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Structured Abstract:

Purpose: Cohort-based germline variant characterization is the standard approach for pathogenic 

variant discovery in clinical and research samples. However, the impact of cohort size on the 

molecular diagnostic yield of joint genotyping is largely unknown.

Methods: Head-to-head comparison of the molecular diagnostic yield of joint genotyping in two 

cohorts of 239 cancer patients in the absence and then in the presence of 100 additional germline 

exomes.

Results: In 239 testicular cancer patients, four (7.4%, 95%CI:2.1–17.9) of 54 pathogenic 

variants in the cancer-predisposition and American College of Medical Genetics (ACMG) genes 

were missed by one or both computational runs of joint genotyping. Similarly, eight (12.1%, 

95%CI:5.4–22.5) of 66 pathogenic variants in these genes were undetected by joint genotyping 

in another independent cohort of 239 breast cancer patients. An exome-wide analysis of putative 
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loss-of-function (pLOF) variants showed that 162 (8.2%, 95%CI:7.1–9.6) pLOF variants were 

only detected in one analysis run but not the other, while 433 (22.0%, 95%CI:20.2–23.9%) pLOF 

variants were filtered out by both analyses despite having sufficient sequencing coverage.

Conclusion: Our analysis of the standard germline variant detection method highlighted a 

substantial impact of concurrently analyzing additional genomic datasets on the ability to detect 

clinically relevant germline pathogenic variants.

Keywords

germline genetic analysis; variant calling; Mendelian pathogenic variants; Genome Analysis 
Toolkit (GATK)

Introduction:

Germline genetic profiling is ubiquitously used to guide molecular-based clinical diagnostic, 

prognostic, and therapeutic interventions [1]. It was estimated that over one million patients 

would undergo clinical germline genetic testing in 2019 in the US alone, one-third of 

which will be for cancer-related indications [2]. Since 2011, clinical and research-based 

germline variant detection have largely utilized the widely-adopted “Best Practices” of 

the Genome Analysis Toolkit Joint Genotyping (GATK-JG) [3] which leverages population-

wide information from all analyzed samples and high-quality population-based datasets, 

such as the 1000 Genomes [4] and dbSNP [5], to determine the quality of each identified 

variant [6–9]. The GATK-JG “Best Practices” strongly recommends performing a cohort-

based joint genotyping, with the expectation that the performance of this method is stable 

for cohorts larger than 30 exomes [10]. However, it is unknown if performing simultaneous 

germline variant detection of multiple cohorts affects the molecular diagnostic yield of 

germline variants in any particular sample set.

In this study, we hypothesized that the detection of rare clinically actionable germline 

alterations in any particular patient sample is sensitive to the genetic data of other 

germline samples that are being simultaneously analyzed by GATK-JG. To explore this 

hypothesis, we performed a head-to-head comparison of the germline variant callsets of 

239 testicular cancer patients generated by running the standard germline pipeline method 

on these samples twice, first in the absence and then in the presence of 100 additional 

germline exome samples. We evaluated the quality score concordance and detection rate 

of clinically informative pathogenic and putative loss-of-function (pLOF) variants across 

several clinically relevant gene sets. We then replicated these findings in a similarly 

sized independent cohort of 239 breast cancer patients whose germline exome data were 

characterized in the presence and absence of an additional cohort of 100 germline exomes. 

Identical parameters were used across all analysis runs, and all downstream analyses were 

limited to germline variants detected in the original cancer cohort (i.e., all germline variants 

in the additional cohorts of 100 samples, used for joint genotyping, were excluded from all 

analyses).
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Methods

Ethics Statement

Patients’ written informed consent and Institutional Review Board (IRB) approval were 

obtained by the original studies for all cohorts in this study.

Patient cohorts and genomic data collection

1- Testicular cancer cohort (Discovery analysis)—Germline whole-exome 

sequencing (WES) data of 239 patients with testicular germ cell tumors were first used 

for the performance evaluation of the Genome Analysis Toolkit (GATK), the standard 

germline variant detection method [7–9,11] (Figure 1). These patients came from three 

independent cohorts: the Cancer Genome Atlas (TCGA; n=150), the Dana-Farber Cancer 

Institute (DFCI) TGCT cohort (n=49) [12,13], and the TGCT cohort described by Litchfield 

et al., 2015 of the United Kingdom (UK) Institute for Cancer Research (ICR) (n=40) [14]. 

