
Journal of Advanced Research 35 (2022) 33–48
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
A review on modern defect detection models using DCNNs – Deep
convolutional neural networks
https://doi.org/10.1016/j.jare.2021.03.015
2090-1232/� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

q Peer review under responsibility of Cairo University.
⇑ Corresponding author.

E-mail addresses: andrei.tulbure@visionrotech.com (A.-A. Tulbure), eva.dulf@aut.utcluj.ro (E.-H. Dulf).
Andrei-Alexandru Tulbure a,c, Adrian-Alexandru Tulbure b, Eva-Henrietta Dulf a,⇑
aDepartment of Automation, Technical University of Cluj Napoca, Romania
bDepartment of Engineering, University of Alba Iulia, Romania
cVision Tech Research SRL, Alba Iulia, Romania
h i g h l i g h t s

� A comprehensive analysis of modern
object detection models

� Study on models that can be used as
detectors for defect detection
applications in industry.

� Study on YOLOv4 that can perform
good defect detection with not much
capital investment.

� Analysis on the correlation between
dataset, labeling and the data
augmentation steps and accuracy and
computations.

� Analysis on the importance of correct
data acquiring, augmentation and
labeling in low cost applications.

� Analysis of the rate of improvement
of the mAP of defect detection and
image classification systems in recent
years.

� Analysis of model compression and
acceleration on embedded
applications and smart factories.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 4 February 2021
Revised 10 March 2021
Accepted 31 March 2021
Available online 23 April 2021

Keywords:
Defect detection
Object detection
Image classification
Deeplearning
Deep convolutional neural networks
a b s t r a c t

Background: Over the last years Deep Learning has shown to yield remarkable results when compared to
traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearn-
ing models outperformed in both accuracy and processing time. Thus, once a deeplearning models won
the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great
potential. Furthermore, these increases in recognition performance resulted in more applied research
and thus, more applications where deeplearning is useful: one of which is defect detection (or visual
defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on
the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported
(besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hard-
ware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better
computing procedures (libraries and frameworks).
Aim of the review: To offer a structured and analytical overview(stating both advantages and disadvan-
tages) of the existing popular object detection models that can be re-purposed for defect detection: such

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2021.03.015&domain=pdf
https://doi.org/10.1016/j.jare.2021.03.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:andrei.tulbure@visionrotech.com
mailto:eva.dulf@aut.utcluj.ro
https://doi.org/10.1016/j.jare.2021.03.015
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare


Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detec-
tors) and cascaded architectures. A further brief summary on model compression and acceleration tech-
niques that enabled the portability of deeplearning detection models is included.
Key Scientific Concepts of Review: It is of great use for future developments in the manufacturing industry
that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus
could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment
performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours.
The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop
setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat
easier to climb for all types of businesses.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In recent years computer vision has been transformed by the
development of deep learning algorithms and by the multitude
of GPUs that entered the market, enabling powerful and large scale
computations. Pre deep-learning, one needed to have lots of
knowledge in feature mapping and feature description, in order
to be able to hand craft features and detect object from images.
Instead, deep learning enables computational models of multiple
layers to represent and learn features and data with lots of layers
of abstraction, somewhat copying the brain‘s operational struc-
ture: how it perceives and understands information and how it cre-
ates structure. The most important deep-learning based computer
vision methods are convolutional neural network(CNN) based
ones. Moreover in [1] the details of CNNs are specified: type of lay-
ers used, training methods, as well as, more deep-learning meth-
ods are presented: Deep Boltzmann machines, deep belief
networks, restricted Boltzmann machines and auto-encoders. For
a timeline of the history of computer vision, [2] has a great level
of summarizing the information, starting from the early trials of
original Perceptron of 1957 until the recent revolution of deep-
learning, as well as the hardware development implications. The
two main applications of deep-learning based computer vision
are image classification and object detection, which can or cannot
involve semantic segmentation. For a further summary please refer
to [3,1], where applications such as: Face recognition, pedestrian
detection, activity recognition, human pose estimation and others
are described. In image classification one just classifies the object
in the image into predefined classes, which is a supervised type
of process. In object detection and the subsequent segmentation,
one needs to identify the location of the object, maybe track it in
the image and then determine the class of the object. A compre-
hensive review for object detection is [4], which thoroughly dis-
cusses the subject mentioning the new industry as a whole,
starting from non deep-learning object detection methods such
as Histogram of Gradients [5] and also discussing in detail the
modern approached such as RCNN(region based CNN) [6] and
YOLO(You only look once) [7].

Judging by the fact that object detection became more and
more accurate in the latter part of the 2010s, multiple industrial
applications evolved from it, one of which is defect detection in
industrial processes, mainly by optical inspection. Such a system
is composed out of a sub-system that acquires the images (e.g. a
camera system) and from the processing sub-system (e.g. a com-
pute on the edge module or a connected workstation)[Fig. 1]. The
need for such an inspection process is due to the poor overall reli-
ability of human optical inspection and the high costs for such
operations. In order to perform optical inspection every worker
needs to be trained intensively and, more importantly, she/he
cannot rush the process or else risk the quality reputation of their
employer. Also, fatigue can be a big problem when ensuring qual-
34
ity only by the means of trained workers. Hence, the need for a
cheaper, faster and more reliable method of performing optical
inspection arises. Before the advent of deep learning and espe-
cially convolutional neural networks (CNNs), traditional computer
vision algorithms (e.g. Viola-Jones [8] or Histogram of oriented
gradients [5]) yielded satisfactory results in some processes as
optical character recognition (OCR), edge detection, thresholding,
color recognition or template matching. The majority of these
operations imposed constraints on the manufacturing process
and on the object it inspected. The most common constraints
were regarding the objects orientation, the lighting conditions
and the speed at which the object can travel in the production
line (or the lack of speed). As one can see, these constraints are
not welcomed when it comes to profitability or the ease of work
for human workers in the assembly line. Since 2012 when the
work of Krizhevky et al. [9] won the ImageNet Challenge and
achieved breakthrough results with their 5 convolution layer
and 3 fully connected layer CNN, the applied research in the area
of computer vision headed in this direction, yielding better and
better results regarding accuracy and processing time. More and
more research was done in this area in the last decade, ultimately
lots of computer vision applications using neural networks
appeared. This paper reviews the modern methods and neural
network frameworks and states their advantages and disadvan-
tages. Hence, methods used for embedded computing of neural
network applications are highlighted because the goal is to out-
line the steps necessary for industrial use defect detection algo-
rithms. These methods need to have low computing power
requirements, low power usage, being embedded-device compat-
ible and also being resilient and rugged. While the industrial
ruggedness is not a characteristic of deep-learning algorithms,
having a lean and low cost deep-learning algorithm that performs
with high accuracy and high frame per seconds(FPS) rate, helps
by enabling the finances to concentrate on that aspect of indus-
trial use. Ultimately everyone should have access to the useful-
ness of deep-learning algorithms, not just the high capital
businesses, who can afford to spend even large sums of money
on a solution. Further the paper is structured as follows: the
related work is briefly discussed in Section 2, a thorough review
of modern CNN models used for object detection is given in Sec-
tion 3 and a short summary for model compression for defect
detection models is stated in Section 4. In Section 5 the per-
formed experiments are stated and the datasets used for bench-
marking, while Section 6 concludes the paper. (see Fig. 2).

Related work

Since the second part of the 20th century researchers are more
and more interested in the area of image processing and extracting
information from images because of the real world utility of these
methods. In the last years, the rhythm of research is accelerating,

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. System overview-concept-of an industrial camera quality check system in a production environment.

Fig. 2. Evolution of the Top1 accuracy of ImageNet ILSVRC contestants. As one can see, the high performing classification entrants are used as a backbone for detection
models. The accuracy for Image classification tasks is higher than the one for detection, thus, one can conclude that detection models can be significantly improved or that the
technology did not achieve ”enough”. The small SqueezeNet model, that fits into any embedded device has a Top1 accuracy of a bit more than 50%. The most accurate
FixEfficient model yields almost 90%. Thus, one can easily see that the rate of improvement of Top1 accuracy is slowing down. The exact values can be seen in Table 1.

Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
thus a new pallet of frameworks are presented and better perfor-
mances are obtained.

