observed
downregulation of fiber cell marker mRNA levels in aging lens fibers.

However, the levels of mRNAs encoding transcription factors that bind to anti-oxidant
response elements (ARES), such as Nrf2, Bach2, and the small mafs, did not make the
cutoff to be considered “biologically significant” DEGs in aging lenses. The small mafs,
MafA, and Mafk do upregulate 13 fold and 2.3 fold in aging lens fibers respectively (FDR
<0.01 and <0.02), however, their expression levels are very low even after upregulation
(0.6 and 0.9 FPKM) suggesting that they are not made at sufficient concentrations to affect
the biology of aging lens fibers, while the major small Maf of the lens (Mafg) which,

in concert with Mafk, is known to regulate oxidative stress genes in the lens (Agrawal

et al., 2015) was not differentially expressed in the aged versus young lens. While these
results were surprising in light of the hypothesis that aging lens is less able to deal with
cellular stress due to loss of anti-oxidative responses mediate via AREs (Liu et al., 2017),
it is possible that life under conditions where environmental stress is minimized (such

as experienced in an animal facility) allow for more “protective reserve” than free living
animals/people experience (Epel, 2020). Alternatively, it is also possible that the loss of
anti-oxidant response in the lens with age is controlled post-translationally, a circumstance
that may not manifest in transcriptomic changes.

Lens transcriptome alterations may reflect the known changes in energy metabolism in the

aging lens

Lens epithelial cells from young adult rabbits produce about half of their ATP via oxidative
phosphorylation, while lens fibers appear to generate most of their ATP anaerobically
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via glycolysis (Mandel and Klethi, 1962; Winkler and Riley, 1991). During aging, whole
lenses increase their ability to produce ATP via anaerobic glycolysis leading to lactate

as a byproduct (Green and Solomon, 1957). Further, oxidative damage to mitochondria

is common in aging lenses and has been proposed to contribute to age related cataract
(Babizhayev and Yegorov, 2016; Brennan et al., 2012), while aged tissues are recognized
to develop imbalances in oxidative phosphorylation (Kwong and Sohal, 2000). Consistent
with these observations, aged lens fibers downregulate mMRNAs encoding many enzymes of
the respiratory chain complex, while aging lens epithelial and fiber cells both upregulate
the expression of Ndufa4l2, an alternate respiratory chain component that upregulates in
stressed mitochondria to slow electron transport in order to protect mitochondria from
further damage (Li et al., 2017). Notably, the Ndufa4l2 promoter also exhibits increased
H3K4me3 in the aging lens (Zheng et al., 2015) suggesting that its upregulation is controlled
by transcriptional mechanisms.

Conversely, aged lens fibers upregulate mRNASs encoding some components of the
glycolytic cascade. However, aged lens fibers also profoundly downregulate their expression
of Pgam2 mRNA which encodes phosphoglycerate mutase 2, which is best known as a
muscle specific form of the enzyme that catalyzes the conversion of 3-phosphoglycerate

to 2-phosphoglycerate during glycolysis. However, Pgam2 expression is “lens preferred”
via iSyTE, and its levels in young adult lens fibers are much higher than that of other
glycolytic enzymes. As mutations in Pgam2 lead to glycogen storage disease in the muscle
(Tsujino et al., 1993), high Pgam2 expression in young lens fibers may help these cells
utilize their glycogen stores (Hockwin, 1973) for glycolysis. As Pgam2 overexpression in
the heart increased oxidative stress in mitochondria (Okuda et al., 2013), the profound (40
fold) downregulation of the expression of this gene in lens fibers may be protective to the
aging lens.

