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Abstract

Problem: Mucosal-Associated Invariant T (MAIT) cells have been recently identified at 

the maternal-fetal interface. However, transcriptional programming of decidual MAIT cells in 

pregnancy remains poorly understood.

Method of Study: We employed a multiomic approach to address this question. Mononuclear 

cells from the decidua basalis and parietalis, and control PBMCs, were analyzed via flow 

cytometry to investigate MAIT cells in the decidua and assess their transcription factor expression. 

In a separate study, both decidual and matched peripheral MAIT cells were analyzed using 

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) coupled with gene 

expression analysis. Lastly, decidual MAIT cells were stimulated with E.coli and expression of 

MR1 by antigen presenting cells was measured to evaluate decidual MAIT cell function.

Results: First, we identified MAIT cells in both the decidua basalis and parietalis. CITE-seq, 

coupled with scRNA-seq gene expression analysis, highlighted transcriptional programming 

differences between decidual and matched peripheral MAIT cells at a single cell resolution. 

Transcription factor expression analysis further highlighted transcriptional differences between 
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decidual MAIT cells and non-matched peripheral MAIT cells. Functionally, MAIT cells are 

skewed towards IFNγ and TNFα production upon stimulation, with E.coli leading to IFNγ 
production. Lastly, we demonstrate that MR1, the antigen presenting molecule restricting MAIT 

cells, is expressed by decidual APCs.

Conclusion: MAIT cells are present in the decidua basalis and obtain a unique gene expression 

profile. The presence of MR1 on APCs coupled with in vitro activation by E.coli suggests that 

MAIT cells might be involved in tissue-repair mechanisms at the maternal-fetal interface.
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1. Introduction

The maternal-fetal interface, specifically the decidua basalis and the decidua parietalis, is 

a critically important site for the growth and development of the fetus. Proper interplay 

between immune cells and non-immune cells (endothelial and trophoblasts) is required 

for tolerance of the semi-allogenic fetus and simultaneous protection against infection 

(1,2). Recently Mucosal-Associated Invariant T (MAIT) cells have been identified at the 

maternal-fetal interface (3–5), adding a layer of complexity to the decidual immunome. 

Despite these advances, however, transcriptional imprinting of decidual MAIT cells and 

their function, remain questions of pivotal importance to their impact on normal and 

pathological pregnancies.

MAIT cells are an innate-like T cell subset that expresses a T cell receptor (TCR) composed 

of an invariant Vα7.2+ chain (TRAV1–2 combined with either TRAJ33/12/20) coupled to 

a β-chain of restricted repertoire diversity (6). Unlike conventional T cells, MAIT cells are 

restricted by the monomorphic MHC Class I-like molecule MR1 (7–10). First identified in 

the intestinal lamina propria (7), MAIT cells have since been described in various tissues 

including the liver (11,12), lung (13,14), and cervix and endometrium (15).

The effector properties of MAIT cells have been well documented to be against microbial 

pathogens (16–18), specifically in response to microbial insults, MAIT cells produce IFNγ, 

TNFα, IL-17A, and IL-22 as well as cytotoxic molecules, Granzyme B and Perforin (18) in 

a tissue-specific manner (15,17,19,20). Tied to their function, MAIT cells primarily express 

transcription factors PLZF, RORγt, and T-bet (6,21) while Eomes expression has been noted 

in MAIT cells in certain conditions (15,22).

Despite their known presence at the maternal-fetal interface, questions remain as to whether 

decidual MAIT cells owe their phenotypic characteristics to their tissue residence. Here, 

we have leveraged recent advances in single cell technologies and taken a single cell 

multiomics approach to highlight specific features of decidual MAIT cells. We show that 

there is a specific transcriptional imprint in decidual MAIT cells compared to peripheral 

MAIT cells, both from pregnant and non-pregnant individuals. Furthermore, we identify 

multiple MR1-expressing antigen presenting cells (APCs) in the decidual, suggestive of 

MAIT cells activation through TCR engagement. Lastly, we show that decidual MAIT cells 
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preferentially produce IFNγ and TNFα upon activation. Overall, our data supports the 

presence of MAIT cells in the decidua (3,4) and that decidual MAIT cells are unique from 

their PBMC counterparts.

2. Materials and Methods

2.1 Sample Collections and Processing

Placental samples were sourced from term normal elective cesarean sections (>37 wks 

GA) in accordance with the UW Obstetrical Tissue Bank IRB protocol (#2014–1223) 

and UnityPoint Health – Meriter IRB protocol (#2017–004). Decidua basalis tissue was 

dissected from the maternal surface of the placenta and decidua parietalis tissue was scraped 

from the fetal membrane as previously described (23). Decidual tissue was mechanically and 

enzymatically dissociated as previously described (24,25). Isolated mononuclear cells (MCs) 

were frozen in FBS/10% DMSO and stored until needed. Peripheral blood mononuclear 

cells (PBMC) technical controls (contPBMCs), from batched, anonymous, non-pregnant, 

reproductive age females, were purchased (All Cells®, Alameda, CA) and kept frozen until 

processing.