Traditional computer vision or shallow methods

One of the earliest algorithms in image segmentation was the
Snake algorithm (1987) that used energy minimizing splines
guided by external constraint forces and internal image forces, that
made localizing important features such as lines or edges more
35
accurate [10]. Furthermore, in [11] a comparison of four texture
algorithms (1980) is presented: spatial gray level dependence
method(SGLDM) [12], gray level run length method (GLRLM)
[13], gray level difference method(GLDM) [14], power spectral
method (PSM) [15]. The advantages are compared and the results
reflect that the SGLDM was the most powerful algorithm at that
time for texture analysis. Another image processing method for
feature extraction, advanced in the 1990s, were the discrete and
continuous wavelet transforms. A recap of fast methods for



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
performing these computations was proposed in [16], imple-
mented using Fast Fourier transforms (FFT) [17] and fast finite
impulse response (FIR) algorithms. A more modern approach
(2009) for wavelet transform is presented in [18]. In [19] a real
time defect detection system for textile fabric was conceived. The
system was based on multi-resolution decomposition and an arti-
ficial neural network(ANN) for defect classification. It yielded sat-
isfactory results on low contrast defects in an industrial
environment. Pulsed thermography based images were used for
defect detection in a system, together with a perceptron neural
network used for computing, in [20]. The point of interest was on
aluminum corrosion. The system uses temperature, phase and
amplitude data to locate the defects and showed promising results
for the application on aluminumwith a accuracy of up to 99%, in an
restricted setup. Additionally, in [21] an optimisation method for
ANNs was proposed. It was based on replacing back-propagation
with the bees algorithm (population based search algorithm) and
detected defects in wood. Although genetic programming methods
are usually used for estimation and optimisation [22], these algo-
rithms are somewhat intersected with classical computer vision
methods and more research is needed in the respective direction.
Still, the above mentioned methods are not based on deep learning
and used shallow networks. The accuracy was around 86% in the
test setup proposed by the authors. It needs to be mentioned that
these genetic optimisation algorithms [22] did not outperform the
classical back-propagation algorithm, hence the justification for its
use is scarce. Furthermore, in [23] a cepstral approach for feature
extraction (mostly composed of discrete wavelet transform(DWT)
or discrete cosine transform(DCT)) was used on radiography
images in order to detect welding defects. Their results were based
on testing on only 16 images so the results need to be taken with a
pinch of salt, as one cannot generalize from such a small dataset.
Nonetheless they obtained up to 100% detection accuracy, so the
result were promising. In [24] a mathematical method for reveal-
ing hidden and defective details in ancient manuscripts was used
together with multiple ways of image acquisition (Thermography,
X-ray, raman spectroscopy, multi-spectral imaging, laser induced
breakdown spectroscopy). Several case studies were presented
and the result were promising. An apple defect detection method
based on a shallow MLP-Neural Networks was presented in [25].
The main purpose was to detect defect in two classes of apples
and the features extracted were color, texture and wavelet fea-
tures. Also, principal component analysis(PCA) [26] was used for
dimensionality reduction and the best accuracy obtained on the
scarce dataset provided for the evaluation of the method was of
89.9 %. Another example of a similar method is proposed in [27],
where images are acquired by active thermography(temporal ther-
mograms) and the processing is similar to the previous method, as
it also uses a shallow network and PCA in order to detect the
defects in materials and estimate their depth. Moreover, in [28] a
case study is presented for designing a defect detection system
using 90s era techniques. A brief survey of these older feature
extraction (and image processing) methods can be found in [29].
Furthermore, it needs to be mentioned the fact that traditional
images processing methods do not use many standardized test
dataset like COCO(Common objects in context) or ImageNet and
not all traditional classification algorithms are evaluated on mod-
ern benchmarking datasets. So, in order to compare these methods,
if benchmarking results are not available, one needs to perform the
experiments and benchmarking on their own.

Deep learning era applications

Since the early 2010s, the research in the direction of applying
deep learning in order to solve computer vision problems is accel-
erating. Some vision problems include: object detection, object
36
tracking, image classification, semantic segmentation, feature
extraction etc. The main topic of interest for defect detection is
object detection, because defects are treated as objects and they
need to be localized and subsequently classified. For more details
on object detection this above-mentioned review offers a compre-
hensive overview [4].

A great example of the usefulness of deep learning defect detec-
tion algorithms is presented in [30], where one can see that these
methods don‘t only offer an accuracy increase, but they also offer a
great speed advantage over traditional methods or even human
defect inspection. The authors used the YOLO-v3 network model
framework [31] on which they performed the following improve-
ment: they integrated the MobileNet framework [32] to lighten
the YOLO-v3 network and the results stated that it performed with
similar accuracy as the original YOLO-v3 network, but with a sig-
nificant speed-up of detection. It outperformed other methods, like
SSD [33] and Faster-RCNN [34] for the task of detecting electronic
components. Also, it must be stated that in order to make the algo-
rithm perform with a smaller database of pictures, data augmenta-
tion techniques were applied: blurring, brightness manipulation,
adding noise and contract enhancement. Cropping and rotations
were not used for this application. As mentioned in their paper
[30], data augmentation techniques show a general improvement
in accuracy in every neural network framework. Moreover, by
making the network lightweight they achieved both, almost real
time processing and portability. Both characteristics are very
important for ensuring defect detection for industrial processes
at a reduced price. Another example of a low cost defect detection
method that replaces human inspection can be found in [35]. The
author used a small VGG [36] inspired network model with small
convolutional filters to detect faulty bearings. The dataset was
small and specific and built with lots of data augmentation. Also,
the process is an industrial one, with the bearings coming into
the station in the same place every single time.

An up-to-date topic is the defect detection in Lithium-Ion bat-
teries which power the world that we live in today. As one can
see in [37], the authors used a deep learning model to inspect
the quality of li-ion battery electrodes from light-microscopy
images. A lightweight YOLOv3 version named YOLOv3-Lite is pre-
sented in [38]. The network‘s purpose is to detect cracks that
formed in an aircraft structure, thus improving the maintenance
operations (as one can see it is a common theme for defect detec-
tion applications to assist humans in maintenance operation). They
combined the basic YOLOv3 detection framework with depthwise
separable convolution and feature pyramids. Depthwise separable
convolution is responsible for reducing the parameters and
extracting crack features effectively and is found in the backbone
network. The feature pyramid‘s role is to join together low and
high resolution features in order to obtain more robust classifier
semantics. They evaluated the method on fuselage, wing, aircraft
tail or engine blades and they obtained 50% better speed than
the basic YOLOv3 [31]. A bottleneck that was stated is the fact that
the dataset needs to be created and the labeling process can be
quite hard, because you need experienced employees to fulfill this
part. Their dataset only contains 960 pictures in total, which when
compared to other datasets that are used in the community for
benchmarking is a very small set.

In [39] the authors developed a deeplearning model for detect-
ing defects in printed circuit boards(PCBs), that got up to an accu-
racy of 98.79% by training it on a TITAN V GPU. This model is of
great help for the industry, because in the case of PCBs the quality
inspectors need to be very well trained and cannot process tons of
boards a day. Even though it is a particular solution, their dataset is
quite big, containing 11000 input images of size 420x420 (which
are resized to 416x416 to comply with the detector frames). They
chose to implement their solution, by building it on the YOLOv2



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
[40] framework because of the fact that YOLOv2 has pretty low
recall when compared to other public methods at the time of pub-
lishing the piece of work. In order to help with collecting all the
images necessary, they developed a small applet, that allowed
quality inspectors to easily label lots of data efficiently, thus pro-
viding a bridge between the quality inspector and the AI engineer.
It is of no use to develop complex network models, if the dataset is
biased and of poor quality. The final statement suggests that trans-
fer learning may be of future use for defect detection systems.

The authors of [41] presented a method for detecting defects in
steel strip surfaces, in real time, by using a modified version of the
YOLO framework [7]. The surface defects are hard to detect
because of the fact that they are not the same for different produc-
tion lines and the surface of the steel also presents non-defective
interferences, like oil. Thus, the detector needs good generalization.
The dataset they compiled is for six types of defects, a total of 4655
images. To evade overfitting and to improve the performances,
they used data augmentation techniques. This is a consistent evi-
dence found in detectors: data augmentation improves the accu-
racy. Furthermore, they obtained great results, on a particular
solution they obtained up to 99% detection rate, with 95.86% recall
rate, all while their detector is running at 83 FPS. They modified the
YOLO model, by making it fully convolutional, hence allowing the
network to learn the spatial down-sampling, without pre-defining
it. In order to also detect smaller defect, they added higher resolu-
tion feature maps(besides the one stated in the YOLO framework)
in the feature extracting backbone. The training procedure consists
of 5000 iterations, with all the hyper-parameters described in the
above mentioned paper. This is not a really expensive solution,
judging by the fact that they trained it on a GTX 1080Ti GPU and
it took only 12 h. Moreover, they also predicted and detected the
location and scale of the defects and thus, they are able to state
which production line does not meet the quality criteria and sub-
sequently, improve it.