The aging lens undergoes transcriptomic changes similar to those seen in other aging

tissues

Changes in tissue transcriptomes with age are commonly unique to each tissue, so it is

not unusual for different aging tissues to share few DEGs (Barth et al., 2019; Srivastava et
al., 2020). That said, there are still some common pathways reported. Aging tissues often
upregulate genes with functions in inflammation, a hallmark of the “inflammaging” that
contributes to the age-related decline of mammals (Fulop et al., 2018). Consistent with this,
“cytokine and cytokine receptor pathways” were calculated as being the most impacted
KEGG pathway in the aging lens epithelium. As many of these genes are also upregulated
in LECs by 24 hours following cataract surgery (Jiang et al., 2018), this suggests that the
aged lens epithelium is primed towards an injured phenotype. The second most impacted
pathway in aged LECs corresponds to the complement pathway, another biological pathway
commonly affected in aging that appears to drive some age-related pathologies (Propson et
al., 2021).

The mRNAs encoding many proteins involved in cholesterol metabolism upregulate in aged
lens fibers which may be functionally significant to lens aging as lens fibers are very
cholesterol rich (Subczynski et al., 2012) and defects in cholesterol synthesis pathways lead
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to cataractogenesis (Aleo et al., 2019; Jira, 2013; Widomska and Subczynski, 2019). These
changes may be regulated by Srebfl, a transcription factor that regulates genes with sterol
responsive elements (Sato, 2010), as its mMRNA levels are 4 fold upregulated in aging lens
fibers. Interestingly, the protein encoded by one of the upregulated cholesterol transport
genes, apoE, is a major component of pseudoexfoliation material (Sharma et al., 2009),

an aberrant extracellular matrix material deposited on the lens capsule and other ocular
structures during the pathogenesis of the age-related disease, pseudoexfoliation syndrome
(Schlotzer-Schrehardt and Khor, 2021). It is also notable that upregulation of complement
genes, mitochondrial dysfunction, and elevated ApoE levels are shared in between the aging
lens and AMD (Tan et al., 2020), suggesting related mechanisms.

Aged fiber cell DEGs are also enriched in genes mapping to the KEGG pathway “cellular
senescence”, which is a pathway that is recognized to contribute to age related decline (Si

et al., 2021) and is thus a target for the development of anti-aging drugs (Davan-Wetton
etal., 2021). Interestingly, the upregulated “senescence” genes include cdknla, which
encodes P21, a cell cycle regulator whose upregulation was previously reported to promote
cataract formation in progeroid mice (Baker et al., 2013). Despite this, mRNAs encoding the
classic senescence regulators, the FoxO genes (Brown and Webb, 2018), were generally not
differentially expressed in aging lens cells although we did find that both young and aged
LECs express FoxO3 (8-9 FPKM) and FoxO1 (4-5 FPKM) with FoxO6 and FoxO4 present
at lower levels. This lack of FoxO regulation at the mRNA level in the aging lens may not be
surprising though as many studies suggest that their ability to control pathways controlling
to cellular stress/aging mechanisms is often regulated post-translationally (Tia et al., 2018).

Other gene expression changes seen in aged lens cells that could influence the
development of age-related cataract

Age related cataract appears to develop when genetic pre-dispositions are influenced by
diverse age-related and environmental stressors that contribute to “cataractogenic load”
(Uwineza et al., 2019). Among the best characterized inducers of cataract is oxidative stress,
and the nucleus of aged lenses and those with cataract have elevated levels of oxidized
glutathione (Beebe et al., 2010). Notably, while aging LECs exhibited few gene expression
changes compared to young LECs, young LECs express abundant Gpx3 mRNA, and these
levels further increase in aging LECs. While Gpx3 function in the lens has not been
intensely studied, this gene encodes a secreted isoform of glutathione peroxidase that binds
to basement membranes and detoxifies hydrogen peroxide in biological fluids (Baez-Duarte
etal., 2014; Olson et al., 2010). As Gpx3 has been proposed to be protective against LEC
cell death (Tu et al., 2019), the detected elevation in Gpx3 expression in aged LECs may
protect the lens and other ocular tissues from elevated oxidative stress during aging.