To evaluate the effect of concurrently performing germline analysis on additional samples 

on the molecular diagnostic yield of GATK Joint Genotyping (GATK-JG), 100 high-quality 

germline WES samples of cancer-free patients from the Exome Sequencing Project (ESP) of 

the National Heart, Lung, and Blood Institute (NHLBI) were examined [9]. These samples 

were only used for the joint genotyping step of GATK. Germline variants detected in these 

cancer-free samples were entirely removed and were not included in any of the described 

analyses of this study (Figure 1).

2- Breast cancer cohort (Replication analysis)—To explore if the findings from 

the testicular cancer cohort analysis extend to other cancer datasets that were generated 

independently for a different cancer type, genomic data of 239 patients with breast cancer 

(infiltrating duct carcinoma) from The Cancer Genome Atlas (TCGA) were used to further 

evaluate the performance of GATK-JG. The GATK-JG pipeline was run on germline WES 

data of these 239 breast cancer patients twice, once in the presence and then in the absence 

of 100 additional TCGA breast cancer germline exomes. Similarly, the additional samples 

were only used in the joint genotyping step and were subsequently removed from all 

analyses.

Sequencing platform, capture kits, and alignment

1- Testicular cancer cohort analysis—All sequencing data used in the testicular 

cancer cohort analysis, including the cancer-free cohort, was produced by a variety of 

Illumina platform machines (HiSeq2500, HiSeq 2000, and Genome AnalyzerIIx). The 

samples’ Binary Alignment Mapping (BAM) files comprising the four independent cohorts 

(TCGA, DFCI, ICR, and ESP) were all aligned to the hg19 reference genome using the 

Burrows-Wheeler Aligner (http://bio-bwa.sourceforge.net/). The exome capture kits utilized 

in the library preparation of these cohorts were NimbleGen SeqCap EZ Exome Library for 

the TCGA cohort, SureSelect Human All Exon v.2 Kit for the DFCI cohort, Nextera Rapid 

Capture Exome kits for the ICR cohort, and Agilent SureSelect Human All Exon 50 Mb for 

the ESP samples.
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2- Breast cancer cohort analysis—All sequencing data used in the breast cancer 

cohort analysis was produced using Illumina HiSeq and Illumina Genome Analyzer 

machines. The samples’ BAM files were aligned to the “hg19” reference genome using 

the Burrows-Wheeler Aligner. The exome capture kits utilized in the library preparation of 

these cohorts are the following: Nimblegen EZ Exome v3.0, Nimblegen SeqCap EZ Human 

Exome Library v2.0, Nimblegen SeqCap EZ Human Exome Library v3.0, and SureSelect 

Human All Exon 38 Mb v2. All samples included had a primary diagnosis of infiltrating 

duct carcinoma and were blood-derived germline samples.

Detection of germline variants

Genome Analysis Toolkit (GATK) HaplotypeCaller (HC) pipeline (version 3.7) was used 

to call germline variants according to the GATK Best Practices [11] (Figure 1). More 

specifically, we ran GATK HC on each sample individually to call single nucleotide variants 

(SNVs) and short indels via de-novo assembly of haplotypes of the examined regions. This 

per sample analysis generates an intermediate file called genomic variant calling format 

(gVCF) file that has a record for every position of the examined genomic intervals. We then 

aggregated the generated single-sample gVCFs and performed joint genotyping using GATK 

“GenotypeGVCFs” as recommended by the current germline variant calling “Best Practices” 

[11]. At each position of the input gVCFs, GATK “GenotypeGVCFs” module evaluates the 

genotype likelihood across all the samples and produce one quality score for each unique 

genomic alteration across the cohort (n=239 germline exomes (original cohort) for the first 

computational run and n=339 [239 original cohort exomes + 100 additional exomes] for 

the second computational run), which is then used by the GATK “Variant Quality Score 