Also, in [42] a SSD detector is developed in order to detect
defects in wood. Even though they used it for a particular case of
detecting defects in the Akagi and Pinus sylvestris trees, they
obtained up to 96.1% mean average precision, which is great. Their
dataset was quite specific, containing only 500 200x200 images of
defective parts: wood knots, dead knots etc. They chose to imple-
ment their solution based on the SSD detector [33] because the
constraints in the wood factories were challenging: 50 meters of
wood per minute and greater than 95% accuracy. Hence, they used
a new backbone: a DenseNet [43] backbone, used to extract better
deep features and avoid the problem of vanishing gradients. More-
over, they also used a feature fusion function of the SSD detector, in
order to fuse the multi-layer feature map obtained by the back-
bone for the regression of the position parameters and classifica-
tion of the wood defects. Also, they adapted the input the SSD
accepts to 200x200 and when multi-layer feature maps were
merged, one layer of the previous feature maps was reduced, hence
reducing calculations and getting closer to the speed requirements.
Their final detection time was 56 ms per image, thus a frame per
second (FPS) rate of about 20.

In [44] the authors proposed a system for detecting defects in
power line insulators by using images acquired by a drone. They
trained a cascaded architecture of CNN based detectors that
yielded great results and may be replicated for further aerial qual-
ity inspections.

In [45] a method for detecting defects of fasteners on the cate-
nary support device (for electrical trains) using a deep CNN is pre-
sented. Fasteners are loosened by the vibration and excitation over
the long term operation. The quality inspection is done by special-
ized operators and it is a long labor intensive process. A solution
was needed, so the authors implemented automated process by
using a three stage cascaded detection architecture in a coarse-
37
to-fine manner: the cantilever joint detector is implemented using
the SSD framework, the localization of fasteners is done by using
the YOLO framework and the classifier for diagnosis is based on a
medium scale deep CNN, smaller than AlexNet [9], but with similar
performance. The results are encouraging and thus, present the
opportunity to reduce the human labour needed for maintenance
and enable the system to process lots of data accurately. These
improvements yield a reduction in the cost of maintenance and
also a positive change in the safety of operation of the high speed
trains. Hence, when lots of large images are processed a cascaded
architecture is suitable, the drawback being the fact that it‘s very
hard to ensure the embedded compatibility and it is not trivial to
train such a large network model.

Another application is mentioned in [46], where an automated
detection and classification system is presented. It classifies infras-
tructure surface images that contain defects(cracks, water leakages
etc.), thus boosting the maintenance process efficiency. The ques-
tion raised by the authors is regarded to the fact that structured
and reliant datasets are hard to obtain for certain real world appli-
cations such as this one. For the classification and detection of sur-
face defects they used a deep residual network. The novelty lies in
the fact that they used an active training strategy: the network is
trained as soon as labeled images become available and then it is
used to select the most informative images. Only for these images,
labels are queried from the experts to train the network. The
results are encouraging, they obtained 87.5% detection accuracy.
When compared to baselines methods, the one developed with
active learning and positive sampling is obtains slightly better
accuracy and converges faster, thus saving both computation time
and cost.

In [47] the authors presented a solution for surface defect
detection, solution which is based on a compact CNN. The reason-
ing behind this choice is the fact that the over-reliance of defect
detection algorithms on GPUs for computations hindered the
deployment of deep learning in manufacturing processes. Thus, a
compact CNN that can run on embedded device’s CPUs(central pro-
cessing units) can be a great solution. They did achieve comparable
results to MobileNetV2 [48], while only having 33% of the FLOPs
(Floating point operations per second) and 1/8 of the weights. This
means it can classify and segment correctly surface defects in
30 ms on an common use CPU like Intel i3-4010U. In order to get
to the final solution they used transfer learning, model compres-
sion and a compact design. Together with a architecture design
based on depth-wise convolution and a light wight backbone they
obtained 99.29 % accuracy with only 60 k weights and only 76 mil-
lion FLOPs, while ResNetV2-50 [49], with 16082 million FLOPs and
23.65 million weights obtained only 99.60%. Also, when taking into
account processing time, their model performed the detection and
classification in 75 ms, while ResNetV2-50 did it in 893 ms. For
comparison, MobileNetV2 [48] did it in 259 ms, while obtaining
99.63% accuracy, with 267 million FLOPs and 480 k trainable
weights. All three techniques will be discussed in the next section.
For a detail on the architecture please refer to the above mentioned
paper.
Defect detection deep learning frameworks

Since 2012, many deep learning detection frameworks were
developed, every year bringing new ideas and new developments.
The more modern ones, often can use different networks are back-
bones, leading to a high flexibility scenario. In the Figs. 3–6, one
can graphically see the performances of some of the best perform-
ing modern models of classification, detection, real time detection
and get an overview of them. The intuition that lead to fast
development is the fact that the human eye object detection is a



Fig. 3. Graph of the number of parameters(in millions) of some of the best performing Image classification models on ILSVRC. As in contrast with Fig. 2, it‘s easily picked up
the fact that the more parameters one network has, the better its accuracy is. It‘s not mandatory, but it is a general fact. There are also smaller networks that perform well (eg.
ResNet 50 is smaller than VGG19 and performs better. And as a general trend, one can see that more modern models have a parameter number that grew exponentially. The
exact values can be viewed in Table 1.

Fig. 4. Graphical representation of some of the better performing detection models on the Microsoft COCO dataset. The values can be found in Table 2. As one can see, that
generally the AP values stay the same, no matter the IoU threshold we choose. And another general fact is the rate of improvement of detectors using conventional training
and design, slowed down in recent years, passing by the mark of 55% boxAP. The most accurate ones are also the largest ones, thus in order to enable embedded devices like
cars, to benefit from the technology, more and more progress needs to be done in the sphere of efficiency. The YOLOv4 detector chosen by us to do some experiments is one of
the best performing and also, some of the more accurate.

Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
multi-stage process and not a single step is responsible for the
whole detection. Thus, these directions were adopted. In Table 1
the best performing classification neural network models on the
ImageNet database are presented. Starting from the pre-
deeplearning era of the SIFT model [75] (Scale invariant feature
transform) that yielded a Top1 accuracy of 50.9%, up to the most
efficient CNN model(as of 25th of October 2020), the
FixEfficientNet-L2 [76] that yields 88.5% Top1 accuracy. Also, one
can easily see that generally more parameters mean a better accu-
racy performance of the network, but this is not an inherent rule of
38
thumb for convolutional neural networks! There can be a smaller,
more efficient network that displays better accuracy than a larger,
more clogged one (see the comparison of ResNet-50 [49] and VGG-
19 [36] CNN models). Also, some of the most popular classification
models that are used as backbones in many defect detection appli-
cations are remarked such as the VGGNet model, the SqueezeNet
model, ResNet and ResNeXt and MobileNetv3 [77]. Having a strong
backbone is one of the key design choices for a high accuracy
defect detection model. Some of the more popular and best per-
forming object detection models are presented in Table 2. AP75



Fig. 5. Most important for embedded devices is the real time performance of an object detector, as it is trivial to why. Encouraging is the fact that, the performance of real
time object detectors does not seem to have significantly slowed down and a great chunk of progress is still possible. We could consider real time everything that passes
30FPS, such that only a few models from the graph will be considered as such. YOLOv4 is the fastest model and it‘s accuracy is more than decent and given the easy training
procedure it is a top candidate for defect detection models(as were their previous versions v2,v3 etc.). The values can be found in Table 3.

Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
meaning the average precision when the IoU is 0.75, meaning that
75% of the prediction overlaps with the ground truth. Most of these
models can be skewed in order to yield great defect detectors. Also,
of interest is the frame rate of these detectors, in order to be able to
pair the correct object detector with the correct application. The
YOLO framework detectors are currently the fastest detectors with
frame rates up to 120 FPS. As one can see, in Table 3, only real time
detectors are presented and their performances listed. A ”TRUE”
Real time object detector means that the detectors runs at more
than 30 FPS, but also slower ones are evaluated, as accuracy plays
an important role too. A general consensus may the that, the
slower the detectors, the more accurate it is, which can be catego-
rized as a half-truth, as it is not always the case. mAP means the
”mean average precision” and it states if the object is correctly
detected. More precisely, it is the area under the precision-recall
curve. Next, some discussion of the detection models is needed
in order to state the differences, evolution and the practicality of
each solution.

RCNN

A straightforward and scalable framework for detection is pre-
sented in paper [6]. At the time of publishing, it improved upon
the state-of-the-art detection algorithm by more than 30%, getting
up to an accuracy of 53.3% on the PASCAL VOC 2012 dataset and
31.4% on the ILSVRC2013 detection dataset. In order to achieve this
performance, the method made use of two important insights.
First, to localize and segment objects, a high-capacity CNN is
applied to bottom-up region proposals (which are extracted
before; in this case around 2000) and then the features were com-
puted for each proposal. Moreover, a type of effective ”pretraining”
is presented, where the network is trained in a supervised manner
on abundant (labeled) data and then after that, the net is fine-
tuned for the specific task, which in this case is object detection.
Finally, the classification part for the regions is handled by a
class-specific linear SVM(support-vector-machine) [78]. For a more
simplistic explanation, in order to detect a specific defect in an
industrial process, one can simply train a CNN on a large labeled
39
classification dataset that is available online and after completing
this step, the fine-tuning on the target task is performed with the
scarce labeled data from the industrial process in question. After
it was proved that this is an effective approach, the further devel-
oped frameworks, all encapsulated some kind of pre-training.
SPPNet

In [79] the authors presented a new framework for deep convo-
lutional neural networks aimed at the task of object detection. The
intuition behind developing this model was the fact that previous
frameworks needed fixed size input images, a constraint that was
artificial. Thus, they developed a new pooling strategy called Spa-
tial pyramid pooling to tackle the above mentioned problem. It
can create a fixed length representation, no matter the image size
or image scale. Additionally, it is robust to object deformations or
pose modifications. For detection, the feature maps of the image
are only computed once and then features of random regions(ROIs)
are pooled to generate the fixed length representation for detector
training. Thus, the repeated computation of convolutional features
is eliminated and it improves the overall speed performance. The
novelty being the spatial pooling layer(which generally replaced
the last pooling layer), it is a layer that improves the Bag-of-
Words approach (that generates fixed length vectors for the soft-
max classifier) by the fact that it can maintain spatial information
by pooling in local spatial bins. Moreover, these spatial bins have
sizes proportional to the input image size, such that the number
of bins is fixed regardless of the size of the image. Hence, one
can see that the performance improvements are straight-forward,
since older methods relied of sliding windows that were not lim-
ited number wise. The larger the image, the more windows the
method presented. The outputs of the pooling layer are vectors
that have the dimensions of the number of filters times the number
of bins. These vectors feed into the last fully connected layer and
the classifier that performs the final step. The accuracy obtained
on the PASCAL VOC 2007 dataset was 60.9% mAP (best one), while
on ISLVRC 2014 it obtained 35.11% mAP, coming in second.



Fig. 6. Results from the experiments using YOLOv4 as a defect detector for irregular shaped object that can not be found in a benchmarking dataset like COCO.

Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
Fast-RCNN

In [80] the author presented an incremental improvement of
the above mentioned method, speeding up the training and detec-
40
tion process: training the VGG16 network 9 times faster than
RCNN, detection speed is up 213 times and the mAP(mean average
precision) is higher, when evaluated on the PASCAL VOC 2012
dataset. The main intuition behind this improvement is the fact



Table 1
Table for performance values for the network models evaluated on ImageNet
database, starting from 2011 with traditional image classification algorithms and
continuing with deeplearning based classification algorithms from 2012 on-wards
until 25th of October 2020. Thus, one can easily see the Top1-accuracy(correct class
predicted) increases with every single iteration of an improvement or a new model
framework. Also, the number of parameters of a network, which directly implies the
number of computations and the memory needed is represented in column number 3.
Usually, when a network has more parameters, it‘s accuracy tends to go up, but it is
not mandatory as inefficiencies can easily occur.

Network models evaluated on ImageNet database (2011-)

Network model name Top1-
Accuracy

Nr of parameters
(millions)

SIFT + FV [50] 50.9% 0
SqueezeNet [51] 57.5% 1.23
AlexNet [9] 63.3% 60
VGG-19 [36] 74.5% 144
Inception V2 [52] 74.8% 11.2
DenseNet-264 [53] 77.85% 31
InceptionV3 [54] 78.8% 24
MobileNetV3-large-x1-0-ssld

[55]
79.0% 5.47

ResNet-50 [49]56 81.2% 25
DPN-131 [57] 81.38% 80
ResNeXt-101 32x4d [56] 83.4% 42
AmoebaNet-A [58] 83.9% 469
FixEfficientNet-B7 [59] 87.1% 66
NoisyStudent(EfficientNet-L2)

[60]
88.4% 480

FixEfiicientNet-L2 [59] 88.5% 480
ViT-H/14 [61] 88.55% 632

Table 2
Table for object detection performance values for the network models evaluated on
COCOtest-dev database (starting from 2016 with SSD512). Thus, one can easily see
the box average precision(correct class predicted and bounding box that encapsulates
the class is correct) increases with every single iteration of an improvement or a new
model framework, which is party enabled by the increases in performance of image
classification algorithms. Generally, when a network has more parameters, it‘s
accuracy tends to increase, but it is not mandatory as inefficiencies can easily occur.
AP75 is the average precision of the method when the Intersection over Union value
of the detection is 0.75. This means that at least 75% of the prediction overlaps the
ground truth. We need this kind of accuracy for defect detection because the process
needs high accuracy and reliability in order for it to replace traditional industrial
inspection methods.

Networkmodels evaluated on COCOtest-dev object detection database (2013-)

Network model name box AP AP75
SSD512 [33] 28.8% 30.3%
RefineDet512(VGG-16) [62] 33.0% 35.5%
YOLO-v4-608 [63] 43.5% 47.0%
Faster R-CNN(LIP-ResNet-101-MD w FPN) [64] 43.9% 48.1%
PP-YOLO [65] 45.2% 49.9%
Cascade Mask R-CNN(ResNeXt152, multi-scale) [66] 53.3% 58.5%
SpineNet-190 [67] 54.3
DetectoRS(ResNeXt-101-32x4d, multi-scale) [68] 54.7% 60.1%
EfficientDet-D7x(multi-scale) [69] 55.1% 59.9%
CSP-p6 + Mish(multi-scale) [70] 55.2% 60.7%
DetectoRS(ResNeXt-101-64x4d, multi-scale) [68] 55.7% 61.1%

Table 3
Table for real time object detection performance values for the network models
evaluated on COCO(real time) database (starting with MASK-RCNN in 2017). Thus,
one can easily see the mean average precision(correct class predicted and bounding
box that encapsulates the class is correct) increases over time, which is mostly
enabled by the increases in performance of image classification algorithms and object
detection algorithms. Generally, as previously specified, when a network has more
parameters, it‘s accuracy tends to increase, but it is not mandatory as inefficiencies
can easily occur. Thus, the FPS rate is usually mirrored against the mean AP. For defect
detection in real time (e.g.: for Airplane inspections) we need this kind of accuracy for
defect detection because the process needs high accuracy and reliability in order for it
to replace traditional industrial inspection methods and also, we need high speed of
processing because maintenance operations cannot take more than a couple of hours
when flights are scheduled daily.