In a separate set of experiments, five individual placental and matched whole blood 

specimens were collected for scRNA-seq (CITEseq) under the approval of Meriter IRB# 

2018–10 protocol. Specimens were obtained from five healthy women undergoing normal 

elective cesarean sections (>37 wks GA) on day of intake. Decidual samples were processed 

as described above. Matched PBMCs (matPBMCs) were isolated from whole blood via 

density gradient centrifugation. PBMC layer was extracted and washed with PBS, counted, 

adjusted to an optimal concentration of 4 X106 cells/mL and cryopreserved as described 

above.

2.2 T-Cell Activation

T cells were activated with either PMA/Ionomycin (Leukocyte Activation Cocktail with 

GolgiPlug™, BD Bioscience) or E.coli strain K12. For PMA/Ionomycin activation, MCs 

were treated for 6 hours with Leukocyte Activation Cocktail and monensin. After which, 

MCs were harvested and prepared for cell labeling.

E.coli stimulation was performed as previously described (26). Briefly, frozen E.coli aliquots 

(4X109 CFU/mL) were thawed and fixed in 1% Paraformaldehyde for 4 mins at room 

temperature. E. coli cell pellets were then washed three times with PBS before being 

resuspended in complete RPMI (109 CFU/mL). MCs were then incubated with fixed E.coli 
at a 10:1 CFU/PBMC multiplicity of infection (MOI). MCs were then stimulated by E.coli 
for 18 hours, with the addition of monensin and Brefeldin A for the last 6 hours of 

stimulation.

2.3 Cell Labeling

MCs were labeled with either Zombie NIR™ Fixable Viability Kit (BioLegend) or LIVE/

DEAD® fixable blue stain (Invitrogen, Waltham, MA, USA) following manufacturer’s 

instructions. MCs were subsequently labeled with fluorochrome-conjugated monoclonal 
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antibodies, listed in Table 1. Transcription factor assessment was performed using BD 

Pharmingen™ Transcription Factor Buffer Set, with overnight fixation. Cytokine production 

was assessed by first labeling MCs with cell surface antibodies followed by fixation (BD 

Cytofix™ Fixation Buffer). MCs were then permeabilized (BD Perm/Wash™ buffer) and 

intracellular targets were labeled, according to manufacturer instructions.

Surface and intracellular expression levels of MR1 was assessed by labeling MCs with 

anti-MR1 during the surface labeling step (surface only) or after fixation/permeabilization 

step (Total: surface + intracellular). To account for any effects of fixation on fluorochrome 

brightness, both sets of samples were processed using the BD Pharmingen™ Transcription 

Factor Buffer Set as described above.

2.4 Flow Cytometry and Data Analysis

Samples were acquired using the ThermoFisher Attune NxT or the BD LSR Fortessa with 

4 laser (405, 488, 561, 642nm), 14-detector configuration and 5 laser (355, 405, 488, 562, 

633nm) 20-detector configuration, respectively. SPHERO™ Rainbow Calibration Particles 

(Spherotech, Lake Forest, IL, USA) were used to standardize PMT voltage settings as 

previously described (24).

Data was analyzed using FlowJo™ v.10 software (FlowJo LLC, Ashland, OR, USA) 

and statistical software GraphPad Prism (ver. 8, GraphPad Software Inc, La Jolla, CA, 

USA). Statistical significance was determined by Student t-test or One-way ANOVA where 

appropriate.

2.5 Single Cell RNA sequencing and data analysis

2.51 T cell Enrichment and Sorting—T cells from decidua basalis and matPBMCs 

were enriched using the Dynabeads® Untouched™ Human T Cells Kit (Invitrogen). 

T cell enriched samples were then labeled with Zombie NIR™ Fixable Viability Kit 

(BioLegend). Subsequently, cells treated with TruStain FcX™ (BioLegend), then labeled 

with fluorochrome- and TotalSeq™-C oligonucleotide-conjugated antibodies (Table 1 and 

2). Samples were then sorted into PBS (Ca++/MG++ free, 1% non-acetylated BSA, 1 

μL/mL RNase inhibitor) using the BD FACSAria in a 3 laser (488nm, 561nm, 405nm) 

configuration, collecting 100,000 live, CD3+ cells. A post-sort purity check was performed 

demonstrating a >98.5% purity (Figure S3).

2.52 Library preparations and sequencing—Cell suspensions were submitted to 

UW Biotechnology Center where cell viability was further validated using the Countess™ 

II (Invitrogen). A total of 56,000 cells (7000 per sample) were targeted using the 10X 

Genomics. Samples meeting all quality control criteria were selected for single cell RNA 

library preparation and sequencing. Libraries were prepared and downstream processing 

utilizing Illumina sequencing technology was performed by the University of Wisconsin 

Gene Expression Center in collaboration with the UWBC DNA Sequencing Facility, 

Madison, Wisconsin.
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2.53 Clustering, Differential Expression, and CITE-seq data analysis—We 

used the CellRanger v3.1 count pipeline to generate filtered gene count matrices for each 

sample. This pipeline includes demultiplexing, discriminating between cell and background 

barcodes, and aligning reads to the human transcriptome (GRCh38 3.0). We next enriched 

the dataset for high quality cells by filtering on several quality control metrics: the fraction 

of UMIs aligning to mitochondrial transcripts, fraction of housekeeping genes detected (list 

from (27)), number of RNA or surface features detected, and number of RNA (FB) UMIs. 