Recalibration (VQSR)” module to perform variant filtering. To filter low-quality calls, 

VQSR uses highly validated variant callsets (such as dbSNP [5] and the 1000 Genomes 

[4]) to build a model that can then be applied to calculate the probability of each variant 

being real. As recommended by the GATK Best Practices, the SNVs VQSR model was 

trained using HapMap3.3 and 1KG Omni 2.5 SNP sites, and a 99.5% sensitivity threshold 

was applied to filter variants. In addition, Mills et al. 1KG gold standard and Axiom 

Exome Plus sites were used for VQSR indel recalibration using a 95% sensitivity threshold 

[15]. The assignment of quality class (high-quality vs. low-quality variants) was conducted 

by GATK-VQSR based on the variant’s Tranche and the defined sensitivity levels.GATK 

“SelectVariants” was used to remove germline variants detected in the additional cohort and 

keep germline variants only present in the original cohort (n=239). Specific commands and 

parameters used for the GATK pipeline are summarized in the Supplementary Note.

Selection of Mendelian gene sets

In this study, we analyzed pathogenic variants in 118 established germline cancer-

predisposition genes and 59 Mendelian high-penetrance genes deemed clinically actionable 

by the American College of Medical Genetics (Collectively called the ACMG genes) (Table 

S1). Given that patients with cancer can also be carriers of disease-causing variants in 

autosomal recessive and low penetrant genes, we also characterized pLOF variants in 5197 

clinically relevant genes in the Online Mendelian Inheritance in Men database (collectively 

called the OMIM genes) and 12 clinically oriented multi-gene panels (Supplementary 

Methods) (Tables S1 & S2)
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Germline variant pathogenicity evaluation

All detected germline variants in the cancer-predisposition and ACMG gene sets were 

classified into five categories; benign, likely benign, variants of unknown significance, 

likely pathogenic and pathogenic using the ACMG guidelines [16]. Only pathogenic and 

likely pathogenic variants were included in this study (hereafter collectively referred to as 

pathogenic variants).

Validation of detected germline variants

Validation of the detected pathogenic variants in the cancer predisposition and ACMG gene 

sets was done in an independent blind fashion by two computational biologists using the 

“gold-standard” approach of evaluating the variants in the raw genomic data using the 

integrative Genomics Viewer (IGV) [17,18]. Variants that were called “True Positive” by 

both examiners were considered real variants. Otherwise, the variant was labeled as an 

artifactual call (Supplementary Methods).

Statistical Analysis

Two-sided binomial tests were used to calculate the 95% CI of proportions and p values 

of the likelihood of the filtered variants in both computational runs to be truly absent in 

a cohort of 239 ancestry matched individuals. P-values <0.05 were considered statistically 

significant. Bonferroni correction was used to correct for multiple testing when applicable. 

Statistical analyses were done using “exact2×2” (version 1.5.2), “binom” (version 1.1.1), 

and “stats” (version 3.5.1) packages on R (version 3.5.1).

Results:

Overall germline variant detection

Two independently sequenced cohorts of patients with testicular and breast cancer were 

included in this study. The exome-wide median sequencing depth of coverage for the 

testicular and breast cancer cohorts were 105.9X (IQR=84.8–124.8) and 109.7X (IQR=82.5–

125.7) respectively. The mean depth of coverage for the cancer-predisposition, ACMG, and 

OMIM gene sets were 109.4X (IQR=97.2–124.3), 109.5X (IQR=96.5–124.0), and 106.4X 

(IQR=92.7–120.0), respectively, for the testicular cancer cohort and 112.5X (IQR=84.5–

130.8), 107.8X (IQR=80.8–124.3), and 104.3X (IQR=78.4–121.0) respectively for the breast 

cancer cohort (Figure S1).

For the testicular cancer analysis, a total of 5,650,748 (99.1% SNVs and 0.9% INDELs) 

unfiltered rare and common germline variants were evaluated (Supplementary Methods). 