Network models evaluated on COCO real time object detection database
(2017-)

Network model name mAP FPS

NAS-FPNLite MobileNetV2 [71] 25.7% 3
YOLOv3-608 [31] 33.0% 20
SSD512-HarDNet85 [72] 35.1% 39.0
Mask R-CNN X-152-32x8d [73] 40.3% 3
YOLOv4-608 [63] 43.5% 62.0
CenterNet HarDNet-85 [72] 43.6% 45.0
SpineNet-49 [74] 45.3% 29.1
NAS-FPN AmoebaNet [71] 48.3% 3.6
EfficientDet-D7x(single-scale) [69] 55.1% 6.5

Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
that the ”multi-stage” pipeline is slow, thus the object detection is
also slow, so it is rational to improve this aspect by developing a
”single-stage” pipeline. Fast R-CNN is capable of classifying objects
and finding their location in the frame within the same pipeline.
The image (frame) and ROI(region of interest) proposals are fun-
neled as inputs for the processing algorithm. Every region is then
passed through a feature map of fixed dimensions and is then
mapped intro a feature vector by the means of fully connected lay-
ers. As outputs, the method returns two vectors, for every ROI there
are the bounding box offsets and for every class there are the class
probabilities computed through a softmax function. At training,
this framework takes into consideration a multi-task loss that tries
41
to optimize not only by taking into account accuracy, but also other
aspects such as speed. Next, it makes use of fine-tuning for detec-
tion and, in order to comply with the findings of R-CNN [6], pre-
trained networks are heavily used. Comparing it with other
methods developed in the same year, one can state that the speed
gains are great and despite this fact, the accuracy is also better. On
the MS-COCO, the method returned 19.7% mAP with the IoU
threshold mandate, while on the PASCAL VOC 2012 dataset, it
obtained state-of-the-art 68.4% mAP. gether with the region based
CNN approach, that got us closer to high accuracy real time
detection.
Faster-RCNN

A new and faster incremental improvement of the Region based
CNN framework is presented by the authors in [34]. The new
method states that the previous method‘s bottleneck in the region
proposal part(the algorithm was slow) was at fault for the ”lack” of
performance and not the CNN computations. Such that the concept
of Region proposal network(RPN) is introduced, which is a network
that is responsible for the region proposal computation(via an ”at-
tention mechanism”) and also for the object detection. Thus, an
almost zero supplemental cost is obtained for the region proposal
part. The RPN returns the objects limit coordinates and also its
objectness score, both of which are of high quality. An RPN is a fully
convolutional network(FCN) that is trained end-to-end. The
anchors used are both translation invariant(which reduces the
model size) and multi-scale(by using pyramids of reference boxes
in the regression functions), such that the algorithm is more robust
to multiple scales and multiple aspect ratios. An almost real time
detection performance was obtained, the detector being able to
run at 5 FPS and with a state-of-the-art accuracy in the year of pub-
lishing on both ILSVRC and COCO datasets, while also achieving
state-of-the-art on the PASCAL VOC 2007, 2012 and MS COCO
(combined) datasets with only 300 proposals per image. The
mAP is 75.9% with the VGG16 as a backbone network. When only
testing on PASCAL VOC 07 + 12, the mAP is only around 70.4%,
which means that training also on the COCO dataset increases
mAP (this is intuitively true as a large dataset used at training time
should increase accuracy if over-fitting is not attained).



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
YOLO

In [7] the authors propose a newmethod that achieves real time
object detection, the detector running at 45 frames per second.
They also have a smaller detection network running at 155 frames
per second. When taking in account the accuracy/speed trade-off,
the full-size detector is the best bet for object detection. The main
intuition behind this framework is the fact that previous detectors
re-purposed classifiers to perform detection and that made it
harder and harder to optimize for accuracy and speed, thus a
new method that frames object detection as a regression problem
to spatially separated bounding boxes and class probabilities was
considered. In this method, a single network predicts the bounding
boxes and the probabilities directly in just one evaluation. This
enabled to take into account the direct detection performance
and made it easier to optimize the whole process, such that
impressive speed gains were possible. But there is no gain without
drawbacks and some of the YOLO methods limitations are: the
model has a hard time detecting small object, especially the ones
that appear in groups (eg. birds, fish) because of the strong spatial
constraints applied on bounding box predictions because each grid
cell predicts just 2 boxes and can have just 1 class; another draw-
back is the fact that the model struggles to generalize to object in a
new setting, a new configuration or with an unusual aspect ratio
because it learns to predict bounding boxes directly from data;
and maybe the most important drawback is the fact that the loss
function treats errors the same, no matter the size of the boxes,
but generally a small error in a large box isn‘t anything to complain
about, whereas a small error in a small box is something critical.
When compared with other detectors on the PASCAL VOC 2012
dataset, one can see that when YOLO was combined with FAST
R-CNN, the mAP was 70.7%, while the YOLO solo detectors had
57.9%. Not the best result in terms of accuracy, but when looking
at the VOC2007 results, one can easily see that YOLO performs at
a much higher FPS rate than other detectors.

SSD-Single shot detector

In [33] the authors present a novel method in the year of pub-
lication for defect detection. SSD is a simple framework that uti-
lizes a single deep neural network and gets rid of the object
proposal generation step and the additional feature resampling
stages that other comparable state-of-the-art methods use, thus
it is faster with great accuracy. It discretizes the output space of
the subsequent bounding boxes into a set of default boxes over
multiple aspect ratios and different scales per feature map loca-
tions and thus, at run-time it generates objectness scores for the
presence of each object category in every default box. In order to
improve the accuracy, the network produces adjustments to each
box to better fit the shape of the presumpted object in the respec-
tive area. Moreover, the DNN combines predictions from multiple
feature maps with different resolutions (ratios) to better handle
objects of different sizes. The main benefits of this single net
approach are speed, coupled with a resulting easy to train
approach. Some of the design choices that best improves the accu-
racy were: data augmentation, using atrous convolution and
including different aspect ratios for anchor boxes. The backbone
network used is the same VGG16 net. As the results show, for a
300x300 image size, it achieves 74.3% mAP on the PASCAL VOC
2007 dataset @ 59 FPS, while on PASCAL VOC 2012 the same net-
work achieves 77.5% mAP. When increasing the image size to
512x512 and using image expansion for augmentation purposes,
one can see a slight bump in the accuracy, on VOC 2012 the accu-
racy increases up to 82.2%. On the COCO test-dev2015 dataset, the
model obtained better results than the state-of-the-art Faster R-
CNN on the IoU precision [0.5:0.95], getting a mAP of 28.8% and
42
48.5% @0.5, while on IoU 0.75, 30.3%. The conclusion is the fact that
data augmentation methods help a lot in improving detection
accuracy, while not costing any computation time as it is done a
priori. This framework proved a concept and paved the way for fur-
ther improvements, to.

SqueezeDet

When taking into account the real world applications of object
detection, one cannot ignore autonomous driving. For this applica-
tion to run smoothly and safely, the NN model needs to realize at
least real time inference speed to ensure the vehicle can respond
to any problems fast and safely. Furthermore, the model needs to
have a small size (because of memory constraints), while also
being very energy efficient(3 to 10 W range). Not to forget, even
though it needs to run fast, the accuracy needs to be as close to
state-of-the-art as possible. For all these, the authors propose in
[81] a novel single stage method, called SqueezeDet, that is a fully
convolutional network(FCN). This means that they not only use
convolutional layers for feature extraction, but also in the output
layer to compute bounding boxes and class probabilities. This leads
to a smaller size and a more energy efficient run time performance.
It is also very fast, because it only has one single forward pass of
the neural network. The convolutional neural network first takes
an image as an input and extracts low resolution, high dimensional
features which are then fed into the ConvDet layer(which is a con-
volutional layer that works as a sliding window that moves
through each spatial position on the feature map) to compute
the bounding boxes. Each box has one confidence score for posi-
tioning and multiple class probabilities. The key is here to perform
non max suppression(NMS) and to only keep the top bounding
boxes with the highest confidence. Confidence is computed as
the probability that there is an object in the box times the IoU of
the prediction over the ground truth. This method of computing
confidence is similar to other methods like YOLO [7]. The backbone
of the method is the SqueezeNet [82] network (built upon the Fire
module to ensure a small model size), because of its small size and
energy efficiency. The detection performance attained on the KITTI
dataset is of 80.4% mAP, with a model size of only 26.8 MB and a
speed of 32.1 FPS. When comparing to other methods, this one is
19x faster than Faster-RCNN(with a VGG 16 backbone) and 61x
smaller. The accuracy is on part with the above mentionedmethod.
The KITTI dataset was chosen instead of the more used ISLVRC or
PASCAL VOC or COCO because of the fact that the focus of this
method is object detection for autonomous cars.