Aging lens fibers downregulate the mRNA levels of Hmox1, which encodes heme
oxygenase 1, an enzyme that protects cells from oxidative stress by detoxifying free heme
(Chen et al., 2019). As Hmox1 mRNA is very abundant in young lens fibers, and these levels
decrease in aged lenses, it is possible that Hmox1 downregulation with aging contributes to
ARC as it was recently reported that expression of a dominant-negative mutant of Hmox1

in the lens leads to early onset cataract (Huang et al., 2021). Notably, Hmox1 levels in lens
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fibers have been reported to be regulated by the transcription factors Maf (Si et al., 2019)
and Hsf4 (Liao et al., 2018), which both downregulated in aging lens fibers.

Further, the mRNA for Romol (reactive oxygen species modulator 1), which encodes a ion
channel of the inner mitochondrial membrane, is also downregulated in aged lens fibers.
While this protein has not been previously studied in the lens, its mRNA is abundant in
young lens fibers, and in other systems, Romo1 limits the production of mitochondrial
ROS and protects mitochondrial integrity (Norton et al., 2014), leading to the possibility
that Romol downregulation in lens fibers with aging could contribute to the mitochondrial
defects reported in aged lens fibers and ARC. However, the steady state levels of reactive
oxygen species in the aged lens may be low as few genes associated with the gene ontology
term “DNA repair” are induced in the aging lens which may be expected as aging is a slow,
chronic condition, not acute oxidative damage.

The effect of aging on the response of LECs to an injury modeling cataract surgery

Lens epithelial cells remaining behind on the capsular bag after cataract surgery respond by
increasing their proliferation rate and migrating along any bare lens capsule that they can
reach. These cells also shift phenotype, either differentiating into cells with lens fiber cell
character or transdifferenting into myofibroblasts capable of producing fibrotic ECM. When
these cells migrate into the optical axis they prevent the transmission of light leading to
Posterior capsular opacification, the most prevalent side effect of cataract surgery (Shihan
et al., 2019; Wormstone et al., 2009). While PCO is prevalent in patients of all ages by 10
years post surgery (Apple et al., 2011; Ronbeck and Kugelberg, 2014; Sen et al., 2019),

age is known to influence the risk of developing PCO (Wu et al., 2018), with children at
such a high risk that prophalytic posterior capsulotomy is routinely performed at the time of
surgery (Sukhija et al., 2014).

It is likely that the aberrant lens fibers produced during PCO arise from the same pathways
that drive normal lens development, while it is well established that TGF signaling plays
a crucial role in myofibroblast formation. We previously reported that young adult LECs
quickly upregulate the expression of numerous inflammatory cytokines after lens fiber cell
removal in a mouse model of cataract surgery, and this response precedes the activation

of TGFB pathways by 1-2 days (Jiang et al., 2018). Here, we found that both young and
old LECs responded similarly to lens fiber cell removal, with the most impacted pathway
in both cases being cytokine/cytokine interactions. A more fine grained comparison of the
transcriptome of young versus old LECs at 24 hours PCS revealed fewer DEGs than were
observed between the young versus old uninjured lens epithelium. This appears to result
from the massive reprogramming of the LEC transcriptome by 24 hours PCS swamping out
most effects due to aging. However, bioinformatic comparison of these DEGs revealed a
correlation with the downregulation of pathways linked to AKT signaling, with a 7.5 fold
downregulation of Pdgfra mRNA levels in aged LECs compared to young LECs at 24 hours
PCS. As platelet derived growth factor signaling is important for lens differentiation (Li

et al., 2019), this downregulation could both contribute to altered lens marker expression
observed in aged lens epithelial cells, and the reduced rate of PCO in aged cataract patients,
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as PDGF stimulated Akt signaling induces the migration of lens epithelial cells (Xiong et al.,
2010).