The variant Quality Tranche, a calibrated score that GATK-JG generates for each variant to 

represent the likelihood of it being a “true” variant, was concordant between the two analysis 

runs for only 84.79% (95% CI:84.76–84.82) of all variants while 15.21% (95% CI:15.18–

15.24) variants had a different Quality Tranche assignment between the first and second 

analysis runs. As a result of this Quality Tranche assignment discrepancy, only 92.58% 

(95% CI:92.56–92.60) of the germline variants in the cancer cohort (n=239) were shared 

between the final variant callsets of both analysis runs while 134,847 (2.39%; 95%CI:2.37–

2.40) variants were only detected in one analysis run (Figure 2A).
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Similarly, a total of 3,437,839 (99.6% SNVs and 0.4% INDELs) unfiltered germline variants 

were present in the raw germline variant callset of 239 breast cancer patients. However, 

only 3,115,393 (90.62%; 95% CI:90.59–90.65) of these germline variants were found to 

be in common between the final variant callsets of both computational runs while 322,446 

(9.37%; 95% CI:9.35–9.41) variants were undetected by one or both computational runs 

(Figure 2B), highlighting a non-trivial cohort size-driven discordance of the detected variant 

callset in the same patient cohort. The distribution of the population-based minor allele 

frequency of the detected germline variants can be found in Figure S2.

Characterization of filtered variants in well covered genomic regions

In the testicular cancer cohort, a total of 284,515 (5.03%; 95%CI:5.02–5.05) variants were 

considered “low quality” or computational artifacts and thus were filtered out by both 

analysis runs despite having a median sequencing depth of 75 reads (minimum 11 reads, 

interquartile range: 36–140) and a median variant allelic fraction (VAF) of 49.53%, which 

is consistent with the expected VAF of true germline variants. Leveraging known minor 

allele frequency of these variants in the Genome Aggregation Database (gnomAD) [19], we 

calculated the probability of variants filtered out in both analysis runs to be truly absent 

from a cohort of 239 randomly selected individuals (Supplementary Methods). Our analysis 

showed that 166,925 (58.7%; 95% CI:58.5–58.9) filtered variants were common enough in 

the general population, making it improbable for them to be truly absent in a randomly 

sampled cohort of this size (adjusted p-value<1.76e-07, Bonferroni correction for 284,515 

variants) (Figure 2C).

Performing the same analysis on 239 breast cancer patients showed that of 244,694 

germline variants that were filtered out by GATK-GJ in both computational runs, 116,078 

(47.4%; 95%CI:47.2–47.6) variants were common enough in the general population, 

making it unlikely for these variants to be artifactual calls (adjusted p-value<2.04e-07, 

Bonferroni correction for 244,694 variants) and suggesting a systematic exome-wide variant 

underdetection of the standard pipeline (Figure 2D).

Impact of concurrently analyzing multiple cohorts on the detection of clinically actionable 
pathogenic variants

To further explore the impact of the cohort size on variant calling, we systematically 

characterized all clinically actionable pathogenic germline variants in 118 cancer 

predisposition genes as well as 59 genes deemed highly actionable by the American College 

of Medical Genetics (ACMG) (Table S1) in the testicular and breast cancer cohorts (n= 

239 patients each). In total, 54 clinically actionable pathogenic variants were identified 

in the raw variant callset, the unfiltered variant calls from both computational runs, of 

239 testicular cancer patients(Supplementary Methods). Of these variants, 50 (92.6%, 

95%CI:82.1–97.9) pathogenic variants were detected in both computational runs while 

two (3.70%, 95%CI:0.5–12.7) pathogenic variants were only detected by GATK-JG when 

additional samples were used for joint germline variant calling (Figures 3A and 3B). 