We converted each value to median absolute deviations (MADs) within each sample and 

removed cells for which any value was outside of [−3,3]. Finally, although the cells were 

selected for CDR3 positivity prior to sequencing, we implemented two additional quality 

control filters to ensure a high confidence data set: (1) we required cells to have full-length 

CDR3 sequence data (from scVDJ-seq; unpublished results) and (2) we manually gated 

the cells using the CD4 and CD8 antibody features to identify and remove possible double-

positives and double-negatives (of which very few remained after the CDR3 sequence 

requirement filter). At the end of the filtering process, both samples from one of the subjects 

had lost substantially more cells than the other three subjects. After removing both samples 

for that subject, we had three subjects each with PBMC and decidua basalis samples.

Count normalization.: For RNA values, we log-transformed the depth-normalized counts. 

For surface proteins profiled by feature barcoding, we used centered log-ratio (CLR) 

normalization across all cells for each feature.

Batch correction for visualization and clustering.: We used the Seurat v3 integration 

pipeline (28) to align the RNA datasets to reduce subject- and localization-specific 

variability. Seurat employs “anchor” cells, which are cells that have similar nearest 

neighborhoods in the datasets being reconciled. The corrected expression value for a gene 

in a cell is a function of its proximity to the anchor cells and a score for each anchor. First, 

we integrated the PBMC T cells across subjects, and separately the decidua basalis T cells 

across subjects. Then we integrated the PBMCs and decidua basalis cells together. The final 

batch-corrected RNA matrix was used for UMAP plots and clustering, but not for expression 

visualization or statistical analysis.

Cluster analysis to define the MAIT cell subset: To define T cell subsets, we used Seurat 

v3.1.5 to cluster the cells in the integrated RNA space (cluster resolution parameter=0.5). 

We examined the CITE-seq protein and RNA expression profiles of each cluster. One cluster 

contained 307 cells and uniquely exhibited high expression of proteins TCR-Vα7.2 and 

CD161. We called this the MAIT cluster.

Differential expression analysis: We sought to identify decidua basalis- and PBMC-

specific genes within the MAIT cell cluster. Genes were filtered in advance of testing for 

expression in at least 10% of the cluster’s cells and for absolute average log fold change 

>0.25. To account for differences in the number of cells available from each subject, we first 

tested each gene within each subject separately using rank-sum tests on the log-normalized 

RNA counts. Next, for each gene, we combined the p-values from the three subjects using 

the sum-log method. To control for multiple testing, we applied Bonferroni correction to 
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each combined p-value. For the denominator we used the number of genes with any nonzero 

expression in any cell in the dataset (33548 genes). Finally, differentially expressed (DE) 

genes were selected based on a threshold of adjusted p<0.05.

CITE-seq visualization.: Visualizations of single cell CITE-seq data were generated using 

the R packages Seurat (v3.1.5), ggplot2 (v3.3.2), and viridis (v0.5.1).

3. Results

3.1 Mucosal Associated Invariant T (MAIT) are present in Human Term Decidua

We first asked whether MAIT cells are present at the maternal-fetal interface. To address this 

question, we developed a 13-parameter panel (Table 1) to determine the abundance of MAIT 

cells in human term decidua and their phenotypes. We employed anonymous contPBMCs 

for quality control purposes and panel validation (Figure S1).

First, we found that the proportion of MAIT cells from total T cells was similar between 

the decidua basalis and parietalis (Figure 1A). Further analysis revealed a higher proportion 

of CD8+ MAIT cells, followed by DN cells, with a lower proportion of CD4+ MAIT cells 

(Figure 1B), a trend that we observed in both the decidua basalis and parietalis. Finally, we 

assessed decidual MAIT cells for a memory phenotype (CD161+Vα7.2+CD45RO+CD27+) 

and found that memory MAIT cells were present at a frequency between 40–60% of total 

MAIT cells in decidua basalis and parietalis (Figure 1C), with similar distributions of CD8+, 

CD4+ and DN memory MAIT cells in both the decidua basalis and parietalis (Figure 1D).

Next, we validated the MAIT cell phenotype utilizing a tetramer-specific approach. Using 

the 5-(2-oxopropylideneamino)-6-D-ribitylaminouraci-l (5-OP-RU) loaded MR1 tetramer 

(Table 2), we confirmed that decidual MAIT cells were bound by the MR1:5-OP tetramer 

compared to the non-specific MR1:6-FP tetramer (Figure S2A). Overall, our results confirm 

the presence of MAIT cells in both term decidua basalis and parietalis, with most being 

CD8+/DN. Furthermore, we found no significant differences in MAIT cell composition 

between the decidua basalis and parietalis.