YOLOv2

In [40] the authors presented an improved version of the YOLO
detector with the same speed advantage, but this time, at the time
of publishing it had state-of-the-art performance on standard
detection datasets such as PASCAL VOC and COCO. By the means
of the multi-scale training method(that trains both on correct
detection and classification) that they presented, the YOLOv2
model can run at different trade-offs: 76.8 mAP @ 67 FPS or
78.6% @ 40 FPS on the PASCAL VOC 2007 dataset. YOLOv2 has some
elegant solutions for some of the original YOLO shortcoming, such
as: Batch normalization, in all the convolutional layers, which
helps with better convergence; increased resolution, such that
for 10 epochs YOLOv2 trains at 448x448 resolution on ImageNet
and the filters can adjust to high-res inputs; dimension clustering,
instead of choosing priors for the boxes by hand, standard Eucli-
dean k-means clustering is run on the training set bounding boxes
to automatically find priors; direct location predictions, as YOLOv2
predicts five bounding boxes at each cell in the output feature map
and five coordinates for each box(x,y,o,width and height) - center



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
coordinates and dimensions, instead of following the YOLO
approach and predicting location coordinates relative to the loca-
tion of the grid cell; Fine-Grained features, which means that
YOLOv2 predicts detections on a 13x13 feature map, this being suf-
ficient for large object and being helpful when localizing smaller
object, helping with YOLO‘s drawbacks in this area; multi-scale
training, at every 10 batches, the network chooses new input
image sizes such that there are multiples of 32 because of the net-
work downsampling factor of 32. In order to maximize also for
speed, a new backbone is used called Darknet-19(19 conv layers
and 5 maxpooling layers) that is similar to the VGG model as 3x3
convolutions are used and the number of channels are doubled
after every pooling step. In order to make the network classify bet-
ter, labels from WordNet are used as this implies a Hierarchical
classification: WordNet is structured as a directed graph, not a tree
and this means that a passenger car is a vehicle, as well as a truck.
And this kind of structure is very helpful, such that a hierarchical
tree was built out of this data. The datasets were combined with
this hierarchical tree and a rich and powerful representation for
training and detection was obtained.

Mask-RCNN

Further extending the region based CNN approach, in [73] the
authors presented a new 2-stage method for object detection and
instance segmentation. It is more straight-forward to train a CNN
architecture than performs these both tasks in parallel(predicts
the class and the box offsets, plus a binary mask) and obtains great
results. It also generalizes well on other tasks like human pose esti-
mation. It can run at 5 FPS and obtained for object detection on the
COCO test-dev dataset 39.8% boxAP and 43.4% AP75. This is not real
time performance, but it is good enough for a detector needed for
industrial purposes or as a worker assisting tool. Mask RCNN
extends the Faster RCNN framework by additionally including a
branch for prediction an object mask in parallel on each region of
interest. This model is simple to train and it incorporates a three
part loss that takes into account the detection loss, as well as the
mask loss. This leads to better performance. The main change is
the fact that instead of the RoIPool operation for extracting small
feature maps from each region of interest(RoI) in the Fast RCNN
architecture [80], they present a new operation called RoIAlign that
remove the hard quantization of RoIPool, aligning the extracted
features with the input. For a more detailed explanation refer to
[73]. This model used as backbones the ResNet 101-FPN backbone
and the ResNeXt-101-FPN backbone, the latter one being more
accurate(ResNet: 38.2% mAP and ResNeXt: 39.8% mAP).

YOLOv3

This one is the third iteration of the YOLO method, presented by
the authors in [31]. It makes use of some small changes that are
presented in the form of a technical update/report with respect
to the original YOLO [7] method. With these changes they obtained
similar accuracy to the state of the art methods, but run 3-8x fas-
ter, such that it still runs real-time detection. At 320x320 image
size, it runs at 28.2 mAP in 22 ms, while SSD runs at 31.2 mAP at
125 ms. The state-of-the-art RetinaNet-101–800 runs at 37.8
mAP but only in 200 ms (9–10 times slower). The method is
improved incrementally by: bounding box prediction by using
logistic regression, such that if there is an IoU equal to 0, the detec-
tor doesn‘t get penalized for accuracy, even if the detection is false;
and only the ones where an IoU = 1(or P 0:5) with a ground truth
are penalized). That is great for the fact that if you do not have a
pairing with a ground truth you do not lose accuracy. Thus, there
is only 1 bounding box prior allocated for every ground truth and
the possibilities of false positives that are a drawback on model’s
43
accuracy are reduced. Another improvement (for class prediction)
is the usage of independent logistic classifiers instead of classical
soft-max with binary cross-entropy at training time. Moreover,
there are three predictions of bounding boxes at three different
dimensions. This improves accuracy because of the improvement
of aspect ratios covered. Finally, shortcut connections are intro-
duced in the model, in the same way that residual networks are
thought of [49].

EfficientDet

In [69] the authors systemically introduce a new detection
framework design that brings efficient object detection called Effi-
cientDet. It relies on a efficient backbone called EfficientNet [83], a
weighted bidirectional feature pyramid network (BiFPN) and a cus-
tom compound scaling method. By employing these 3 optimiza-
tions, EfficientDet-D7 obtains state-of-the-art 55.1 mAP accuracy
on MS COCO test-dev dataset with 77 M parameters and 410B
FLOPs. Thus this framework is also smaller and with a higher accu-
racy than previous competitors. The D7(7 comes from the com-
pound coefficient which controls all the scaling) version has an
input size of 1536, a B6 EfficientNet backbone, the nr of layers
for the BiFPN is 8, with 384 channels and the nr of layers of the
box/class prediction part are 5. The backbone is an efficient net-
work that obtains a high accuracy on the ImageNet dataset. For
an in-depth analysis on the backbone, please refer to [83]. This is
combined with a bi-directional feature pyramid network for
multi-scale feature fusion (top-down and bottom-up). It aims to
aggregate multiple features found at distinct resolutions, usually
from levels three to seven in a top-down manner and from level
seven to three in a bottom-up manner. These need to be weighted
in order to enable the network to learn, which features are more
important. The last piece is the compound scaling method that is
needed when aiming to optimize for both speed and accuracy
and a large pool of resource constraints. This scaling aims at, start-
ing from the baseline EfficientDet model, increasing the resolution,
depth and width for all: the backbone net, the FPN and the box/-
class predictions, at the same time. When compared to other scal-
ing methods, such as single dimension scaling, the first approach is
more efficient than the latter, such that it will be employed.

CSPNet

In [84] the authors tried to tackle the problem of ever increasing
computations of modern neural networks used for computer vision
problems and came up with a slightly improved backbone that can
enhance the learning and the performances of CNNs called CSPNet.
Some approaches are developed already for mobile devices, but
there is one problem, depth-wise separable convolution is not
compatible with the industrial integrated circuit designs such as
ASICs for edge computing. The proposed network model integrates
feature maps from the beginning and the end of a network stage,
which results in a reduction of computations by 20% for the follow-
ing backbone nets: ResNet [49], ResNeXt [85] and DenseNet [43]
and enable them to be deployed efficiently on mobile devices or
CPU-only devices. First of all, the training process needs to be more
efficient, as neural networks usually degrade in accuracy when
they are transformed into lightweight models. Secondly, the com-
putational bottlenecks need to be removed, as the goal is to evenly
delegate and distribute computations at each of the CNN layers.
This leads to a more efficient utilization rate of each computation
unit and reduces energy consumption. The last challenge tackled
by this model, was the fact that memory requirements are running
sky-high for CNNs and also, accessing RAM is a very energy con-
suming operation when compared to only accessing on-chip Flash.
For this, cross-channel pooling (or Maxout operation) was used to



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
compress the feature maps when generating the feature pyramids.
By the means of the above mentioned processes, CSPNet model can
enhance the accuracy of smaller models, by promoting learning
capabilities and also increasing the efficiency of energy usage by
the fact that the redundant gradient information is reduced, hence
less costly inference computations. Experimentally, this model
obtains state of the art performances when evaluated on the MS
COCO object detection database, reaching 38.4 % AP with a
ResNeXt50 backbone, while running at 35FPS on a 608x608 input
image size. For more details on the structure of their cross stage
layers, please refer to [84].