These two variants include a known pathogenic founder frameshift variant in BRCA1 
(c.5329dup, p.Gln1777ProfsTer74) (Figure 3C), which is a common high-penetrance cancer-

risk variant in the Ashkenazi Jewish population [20], and a frameshift in LDLR gene 
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(c.2397del, p.Val800SerfsTer129) that is associated with familial hypercholesterolemia 

(Figure 3D). Unexpectedly, our analysis also highlighted two (3.70%, 95%CI:0.5–12.7) 

known pathogenic cancer risk variants [21,22], a frameshift in BRCA2 (c.9063_9078del, 

p.Glu3021AspfsTer2) and splice donor site variant in SBDS (c.258+2T>C), that were 

filtered out by GATK-JG in both analysis runs despite having sufficient sequencing coverage 

(315 and 75 sequencing reads respectively) and a variant allelic fraction (VAF) supporting 

a germline heterozygous state (Figure 3E & 3F). In addition to validating these variants in 

their corresponding raw genomic data, we utilized GATK HaplotypeCaller-generated raw 

genomic files (BAM) to validate these variants after the tool assembled haplotypes and 

locally realigned reads (Figures S3A–D).

Similarly, our analysis of the germline WES data of 239 breast cancer patients identified 66 

pathogenic variants in cancer predisposition and ACMG gene sets that were present in the 

unfiltered variant callset. However, only 58 (87.9%, 95%CI:77.5–94.6) of these pathogenic 

variants were considered “high-quality” by GATK-JG while 8 (12.1%, 95%CI:5.4–22.5) 

variants went undetected by one or both computational runs (Figures 3G & 3H). Germline 

variants that were only detected by one computational run included a well established 

pathogenic frameshift in BRCA2 (p.Ile605AsnfsTer11) (Figure 3I) and a known pathogenic 

variant in NBN (p.Lys219AsnfsTer16) that leads to premature termination and nonsense 

mediated decay of the protein transcript (Figure 3J). In addition, several pathogenic cancer-

predisposition variants went undetected by both GATK-JG runs including a truncating 

pathogenic variant in BRCA2 (p.Ser1982ArgfsTer22) (Figure 3K) and a pathogenic founder 

frameshift variant in BRCA1 (p.Gln1777ProfsTer74) that is prevalent in Ashkenazi Jewish 

population [20] (Figure 3L), which was also seen in the testicular cancer cohort (Figure 3C).

Notably, germline pathogenic variants in the cancer-predisposition and ACMG gene sets 

that were missed by one or both computational runs in the testicular cancer cohort included 

one SNV and 3 indel variants while those pathogenic variants missed by one or both 

computational analyses in the breast cancer cohort included 3 SNVs and 5 indels.

Detection of pLOF variants in 5197 clinically relevant Mendelian genes

Next, we sought to assess the impact of concurrent genotyping of multiple cohorts on 

identifying autosomal recessive and low penetrant autosomal dominant putative loss-of-

function (pLOF) variants across 5197 clinically relevant genes in our cancer cohorts 

(Supplementary Methods) (Table S1). Of 1964 rare pLOF variants in the raw variant 

callset in the testicular cancer cohort (n=239), only 69.7% (n=1369, 95%CI:67.7–71.7) 

variants were detected by both analysis runs while 8.2% (n=162, 95%CI:7.1–9.6) pLOF 

variants were only detected in one analysis run but not the other one (Figure 4A), 

demonstrating instability in GATK-JG performance for identifying rare truncating variants 

that are of potential clinical interest. Furthermore, 433 (22.0%, 95%CI:20.2–23.9) pLOF 

variants were considered low-quality variants or artifacts and were thus filtered out in 

both analyses despite having sufficient sequencing coverage (median:49 reads, interquartile 

range:18–78) and a VAF consistent with the germline heterozygous state (median:43%, 

interquartile range:35–57). To explore if germline variants that were filtered out in both 

analysis runs represent high-quality calls that were erroneously filtered out by GATK-JG, 
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we randomly selected 100 variants for manual evaluation using the Integrative Genomic 

Viewer (IGV) (Supplementary Methods) [18]. Of these variants, 39% (95% CI:29.4–49.3) 

were validated in raw genomic data files including germline pLOF variants in MPO 
(p.Met519ProfsTer21) and LIPT1 (p.Lys123AsnfsTer8) (Figures 4B and 4C), suggesting 

a non-trivial false-negative rate (8.6%; 95% CI:7.4–9.9) of GATK-JG for rare germline 

pLOF variants that should be prioritized for further evaluation of pathogenicity and disease-

association. In addition, we also went on to confirm these variants in the raw genomic files 

(BAM files) generated by GATK HaplotypeCaller (Figures S3E and S3F).