3.2 Single cell CITE-seq analysis reveals unique gene expression signature of decidual 
MAIT cells

To better understand the influence of the decidual environment on MAIT cells, we employed 

single-cell RNA-seq analysis on both decidual and circulating MAIT cells. Using the 

Chromium Single Cell sequencing platform (10X Genomics), coupled with CITE-seq (29), 

allowing for simultaneous assessment of select protein expression, we obtained high-quality 

sequence profiles for 22,245 T cells T cells from both the decidua and matched PBMCs (on 

average 2,700 per decidua and 4,700 from matched PBMCs).Clustering analysis revealed 

a unique MAIT cell cluster, separate from other T cells (Figure 2A), consisting of 307 

cells. MAIT cell phenotype was confirmed by CITE-seq analysis, showing the expression 

of MAIT-specific T cell receptor chain, Vα7.2, but not NKT-specific Vα24-Jα18 (Figure 

2B). We further confirmed that cells within the MAIT cell cluster expressed CD161 (Figure 

2B), a defining marker of MAIT cell identity (11,30,31). As expected, most MAIT cells 

identified expressed CD8, as opposed to CD4, lacked expression of CD279 (PD-1), CD194 
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(CCR4), CD197 (CCR7) and CD45RA, and express CD196 (CCR6) all suggesting an 

effector-memory phenotype (Figure 2B). Protein level expression was mirrored by gene 

expression levels (Figure 2C), with the notable exception of CD45RA, an isoform of CD45 

(PTPRC).

Next, we asked whether the gene expression profile of decidual MAIT cells was different 

from matPBMC MAIT cells and found that there were differentially expressed genes 

between the two groups (Figure 2D). Notably, we found genes involved in immune 

suppression Zfp36 (32), Tnfaip3 (33), Dusp2 (34), Tsc22d3 (35), Btg2 (36), Nr4a2 (37), 

and Nr4a1(38), cell cycle regulation (Rgcc) (39), resident memory (Cd69) (40,41), and cell 

migration(Ccl4) (42) to be upregulated in decidual MAIT cells (Figure 2D). Conversely, 

genes involved in apoptosis (Gimap7) (43), glucose metabolism (Txnip) (44), and oxidative 

phosphorylation (Mt-nd1, Mt-nd5) (45) were downregulated in decidual MAIT cells (Figure 

2D). Overall, these results confirm that presence of MAIT cells in term decidua and that 

decidual MAIT cells maintain a unique gene expression profile compared to their peripheral 

counterparts.

3.3 Decidual MAIT cell transcription factor expression analysis reveals surprising 
expression levels of Eomes and T-bet

To better understand the transcriptional programming of decidual MAIT cells, we analyzed 

their expression of lineage-defining transcription factors (Figure 3). Promyelocytic leukemia 

zinc finger (PLZF) is recognized as a necessary transcription factor for the development of 

innate T cells (46). As such, we expected higher PLZF expression in decidual MAIT cells 

compared to their conventional T cell counterparts (Figure 3A).

RORγt, the canonical lineage-defining transcription factor of TH17 and ILC3s, is tied to the 

production of IL-17 and IL-22 (47). Because previous reports have shown that MAIT cells 

are capable of producing TH17-type cytokines (15,20), we measured the level of RORγt 

expression in decidual MAIT cells. Higher levels of RORγt expression was observed in 

MAIT cells from the decidua basalis, compared to CD4+ and CD8+ T cells from the same 

tissue. However, we found no difference in the decidua parietalis across T cell subsets 

(Figure 3B).

Eomesodermin (Eomes) and T-bet, both members of the T-box transcription factor family, 

are involved in the development and function of various immune cells (48) and are known 

drivers of IFNγ expression (48–50). Because MAIT cells have the capacity of producing 

IFNγ (3,4,13,16,51,52), we asked whether they expressed Eomes and T-bet (Figure 3C&D). 

We found that decidual MAIT cells expressed higher levels of Eomes compared to decidual 

conventional T cells (Figure 3C). However, the same pattern was not observed in T-bet 

expression (Figure 3D). Taken together, decidual MAIT cells express different levels of 

lineage-defining transcription factors compared to conventional T cells, including higher 

levels of PLZF, RORγt, and Eomes.

Because we did not find any difference in transcription factor expression between decidua 

basalis and parietalis MAIT cells (Figure S4B), despite having different tissue origins, 

we asked if this observation was pregnancy specific. First, we compared decidual MAIT 
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cells to contPBMCs (collected from non-pregnant females). We found that all transcription 

factors (PLZF, RORγt, Eomes, Tbet) were expressed at higher levels in contPBMC MAIT 

cells compared to decidual MAIT cells (Figure S4B). Because our matched samples 

were reserved for scRNA-seq analysis, we looked at transcript abundance to compare the 

expression level of these same targets in matched MAIT cells and found no difference 

between decidual and circulating MAIT cells (Figure S5). This suggests that location, either 

decidua or circulation, does not alter lineage-defining transcription factor expression within 

the same individual.

3.4 MR1 Antigen Presenting Cells (APCs) point to possible MAIT cell function in human 
term decidua

Canonical activation of MAIT cells occurs through the engagement of antigen via MR1 

presentation (8,10). To determine if activation of decidual MAIT cells could occur in an 

MR-dependent fashion, we assessed the expression of MR1 on multiple antigen presenting 

cells (APCs) of the maternal-fetal interface (Figure S5; Table S1).