Mnas-FPN MobileNets for detection

A novel method is presented in the paper [86] that underlines
the benefits of directly searching for object detection architectures
in certain search spaces and not just transfer learned backbones
from classification to detection. The proposed search space(it can
be viewed as a detection framework, as it searches for detection
heads and not backbones) is named MnasFPN and it is a mobile
compatible one. MnasFPN constructs a detection net from a feature
extractor backbone (a mobile friendly one in this case) and one
repeatable cell structure that generates new features by combining
and merging pairs of existing ones. Each cell is composed out of
multiple blocks that merge two separate feature maps at different
resolutions into an intermediate feature. This intermediate feature
is then processed by a separable convolution and output by the
block. The key characteristic is the fact that each cell shall use a
collection of feature maps at different and various resolutions as
an input and output it at the same resolution, hence this structure
can be easily repeatable. MnasFPN differs from other NAS
approaches mainly at the block level. For an in-depth analysis
please refer to the paper above. MnasFPN makes use of inverted
residual blocks at the detection head level which help with mobile
CPU execution and it restructures convolution operations in the
head and reshaping operations to enhance efficient merging of
information across different scales and resolutions. Ablations stud-
ies prove that both of these actions are needed to acquire the sta-
ted performance indicators. When used together with a mobile
compatible backbone as MobileNet [48] or [77], this method yields
a state-of-the-art for mobile devices mAP of 26.1 % on the COCO
test-dev dataset and uses 0.92B MAdds and 2.5 M parameters.
The latency is up to 183 ms per detection. It is up to 1.8 mAP more
than previous tries for mobile compatible devices using Mobile-
Nets and SSD detection head.

YOLOv4

The last improvement of the YOLO one stage detection frame-
work was presented by the authors in [63]. The main goal was to
obtain a more robust detector with a high accuracy, but maintain-
ing the ease of training and the real time usage. The performance is
of a high level, getting 38% mAP @ 120 FPS or 43% mAP @ 80 FPS on
PASCAL VOC 2012, thus enabling real time detection with a high
degree of accuracy. These kind of performances are needed for
enabling real time connected factories or autonomous cars. On
MS COCO the accuracy was 43.5% mAP and 65.7% AP50 @ 65 FPS
on a Tesla V100. By the performance it has on different datasets
we can assume that it is a more general kind of detector, being also
applicable to general detection(not just standardized benchmark
datasets). The framework has an easy training procedure, being
able to be trained on a conventional GPU(1080Ti or 2080Ti) getting
rid of some of the constraints that bigger models have: distributed
training in parallel or large mini-batches of data. Quality detectors
have a backbone that is trained on ImageNet dataset and a head
which is used to predict classes and bounding boxes, thus this
44
one is no different. Its backbone is CSPDarknet53 and the ”neck”
layer which collects feature maps from different stages is build
from SPP (spatial pyramid pooling) and PAN(path aggregation net-
work). The head is the YOLO v3 presented in a previous subsection.
In order to improve on the previous iteration it makes use of the
following procedures for the detector: CJoU loss (complete Inter-
section over Union loss), CmBN(cross mini batch normalization),
DB regularization, mosaic data augmentation, self adversarial
training, it eliminates grid sensitivity, multiple anchors for one
ground truth, cosine annealing scheduler, optimal hyper parame-
ters, random training shapes, mish activation(self regularized
non-monotonic activation function), SPP block, SAM block(spatial
attention module), PAN aggregation block, DIoU-NMS(Distance
IoU non max suppression). For the backbone it uses: cutmix and
mosaic augmentation, drop-block regularization, class label
smoothing, mish activation, cross stage partial connection and
multi-input weighted residual connections. For an in depth abla-
tion study, more details and further experiments, please refer to
the above-cited paper.

SpineNet used for detection

In [67] authors present a more robust and higher performing
method of the original SpineNet model [74]. On the COCO test-
dev dataset their model (SpineNet190 with self-training) obtained
54.3 % mAP with 164 M parameters and 1885B FLOPs. At a first
glance one can see that this kind of model cannot be easily imple-
mented on a mobile device, but there is no need to. The main char-
acteristic of this model that the authors try to underline is the fact
that sometimes pre-training(commonly used) and data augmenta-
tion can hurt accuracy. Replacing pre-training with self-training
can yield a bump of up to + 3.4 mAP on the detection datasets
across all sizes. Also, stronger data augmentation and better labels
for the data, diminishes the inherent value of pre-training on Ima-
geNet(or other dataset), thus caution needs to be exercised. But,
unlike pre-training, self-training is helpful even when using a
strong data augmentation, no matter the quantity of data. By their
ablation studies, in the case when pre-training is helpful, self-
training improves upon the initial results, thus the case for self-
training initialization of detection models is made. These benefits
pass also to semantic segmentation, where their SpineNet model
achieved a state-of-the-art 90.5 mIoU. Their experiments also
show that classification and self-supervised tasks are limited when
it comes to learning universal representations from data, that may
enable solving multiple tasks. The intuition lies in the fact that pre-
training is not aware of the task of interest and hence fails to adapt.
This awareness is very important when switching from classifica-
tion to detection. A case is also made for joint-training, because
in certain circumstances pre-training, self-training and joint-
training can have additive effects on the performances of the
trained model. Even though these approaches may require more
compute power and more calculations, it is worth it when the
accuracy needs to be maximized no matter the cost. For a more
detailed analysis on the original architecture, but slower perform-
ing SpineNet model refer to [74].

PP-YOLO

3 aug 2020 In [65] the authors provide and propose a new and
efficient implementation of the popular YOLO detection frame-
work. It is based on the older YOLO-v3 [31] detector, but with a
few key modifications that enhance performance and do not hurt
inference time. The backbone used by the authors is ResNet-50-
vd-dcn, because of the fact that many libraries and framework
are optimized to process data with ResNet series and it is also
one of the most commonly used, stating that these improvements



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
are independent of the backbone used. There needs also to be spec-
ified the fact that, they did not use NAS to perform hyper parame-
ter search, because is often consumes more computing resources
than it‘s actual provided benefits are worth it. PP-YOLO is a one
stage anchor based detector and is made up out of a backbone, a
detection neck and a detection head. The backbone is specified
above and replaces the original DarkNet53 of YOLOv4, although
also the ResNet architecture is a little bit modified as last stage
3x3 conv layers are replaced with deformable conv layers. As a
detection neck, a FPN(Feature pyramid network) is used to build
the feature pyramid with lateral connectionz between feature
maps. The detection head consists of 2 conv layers, a 3x3 size fol-
lowed by a 1x1 size convolution layer. This outputs the bounding
box coordinates, the probability and the name of the class. The
main ”tricks” used in order to improve the YOLO detector are:
using a larger batch size for stability of training, hence increasing
it from 64 to 192; an evaluation based on the exponential moving
average (EMA) during training; Drop-block instead of the classical
dropout; IoU loss instead of L1 loss for the bounding box regres-
sion; making the detectors IoU aware, instead of only relying on
class probability and objectness score for final confidence; Grid
sensitivity; Matrix NMS, for a faster non max suppression; Coor-
dConv, that helps with learning translation invariance or transla-
tion dependence; SPP [79] and using a better pre-train model
(with higher accuracy on ImageNet). The PP(Paddle-Paddle) YOLO
model yields 45.2 % mAP on the COCO test-dev dataset, at a faster
speed than YOLO-v4 [63]. On a Tesla V100 GPU the frames per sec-
ond for PP-YOLO are 72.9 FPS @45.2% mAP or 132 FPS @39 % mAP.
Comparing it with the novel YOLO-v4 or the older YOLO-v3 [31] we
can see that it outperform both in terms of accuracy and speed: the
best performing YOLOv3 [31] runs at 60 FPS @38% mAP, while the
best performing YOLO-v4 [63] runs at 123 FPS @38% mAP.