Using the same analysis approach, we systematically surveyed the pLOF variants in 5197 

clinically relevant genes in the independently sequenced 239 germline exomes of breast 

cancer patients. Of 1223 pLOF variants that were discovered in this cohort, only 696 

(56.9%; 95% CI:54.1–59.7) pLOF variants were detected in both computational runs while 

36 (2.9%; 95% CI:2.1–4.1) pLOF variants were only detected in one of the analysis runs 

(Figure 4D). Similarly, a large fraction of the pLOF (n=491; 40.1%; 95% CI:37.4–43.0) 

variants in the breast cancer cohort were filtered out by both computational runs despite 

having a VAF suggestive of a germline heterozygous state (median:38%, interquartile 

range:33–46) and sufficient sequencing coverage (median:57 reads, interquartile range:26–

127) (Figure 4E and 4F). To explore if some of these variants exist in the raw genomic 

data of the breast cancer cohort, we randomly selected 100 pLOF that were filtered out in 

both computational runs for manual evaluation. Again, our analysis showed that 50% (95% 

CI:39.8–60.2) of the manually evaluated pLOF variants were present in the raw genomic 

data of these patients, suggesting a missing rate of 24.1% (95% CI:16.1–33.7) for rare 

germline pLOF variants.

Similar to pathogenic variants in the cancer predisposition and ACMG gene sets, germline 

pLOF variants in the OMIM genes that were missed by one or both computational runs 

in the testicular cancer cohort included 132 (22.2%, 95%CI: 18.9–25.7) SNVs and 463 

(77.8%, 95%CI: 74.3–81.1) indels while those pathogenic variants missed by one or both 

computational analyses in the breast cancer cohort included 315 (59.8%, 95%CI: 55.4–64.0) 

SNVs and 212 (40.2%, 95%CI: 36.0–44.6) indels.

Detection of pLOF variants in 12 commonly used clinical multi-gene panels

Lastly, we evaluated the effect of concurrently analyzing additional genomic datasets 

on the molecular diagnostic yield of 12 commonly used phenotype-specific multi-gene 

panels (MGPs) (Supplementary Methods) (Table S2). Overall, more rare pLOF variants 

were identified in the testicular cancer cohort when GATK-JG concurrently analyzed 

an additional set of 100 exomes compared with when GATK-JG was run on the 

original testicular cancer cohort (n=239) alone (9 MGPs, 75%, 95%CI:42.8–94.5 vs. 2 

MGPs, 16.7%, 95%CI:2.1–48.4 respectively, with similar performance in one MGP, 8.3%, 

95%CI:0.2–38.5) (Figure 5A). Notably, of the evaluated 1911 pLOF variants, 150 (7.8, 

95%CI:6.7–9.1) pLOF variants were only identified in one of the analysis runs (median: 

5 pLOF per gene panel, interquartile range:3–20) while 365 (19.1, 95%CI:17.4–20.9) 

pLOF variants were filtered out in both analysis runs (median: 15 pLOF per gene panel, 

interquartile range:10–28) (Figure 5A).
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However, performing the same analysis on germline data of the breast cancer cohort 

(n=239) showed a clear tendency to detect more pLOF in the MGPs when this dataset is 

analyzed by GATK-JG in the absence of the additional 100 exome dataset (7 MGPs, 58.3%, 

95%CI:27.7–84.8 with similar performance in 5 MGP, 41.7%, 95%CI:15.2–72.3) (Figure 

5B), suggesting a stochastic nature of GATK-JG performance when additional genomic 

datasets are included. Lastly, similar to the testicular cancer analysis, 21 (1.9%; 95%CI:1.2–

2.9) and 489 (44.2%; 95%CI:41.3–47.2) of 1106 pLOF variants present in the raw germline 

callset went undetected by one and both computational runs, respectively (Figure 5B).