Because MR1 is expressed at low levels at the surface in the absence of a ligand (53), we 

measured both surface and intracellular expression (Figure S5). We first assessed surface 

expression of MR1 by APCs, in both the decidua basalis and parietalis (Figure 4A). The 

median fluorescence intensity (MFI) of MR1 was measured across multiple decidual APCs 

and found variable levels of MR1 expression (Figure 4A). Specifically, we found that 

classical monocyte 1, Inflammatory DCs, and classical monocyte 2 expressed higher levels 

of surface MR1 compared to classical type 1 DCs, PMN-MDSCs 1, and PMN-MDSCs 2 

in decidual APCs (Figure 4A). Interestingly, when assessing total MR1 expression (surface 

and intracellular), only classical monocyte 1 and classical monocyte 2 from the decidua 

parietalis expressed higher levels of MR1 compared to PMN-MDSCs 1 (Figure 4B).

To better understand the proportion of surface versus intracellular levels of MR1 expression 

in decidual APCs, we calculated the ratio of surface to total (surface + intracellular) MR1 

expression for both the decidua basalis and parietalis (Figure 4C). Most APCs had a ratio 

of less than 1, with the exception of Common DC progenitor and classical type 1 DCs, 

suggesting a greater amount of intracellular MR1 expression. The higher ratio in Common 

DC progenitor and classical type 1 DCs suggests that these APCs are expressing higher 

amounts of MR1 at the surface as opposed to intracellularly (Figure 4C). Overall, we 

show that MR1+ APCs are present at the maternal fetal interface, suggesting a path for 

MR1-dependent activation of MAIT cells. Coincidentally, we found no difference between 

surface/intracellular expression of MR1 between decidua basalis and parietalis APCs.

3.5 Activated MAIT cells in Decidua Basalis upregulate IFNγ and TNFα rather than 
Granzyme B

MAIT cells are able to produce a wide range of cytokines which is dependent on the nature 

of the stimulus (54). In previous studies, production of IFNγ, Granzyme B, and perforin 

have been observed in MAIT cells from the maternal-fetal interface (3). Based on these 

observations, we asked whether production of cytokines was consistent in term human 

decidua (Figure 5).
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Granzyme B is a cytotoxic molecule produced by CD8+ and natural killer cells (55,56). 

MAIT cells from various tissues also have the capacity of producing Granzyme B, as 

part of their effector function (10,11). After activation with PMA/Ionomycin, we found 

that MAIT cells from term human decidua basalis had a slightly greater proportion of 

Granzyme B+ cells, compared to unstimulated cells (Figure 5B). Interestingly, we found no 

difference in Granzyme B production in E.coli activated MAIT cells, suggesting that there is 

a capacity for Granzyme B production but only with the appropriate stimulus. Interestingly, 

the proportion of Granzyme B+ cells was higher in decidual CD8+ T cells, compared to both 

CD4+ T cells and MAIT cells (Figure 6A), implying that CD8+ T cells but not MAIT cells 

might be the main producers of Granzyme B at the maternal-fetal interface.

MAIT cells have the capacity to secrete TH17-type cytokines, IL-22 and IL17A (10,15,20) 

in appropriate contexts. We therefore asked if MAIT cells from term decidua basalis 

have the capacity of producing IL-22 and IL-17A (Figure 5). Surprisingly, we found that 

IL-22 was not produced in an appreciable level by decidual MAIT cells under any of the 

treatments (Figure 5A). However, we found that the proportion of IL-17A+ MAIT cells 

trended higher in both the PMA/Ionomycin and E.coli stimulated groups, although this did 

not reach significance (Figure 5B). Moreover, we did find that CD4+ T cells had a higher 

proportion of IL-17A+ cells at baseline, compared to both CD8+ T cells and MAIT cells 

(Figure 6B).

IFNγ, an important cytokine often elicited in response to infections and tissue damage (57) 

and involved in decidualization (58,59), is primarily produced by TH1, CD8+ T cells and 

natural killer cells (57,60). Because MAIT cells in various tissues have also been shown 

to produce IFNγ (61–63), we assessed the production of IFNγ in decidual MAIT cells 

(Figure 5). The proportion of IFNγ+ MAIT cells was higher in those activated with PMA/

Ionomycin (Figure 5B). We did not observe significant differences between the proportion 

of IFNγ+ conventional T cells and MAIT cells across all treatments (Figure 6C), suggesting 

a level of redundancy in induced IFNγ production at the maternal-fetal interface, or strict 

transcriptional control of IFNγ levels locally.

Lastly, we asked whether decidual MAIT cells have the capacity of producing TNFα, 

an important cytokine involved in the pro-inflammatory response (64). Similar to IFNγ, 

we found that the proportion of TNFα+ MAIT cells was highest under PMA/Ionomycin 

activation (Figure 5B). Furthermore, we found that when compared to conventional T cells, 

MAIT cells maintained a higher proportion of TNFα+ cells (Figure 6D). Overall, our results 

indicate the preferential production of IFNγ and TNFα by MAIT cells, while maintaining 

the capacity of Granzyme B production, albeit at lower levels than conventional T cells.