This study revealed that mouse lenses profoundly remodel their transcriptome with aging,
with aged lens fibers in particular downregulating the expression of many genes known

to regulate lens fiber cell structure and physiology. These changes, along with alterations
in genes regulating mitochondrial function and detoxification of reactive oxygen species
may either be induced in response to age-related oxidative stress and/or are primary
protective mechanisms against the development of pathology in the aging lens. Despite these
changes in gene expression observed during lens aging, aged mouse lens epithelial cells
respond similarly to lens injury as young LECs, although it is intriguing to speculate that
downregulation of Pdgfra expression in aged LECs could contribute to the reduced risk of
PCO development with age. The major age-related effects on the mouse lens transcriptome
are summarized in Figure 5.

Overall, this publically available data expands our understanding of the changes that the

lens undergoes with aging, and will be a useful resource for researchers interested in diverse
aspects of lens biology. It is still possible though that the alterations in the lens transcriptome
with age detected here will not be reflected in the lens proteome, or that protein levels

could be changing even for genes whose mMRNA levels do not alter with aging. Thus, future
proteomic analyses of isolated lens epithelial cells and nucleated cortical fibers would be
valuable to gain further insight into how the lens adapts its gene expression profile as it ages.
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Figurel.

Pathway analysis of genes differentially expressed in aged versus young mouse lens
epithelial cells A) Volcano plot of the genes whose expression was statistically different
between aged versus young LECs, yellow dot represents -yF-crystallin B) Impact analysis
of the DEGs suggest that the KEGG pathway map “cytokine-cytokine receptors” (yellow
dot) is likely to be the most significantly impacted pathway in the aged lens epithelium. C)
Bar graph showing the cytokine-cytokine receptor genes that are differentially expressed in
the aged lens epithelium. D) Impact analysis showing that the second significant pathway in
the aged lens epithelium represents genes involved in the complement pathway (yellow dot).
E) Bar graph showing the complement pathway genes differentially expressed in the aged
mouse lens epithelium.
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Figure2.
Pathway analysis of genes differentially expressed in aged versus young mouse lens fiber

cells A) Volcano plot of the genes whose expression was statistically different between aged
versus young LECs, yellow dot represents cdknla (P21) B) Impact analysis of the DEGs
suggest that the KEGG pathway map “antigen processing and presentation” (yellow dot) is
likely to be the most significantly impacted pathway in the aged lens fibers. C) Bar graph
showing the antigen processing and presentation genes that are differentially expressed in
the aged lens fibers. D) Impact analysis showing that the another significantly impacted
pathway in the aged lens fibers represents genes involved in cholesterol metabolism (yellow
dot). E) Bar graph showing the cholesterol metabolism genes differentially expressed in the
aged mouse lens fibers.
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Figure 3.

Genes differentially expressed in aged versus young mouse lens fiber cells grouped by
gene ontology (GO) terms or Kegg pathways potentially relevant to age-related changes
in lens biology A) Bar graph representing the DEGs in aged lens fibers mapping to the
Kegg pathway cellular calcium homeostasis. B) Bar graph representing the DEGs in aged
lens fibers mapping to the Kegg pathway cellular senescence. C) Bar graph representing
the DEGs in aged lens fibers mapping to the GO term respiratory chain complex. D) Bar
graph representing the DEGs in aged lens fibers mapping to the Kegg pathway glycolysis/
gluconeogenesis.
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Figure 4.

Genes differentially expressed in aged versus young mouse lens epithelial cells at 24 hours
PCS. A) Impact analysis of the 24 hour PCS DEGs with the yellow dot representing Akt
signaling; boxed dots represent “human papilloma virus infection” and “alcoholism” B) Bar
graph representing the DEGs in aged LECs at 24 hours PCS known to be involved in “Akt
signaling”. C) Bar graph representing the DEGs in aged LECs at 24 hours PCS known to
be involved in “human papilloma virus infection”. D) Bar graph representing the DEGs

in aged LECs at 24 hours PCS mapped to the gene ontology term “cell motility”. D) Bar
graph representing the DEGs in aged LECs at 24 hours PCS the gene ontology term “cell
proliferation”.
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The effect of age on the mouse lens transcriptome
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