Detection of germline genetic variants using 50 vs. 100 additional germline exomes

To investigate whether the observed higher detection rate of GATK-JG when concurrently 

analyzing additional samples has an additive effect, we compared the number of high 

quality heterozygous germline variants detected in the breast cancer cohort (n=239) when no 

additional samples, 50 additional germline samples, and 100 additional germline samples 

were used for joint genotyping (Supplementary Methods). Our analysis showed that 

although 67,326 additional heterozygous germline variants were detected in this cohort 

when concurrently analyzed with 100 additional germline exomes compared with when no 

additional cohort is used (3,873,154 vs 3,805,828 respectively), analyzing germline data 

of 239 breast cancer patients with 50 additional germline exomes unexpectedly detected 

107,058 fewer high quality heterozygous variants than when no additional samples were 

concurrently characterized (3,698,770 vs 3,805,828 respectively) (Figure S4A). Importantly, 

this variability of the number of idnetified germline variants in the breast cancer cohort 

was seen across all autosomal and sex chromosomes (Figure S4B & S4C), highlighting a 

systematic exome-wide stochastic effect that does not seem to be limited to particular genes 

or genomic regions.

Discussion:

Collectively, our analysis of GATK-JG, the standard germline variant detection method 

commonly used for clinical and research studies, highlighted a substantial impact of 

concurrently analyzing additional genomic datasets on the detection of rare and common 

germline variants in any particular sample. In the testicular cancer cohort, additional rare 

pathogenic and pLOF germline variants were detected in the analyzed 239 germline exomes 

of these patients when additional genomic datasets were included in the “Joint Genotyping” 

step. However, analyzing an independent cohort of 239 patients with breast cancer showed 

that GATK-JG detected more pathogenic and pLOF variants when this patient cohort was 

genotyped without any additional genomic dataset, suggesting a stochastic nature of GATK-

JG sensitivity when additional datasets are concurrently analyzed. This stochastic nature of 

GATK-JG performance was also seen when exploring the effect of performing germline 

variant detection in the presence of an additional cohort of different sizes, where while using 

100 additional exomes resulted in detecting more high-quality variants than baseline (i.e., 

when no additional samples are used), using 50 additional exomes resulted in detecting 

fewer high-quality germline variants, resulting in a lower detection rate than baseline.
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Collectively, our analysis of two independent cohorts of cancer patients suggests that 

GATK-JG’s ability to detect rare pathogenic and pLOF variants in any particular germline 

sample is significantly influenced by the number of samples that are being concurrently 

analyzed, resulting in substantially variable sensitivity and detection rate for these clinically 

informative variants. Such variable performance can result in missing clinically-actionable 

pathogenic variants in a non-trivial fraction of patients who undergo clinical germline 

genetic testing. Indeed, our analysis of the cancer predisposition and ACMG gene sets 

showed that four of 239 (1.67%, 95%CI:0.46–4.23) testicular cancer patients and eight of 

239 (3.35%, 95%CI:1.46–6.49) breast cancer patients had clinically actionable pathogenic 

variants that went undetected in one or both computational analyses. Furthermore, this 

variable performance, along with the arbitrary user-defined filter cutoffs that GATK-JG uses, 

can greatly limit the ability to reproduce large germline analyses even when the raw genomic 

data are accessible. Such issues can be potentially mitigated by adopting a sample-based 

analysis approach that leverages deep learning and other related algorithms which have 

shown promising results for superior variant detection performance in “The Genome in a 

Bottle” ground-truth set [23,24]. However, until sample-based deep learning approaches are 

fully adopted, detection of rare clinically relevant germline variants using GATK should 

utilize internal or publically available genomic datasets that may improve the molecular 

diagnostic yield of joint genotyping-based variant detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of the study design.
A head-to-head comparison was conducted to evaluate the molecular diagnostic yield of the 

Genome Analysis Toolkit Joint Genotyping (GATK-JG) based germline variant detection in 

two independent cohorts of 239 cancer patients in the presence and absence of an additional 

germline sample set of 100 germline exomes. (BAM: Binary Alignment Map, VQSR: 

Variant Quality Score Recalibration, ACMG: American College of Medical Genetics and 