4. Discussion

The maternal-fetal interface is a unique mucosal site wherein balance between tolerance and 

protection is pivotal for a successful pregnancy. Imbalance in this system has been tied to 

pregnancy complications such as preeclampsia and preterm birth. Although restricted in its 

immune composition, the decidua maintains a unique immune cell population consisting 

primarily of decidual NK cells (65) but that also maintains a distinct distribution of T cell 
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subsets (24,66,67). Recently, the innate-like T cell subset MAIT cells, important players in 

the maintenance of tissue homeostasis (51,62), have been identified in both the endometrium 

and the decidua (3,68). Here, we provide additional confirmation for the presence of MAIT 

cells in term human decidua and demonstrate, with the use of novel scRNA-seq technologies 

(CITE-seq), that decidual and peripheral MAIT cells maintain different gene expression 

profiles. Furthermore, our analysis of decidual APCs show the expression of the antigen-

presenting molecule MR1, known restricting molecule to the MAIT TCR. Lastly, we show 

that decidual MAIT cells are skewed towards IFNγ and TNFα production, with the use of 

novel scRNA-seq technologies (CITE-seq),

We first confirmed the presence of MAIT cells in human decidua (Figures 1 and 2), in line 

with recent studies identifying MAIT cells in the intervillous space and the decidua (3–5). 

Interestingly, the abundance of decidual MAIT cells observed by us and others (3–5) is 

similar to that seen in the endometrium (15,52), suggesting that pregnancy does not alter the 

frequency of MAIT cells in the mucosa of female reproductive organs. Decidual MAIT cells 

identified in this study were also primarily CD8-positive, similar to other studies conducted 

in reproductive (3,15,52) and other tissues (69–71). It has also been reported that decidual 

parietalis MAIT cells are more activated than their decidua basalis and intervillous blood 

counterparts based on the expression of CD69, HLA-DR, CD38, and PD-1 (3,4). Even 

though we did not assess the expression of these proteins by flow cytometry, our scRNA-seq 

data support these previous observations, with decidual basalis MAIT cells maintaining a 

global gene expression profile indicative of attenuation (Figure 2D). Interestingly, CD69 

is also a marker of tissue-residency (72), which was upregulated in decidua basalis MAIT 

cells compared to PBMCs (Figure 2). This hints to a possible division of labor between 

decidua basalis and parietalis MAIT cells, that is influenced by location, one being adjacent 

to the placenta and other to fetal membranes. Indeed, we found that Ccl4, a trophoblast 

chemoattractant (73), was, in fact, upregulated in decidua basalis MAIT cells (Figure 2), 

partly supporting our hypothesis. However, due to limitations in cellular recovery, we were 

not able to sequence full RNA transcriptomes from individual MAIT cells from the decidua 

parietalis to perform a direct comparison.

MAIT cells share many features with other tissue-resident lymphocytes (11,71,72). It has 

been suggested that at the maternal-fetal interface, MAIT cells might be recruited from 

the periphery by the chemoattractant MIF secreted by the placenta (5). This is further 

evidenced by a lower frequency of MAIT cells in the peripheral blood of pregnant 

individuals compared to non-pregnant, suggesting that MAIT cells are recruited from the 

periphery (3,5) to the intervillous space. Studies in transplanted uteri have also shown that 

endometrial MAIT cells are replaced by recipient MAIT cells (52), suggesting that MAIT 

cells residing in the endometrium are recruited from the periphery where they then obtain 

tissue-resident characteristics. Our data similarly support the idea that decidual MAIT cells 

obtain tissue-residency once recruited from the periphery. Specifically, the decidual MAIT 

cells we isolated lack expression of CD103, one of the hallmark integrins indicative of tissue 

residency (52,71,72), however, they maintain a specific gene expression signature compared 

to matched peripheral MAIT cells (Figure 2). These observations support recruitment of 

MAIT cells from the periphery into the decidual environment and that decidual MAIT cells 

are in the process of establishing themselves as decidual residents. One cannot discount 
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the possibility, however, that decidual MAIT cells are composed of two populations: a 

tissue-resident and a transient population.

Functionally, MAIT cells have been recognized for their ability to respond rapidly to 

microbes at mucosal sites (6,74,75). MAIT cells also have the capacity of responding to 

non-antigenic triggers, such as cytokines (61). The presence of MAIT cells in the decidua 

opens a host of questions regarding their role in pregnancy. In the endometrium, MAIT cells 

have been shown to skew towards an IL-17A-producing phenotype after E.coli stimulation 

(15). However, in the decidua, MAIT cells consistently skew towards IFNγ production 

under microbial stimulation (4,52) a finding supported by our results as well (Figure 5). This 

suggests that MAIT cells might play an analogous role to that of dNKs at the maternal-fetal 

interface (58,73), where IFNγ production leads to angiogenesis and decidual remodeling, 

rather than clearance of microbial populations. Similar tissue-repair roles of MAIT cells 

have been uncovered in other tissues (62,76,77), coincidentally all requiring the presence of 

microbiota. The expression of the MR1 molecule by decidual APCs (3) (Figure 4), suggests 

that decidual MAIT cells can be activated by local decidual microbes. However, the recent 

debate on whether the placenta maintains a local microbial community (78–81), adds a 

layer of complexity to our understanding of MAIT cells in the decidua, as all evidence thus 

far indicates that the presence of microbes is necessary to induce tissue-repair functions in 

MAIT cells (62,76,77).