Genomics, OMIM: Online Mendelian Inheritance in Men, pLOF: putative loss-of-function)
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Figure 2: Exome-wide analysis of germline variant discovery in the presence and absence of 
additional genomics datasets.
A and B; Confusion matrices of the final quality classification status of the germline 

variants detected in the testicular and breast cancer cohorts, respectively, between the 

first and second computational runs. C and D; Manhattan plots of the p-values for the 

germline variants, filtered by GATK-JG in both computational runs, to be absent by chance 

in a randomly selected 239 individuals from the European ancestry. A total of 184,827 

variants had a p-value <1.76e-07 (depicted in 2C by the horizontal dotted red line) in 

the testicular cancer cohort and 116,078 variants had a p-value <2.04e-07 (depicted in 2D 
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by the horizontal dotted red line) in the breast cancer cohort, suggesting a non-random 

underdetection effect of the GATK-JG for common variants across coding regions.
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Figure 3: Detection of rare germline pathogenic in cancer patients using GATK-JG.
A; A confusion matrix of the quality class assignment of the pathogenic germline variants 

detected in 239 testicular cancer patients in the cancer-predisposition and ACMG gene sets 

(n=151) in the presence and absence of the additional cancer-free cohort. B; A total of 50 

(92.6%) pathogenic variants were consistently detected by GATK-JG in the testicular cancer 

cohort (n=239) while 4 (7.4%) clinically actionable pathogenic variants were detected by 

GATK-JG in only one or none of the computational runs despite being present in the 

raw genomic data file (C-F), highlighting a substantial limitation of the current standard 
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germline variant detection method. G-H; Conducting similar analyses on an independent 

cohort of 239 breast cancer patients showed that of 66 pathogenic variants in the raw 

variant callset, only 58 (87.9%, 95%CI:77.5–94.6) pathogenic variants were considered 

“high-quality” by GATK-JG while 8 (12.1%, 95%CI:5.4–22.5) variants went undetected 

by one or both computational runs. I-L; Representative example of pathogenic cancer-risk 

variants that went undetected by one or both of GATK-JG runs.

Camp et al. Page 17

Genet Med. Author manuscript; available in PMC 2022 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Detection of rare germline pLOF variants in cancer patients using GATK-GJ.
A; Evaluating rare germline truncating variants in clinically relevant genes (n=5197), 

detected by GATK-JG in the testicular cancer cohort (n=239) in the presence and absence 

of the 100 additional germline WES samples, showed a substantial discrepancy of the 

final germline callsets between the two computational runs. B & C; Two representative 

examples of pLOF variants that were filtered out by GATK-JG in both analysis runs (due 

to low GATK-generated Quality Tranches) but existed in the raw genomic data (Binary 

Alignment Map [BAM] file) of testicular cancer patients. The observed 14bp deletion in 

MPO (c.1555_1568del) is a known pathogenic variant that has been reported previously by 
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clinical laboratories in several patients with myeloperoxidase deficiency (OMIM: 254600), 

an autosomal recessive condition associated with a higher risk of disseminated candidiasis. 

Similarly, LIPT1:c.369del is a known likely pathogenic variant that has been seen in patients 

with Lipoyltransferase 1 deficiency, another autosomal recessive condition associated with 

delayed psychomotor development, cerebellar atrophy, bradycardia, and liver dysfunction. 

D; Performing an exome-wide analysis of germline pLOF variants in an independently 

sequenced 239 breast cancer patients showed similarly substantial cohort size-driven 

variability in the ability to detect these potentially relevant germline alterations. E & F; 

Two representative examples of pLOF variants that were filtered out by GATK-JG in both 

computational runs but existed in the raw germline genomic data of breast cancer patients.
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Figure 5: Performance of GATK-JG in detecting pathogenic and pLOF variants in 12 clinically 
oriented phenotype-specific multi-gene panels.
In the testicular cancer cohort (n=239), more pLOF variants were considered “high quality” 

in the presence of additional samples for GATK-JG (A). However, GATK-JG detected more 

pLOF variants in the analyzed MGPs in the breast cancer cohort (n=239) when the germline 

exomes of this cohort were analyzed in the absence of any other genomic dataset (B). 

Overall, these findings demonstrated significant variability of GATK-JG ability to detect 

pLOF variants in clinically relevant genes.
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