Single cell transcriptomics has emerged as a powerful tool to understand gene regulation 

mechanisms in various tissues, including tissues of the maternal-fetal interface (82–85). To 

the best of our knowledge, this is the first study to identify decidual MAIT cells using 

scRNA-seq, as others have identified them only in the blood (83,84) using this technology. 

This discrepancy can be attributed to experimental design, as we targeted only CD3+ T 

cells for sequencing while the other two studies (83,84) had a broader cellular target. Use 

of CITE-seq confirmed MAIT cell phenotype of T cells in the decidua based on surface 

expression of TCR-vα7.2 and CD161. Our single cell data show that decidual MAIT cells 

are programmed for attenuated responsiveness compared to peripheral MAIT cells, which is 

in agreement with a recent study showing a pro-inflammatory profile in peripheral MAIT 

cells from patients impacted by recurrent pregnancy loss (84). Further studies analyzing 

matched decidual and peripheral samples from disease states should shed light on specific 

MAIT cell programming.

Lastly, comparisons of lineage-defining transcription factor expression found that overall 

MAIT cells isolated from the decidua are different from non-pregnant, non-matched MAIT 

cells, while those isolated from pregnant individuals (matched decidua and peripheral) are 

the most similar (Figure S4 and S5). This suggests that not only local tissue development (of 

the decidua) but also global (hormones) changes induced by pregnancy have a specific 

transcriptional effect on MAIT cells. This observation is limited as different methods 

(flow cytometry, scRNA-seq) were used to compare pregnant vs. non-pregnant. Moreoever, 

analysis of MAIT cells pre- and post-pregnancy would be needed to highlight transcriptional 

changes due to pregnancy. Nonetheless, our results emphasize the importance of considering 

transcriptional changes, independent of phenotypic characteristics, incurred by immune cells 

in the context of pregnancy.
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Figure 1. Mucosal Associated Invariant T (MAIT) cells identified in Human Term Decidua.
(A) Gating strategy identifying MAIT cells and frequency of MAIT cells in term decidua 

basalis and parietalis. (B) Identification of MAIT cell CD4+/CD8+ subsets (C) Identification 

of memory MAIT cells (CD45RO+CD27+) and (D) memory CD8+, CD4+, DN MAIT cell 

subsets. Decidua Basalis, n = 14; Decidua Parietalis, n = 14. Data represented as max/min, 

median, and 25 and 75th percentiles. Statistical significance was determined by Student’s 

t-test or One-way ANOVA, followed by Tukey post-hoc tests, were appropriate. *p < 0.05, 

**p < 0.005, ***p < 0.001.
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Figure 2. Transcriptome analysis reveals unique gene expression profile of decidual MAIT cells.
(A) UMAP clustering of total T cells showing the segregation of the MAIT cell cluster 

with a total of 307 cells. (B) Expression of surface proteins profiled by CITE-seq overlaid 

on UMAP plots. CLR-normalized counts were scaled across all T-cells. UMAP plots were 

computed from a batch-corrected RNA matrix. Top row: all T cells. Bottom row: zoom in 

to MAIT cluster only. (C) Expression of genes corresponding to surface markers profiled 

by CITE-seq (B) in MAIT cells from decidua basalis and PBMCs. Log-normalized RNA 

expression was scaled across all T cells. (D) Average log-normalized RNA expression in 

MAIT cells found in PBMCs and decidua basalis. Each point is one gene. Color denotes 
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statistically significant differential expression determined by combining p-values from per-

subject Wilcoxon rank sum tests and applying a threshold of Bonferroni-adjusted p<0.05. 

Red: gene is significantly up-regulated in decidua basalis MAITs versus PBMC MAITs; 

blue: gene is significantly down-regulated; gray: not significant. The top ten up-regulated 

genes and all four down-regulated genes are labeled, ranking by average fold change.
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Figure 3. Transcriptional profile of decidual MAIT cells sets them apart from decidual T cells.
Histograms showing range of expression of transcription factors (A) PLZF, (B) RORγt, (C) 
Eomes, and (D) T-bet for both decidua basalis and parietalis MAIT and conventional T cells. 

Plots of the geometric mean fluorescence intensity (GMFI) for each transcription factor are 

shown adjacent to corresponding histograms. Decidua Basalis, n = 14; Decidua Parietalis, 

n = 14. Data represented as max/min, median, and 25 and 75th percentiles. Statistical 

significance was determined by One-way ANOVA, followed by Tukey post-hoc tests. *p < 

0.05, ***p < 0.001, ****p< 0.0001.
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Figure 4. MR1 is expressed by antigen presenting cells (APCs) in term human decidua.
(A) Decidual antigen presenting cells (APCs) from both the decidual basalis (top) and 

parietalis (bottom) were labeled with anti-MR1 antibody and median fluorescence intensity 

(MFI) was calculated to assess expression. (B) To account for intracellularly expressed 

MR1, APCs were labeled both for surface and intracellular MR1 protein. (C) Surface to 

Total (Surface + Intracellular) MFI ratio across APCs in decidua basalis and parietalis 

was calculated. Decidua basalis, n = 6; Decidua parietalis, n = 6. Data represented as 

violin plots displaying max/min, median, and 25 and 75th percentiles. Statistical significance 
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was determined by One-way ANOVA, followed by Tukey post-hoc tests. Different letters 

indicate statistical differences between groups (p < 0.05).
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Figure 5. MAIT cells skew towards IFNγ and TNFα production.
Decidual MAIT cells were activated with PMA/Ionomycin or E.coli and production of 

cytokines was assessed. (A) Representative gating scheme of MAIT cells after activation 

showing the production of Granzyme B (GRB), IL-22, IL-17A, IFNγ and TNFα. (B) 
Frequency of GRB, IL-17A, IFNγ, and TNFα positive MAIT cells after activation. Decidua 

basalis, n = 6. Data represented as max/min, median, and 25 and 75th percentiles. Statistical 

significance was determined by One-way ANOVA, followed by Tukey post-hoc tests. *p < 

0.05, **p < 0.005.
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Figure 6. MAIT cells display a different functional profile compared to conventional T cells.
Frequency of (A) GRB (B) IL-17A, (C) IFNγ, and (D) TNFα positive CD4+, CD8+, and 

MAIT cells after activation. Decidua basalis, n = 6. Data represented as max/min, median, 

and 25 and 75th percentiles. Statistical significance was determined by One-way ANOVA, 

followed by Tukey post-hoc tests, within treatment group. *p < 0.05.
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Table 1

Fluorescent conjugated antibodies used for flow cytometry

Marker Clone Fluorochrome Supplier

CD3 SK7 PE-Cy7 BD Science

CD3 UCHT1 BV421 BD Science

CD3 UCHT1 PE BioLegend

CD4 SK3 BUV496 BD Science

CD4 RPA-T4 A488 BD Science

CD8 RPA-T8 BV421 BD Science

CD8 SK1 BV605 BD Science

CD11b ICRF44 BV605 BD Science

CD11c B-ly6 BB515 BD Science

CD14 MOP9 BV510 BD Science

CD14 M5E2 PE-Cy7 BioLegend

CD16 3G8 BUV496 BD Science

CD19 SJ25C1 BV510 BD Science

CD19 SJ25C1 PE-Cy7 BD Science

CD27 M-T271 PE-Cy7 BD Science

CD34 581 PE-Cy5 BD Science

CD45 2D1 A488 BioLegend

CD45RO UCHL1 APC-H7 BD Science

CD45RO UCHL1 PE BioLegend

CD56 B159 PE-Cy7 BD Science

CD56 NCAM16.2 BV421 BD Science

CD80 L307.4 A700 BD Science

CD123 7G3 BUV395 BD Science

CD141 1A4 APC BD Science

CD161 DX12 PE-Cy5 BD Science

CD163 GHI/61 PE-Dazzle594 BioLegend

CD209 DCN46 PerCP-cy5.5 BD Science

Eomes WD1928 PE-eFluor610 eBiosciences

GATA-3 L50–823 BUV395 BD Science

Granzyme B GB11 A647 BioLegend

HLADR G46–6 BV786 BD Science

IFNγ 4S.B3 A488 BioLegend

IL-17A BL168 PE-Dazzle594 BioLegend

IL-22 22URTI PerCP-eFluor 710 eBiosciences

IL-22 2612A41 APC BioLegend

MR1 26.5 PE BioLegend

PLZF Mags.21F7 A488 eBiosciences
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Marker Clone Fluorochrome Supplier

RORγt AFKJS-9 APC eBiosciences

Tbet O4–46 BV650 BD Science

TCR V⍺7.2 3C10 BV785 BioLegend

TCR V⍺7.2 3C10 BV510 BioLegend

TNF⍺ MAb11 BV650 BioLegend

TNF⍺ MAb11 BV785 BioLegend
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Table 2

Oligo conjugated antibodies used for CITE-seq

Marker Clone Supplier

TotalSeq™-C TCR Vα7.2 3C10 BioLegend

TotalSeq™-C CD161 HP-3G10 BioLegend

TotalSeq™-C CD4 RPA-T4 BioLegend

TotalSeq™-C CD8 SK1 BioLegend

TotalSeq™-C TCRVα24-Jα18 6B11 BioLegend

TotalSeq™-C TCRαβ IP26 BioLegend

TotalSeq™-C CD279 EH12.2H7 BioLegend

TotalSeq™-C CD196 G034E3 BioLegend

TotalSeq™-C CD194 L291H4 BioLegend

TotalSeq™-C CD197 G043H7 BioLegend

TotalSeq™-C CD45RA HI100 BioLegend
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