Model compression and acceleration

Model compression and acceleration techniques have been of
great benefit for modern deep neural networks, thus we‘ll lay out
a quick summary because of the importance in todays industrial
landscape. These networks have achieved lots of breakthroughs
and performed very well, but their computation and memory
requirements have sky-rocketed. Thus, the result was a slow-
down in their timeline of deployment in low power, low memory
or strictly low latency devices such as micro-processors(in auton-
omous cars), micro-controllers(in smart factories) etc. So, a new
problem needed a new solution: if deep learning aspires to be
widely used, one needs to be able to fit deep learning algorithm
in embedded and connected devices, because they are a great test
for efficiency. The main idea is to perform these acceleration and
compression techniques without significantly hurting the accu-
racy, as a main reference. In Table 4, a snapshot of these methods
is outlined. There are four main categories of compression and
acceleration techniques [87]:
Table 4
Table for briefly summarizing the four main types of model compression and acceleration

Summary of model compression

Name Short description Type

Parameter pruning and
quantization

Eliminate redundant parameters which are
not important for the performance

Conv
layers

Low-rank factorization Use tensor decomposition to estimate important
parameters

Conv
layers

Transferred/compact
conv filter

Specific structural conv filters to save parameters conv

Knowledge distillation train the outputs of a compact NN with the
knowledge of a large NN

conv
layers

45
Experiments and datasets used for benchmarking

A large emphasis needs to be put on the dataset on which the
experiments are performed on. A wrongly sampled dataset, with
poor quality images and poor balance between the objects labeled,
can return bad results even if the model used is state-of-the-art. A
quick experiment we have done(using free online tools) is to label
2 cable datasets(Fig. 6 a,b,c) composed out of 164(400 after aug-
mentation) and 342 images(806 after augmentation) that may con-
tain and may not contain cables, most of them do. The accuracy of
the detector is impacted by the labeling technique: if you label a
long cable twice or more and label multiple segments of a cable
(especially is you label one part good and one part faulty), the
mAP will decrease, both because of localization errors and because
of classification errors. Also, if you don‘t label every single instance
of the object in the sample images, the mAP will decrease. In order
to assure oneself that every sample is labeled and correctly labeled,
there are online tools that can check the health of the dataset.
Moreover, the balancing of the dataset needs to be considered, as
too many samples of an object or too few, may further hurt overall
test time accuracy. Thus, performing a health check of the dataset
is a mandatory step in training a defect detector. Finally, a small
dataset performs significantly worse, than a more comprehensive
dataset, which includes lots of edge cases in which we can find
the suggested defect. So, in order to enable higher ceiling of perfor-
mance, the dataset needs to be as large as possible (this is a general
recommendation because there are cases when you have to detect
defects in objects that are in the exact same place every time and
for this kind of detection, there is no need for lots of data eg. 1000
samples per case should be enough). The ones used by us to exper-
iment with the settings, are quite small, but take hours and hours
of work to acquire and to label correctly. Thus, one can summarize
that, for more general applications you need a large dataset, which
is correctly balanced and without bias as much as possible and for
more particular applications (generally found on assembly posts
on the assembly line which perform repetitive action) the datasets
can be smaller, but with sufficient information. The datasets we
have used can be found at: github.com/tulbureandreit/Cabledata
set. The largest dataset could not be uploaded.

Furthermore, a big concern shall also be the different augmen-
tation steps used for improving the dataset diversity and trying to
tackle the overfit problem. In [63] the authors specify multiple
augmentation methods, the so called Bag of Freebies (because they
do not impact training time and training resources): mosaic, mixup
and cutmix, which are more advanced and the more basic ones like
Photometric Distortions (eg: Brightness, Contrast, Hue, Saturation,
Noise) and Geometric Distortions (eg: random scaling, cropping,
flipping, rotation). In our little cable experiment we only used hor-
izontal and vertical Flip, Rotations between �20 and + 20 degrees,
Blur up to 6.5px and adding random Noise to the samples, up to
10% of pixels. In terms of mAP it did not had a significant effect
on the results, mainly because we had small sample datasets, but
.

and acceleration approaches

of layers Details Extraction method

and FC High performance, robust to different
settings

Pre-trained or trained from
scratch

and FC easy to implement, robust pipeline Pre-trained or trained from
scratch

layers algos dependent on applications, higi
performance

train from scratch

and FC performance is subjective to
application type and structure

training from scratch



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
it did improve. Thus, a mix of data augmentation techniques must
be considered when training a defect detector. Moreover, the
weaker the performance of the hardware setup (a small number
of TFOPS or GPU RAM), the better the offset performance gain rel-
ative to the basis performance will be. The training procedure shall
be straightforward and attention needs to be paid regarding the
model chosen for action. Every single model has certain particular-
ities and in our experiments, we used YOLOv4 model to detect
defective cables, so the training procedure follows the steps and
settings mentioned in [63]. There were two hardware setups used:
one was relatively low-cost(700E) Nvidia GF750, hence our
emphasis on enabling every single small business or small univer-
sity to use our review as a crash course for building their own
defect detection system, and the other one was via a virtual con-
nection to a training station equipped with 4 nvidia P106-100 gra-
phic cards, with 6 GB of RAM and Ubuntu. The remote training was
performed via SSH. This second way of training is useful for large
scale applications and usually involved a lot more cost than the
first one, but for applications that are not specific, it‘s the necessary
way of doing it, because cheaper computers will run out of GPU
memory needed for training. All in all, a key aspect that the YOLO
detection model provides is the fact that you can penalize more,
either accuracy or localization, thus there is some freedom with
the training process. This is important because in many cases there
is a need for penalizing accuracy more than localization and in
other cases there needs to be a balance. This depends on the appli-
cation type that one develops. Usually, in smaller FPS applications,
accuracy should be of larger concern than detection and vice versa.
Our results are exemplified in Figs. 6(d,e,f).
Conclusions

Defect detection using computer vision models started to pick
up popularity in the 21st century, as the object detection models
became more and more popular. The exponential growth in popu-
larity of deep learning methods for defect detection and other com-
puter vision related applications in recent years is fueled by lots of
researchers plunging into this sector, as well as by hardware and
data breakthroughs. Lots of areas of defect detection solutions
were reviewed in this paper and as demonstrated deep learning
methods achieve state-of-the-art performance in defect detection,
while also having great generalization properties. The general
accepted idea is that the dataset, as well as the chosen model lead
to great performances, thus both need to receive attention from the
developer. The training hardware doesn‘t need to be expensive, if
the application does not mandate it. Smaller, more specific applica-
tions can yield great results and thus, improve the workings of a
small lab or business just by using general purpose laptops and
generic detection models which will be tweaked for the defects
we look into. While general applications that have a target as to
detect lots of defects, need very large and balanced datasets, a
hardware setup with lots of computational power and a specific
detection model that is not just tweaked for defect detection, but
built from the ground up for the specific action that we want it
to perform. Thus, hardware setup and availability(that‘s why rec-
ommended is using virtual machines on a desktop machine learn-
ing station for general solutions) plays a role in the performance of
the models. All in all, there are multiple factors that need to be
taken into consideration when planning to design defect detection
algorithms. There is no rule of thumb when choosing which object
detection model shall generalize the best on the particular dataset
of interest. First of all, the developer needs to be in constant con-
tact with the system technician or quality inspector, in order to
assure that the dataset is of great quality and is reliable. Further-
more, the constraints shall dictate which framework one chooses
46
and if he starts developing his network from scratch or tweaks
an existing one. If the temporal constraint is an important one,
then models such as YOLO [7] or SqueezeDet [81] which perform
at a high FPS rate are a great choice for a starting point. Then after
performing a couple of proof of concept tests, one can see in which
part the model lags and where to improve it (or where to improve
the data). Moreover, one can apply different model compression
techniques on the neural network model in order to make it run
faster if the accuracy doesn‘t get hit too hard. If the accuracy is
the leading constraint, than a more robust and larger model such
as the EfficientDet [69] shall be chosen. Generally, by starting with
the YOLO framework, especially the newer ones such as YOLOv4
[63] or PPYOLO [65] one cannot make a huge mistake. These are
network models with great generalization properties and could
be really helpful when trying to get a proof of concept as quickly
as possible, hence we also tried out some experiments with the
YOLOv4 framework. Our results show that, one can quickly get
the proof of concept and can easily see in which direction to look
in order to improve the performances. All this, without a large
expense in the name of workstation equiped with lots of GPUs.

Further developments

A key trend in the sector is to obtain higher and higher box
accuracy for detection. This is straightforward because in order
to be able to rely on these algorithms, you would like eventually
to get to 100% precision. Also, in order to be deployed in multiple
applications like autonomous cars, these models need to run at a
high frame rate, greater than 30 FPS, in order to be considered real
time and in order to make the decisions faster than humans. A
good example here would be a car approaching a roundabout:
”shall the car enter or wait for a possibility to enter?”. While a
human can make these split-second decision with quite high accu-
racy (an accident happens only one out of every thousands or tens
of thousands of times), a machine needs to be able to compute the
scene and understand efficiently everything fast, in tens of mil-
lisecond at most. Moreover, these is a real need for model compres-
sion and acceleration developments, in order to be able to fit in the
embedded devices that are found on an autonomous car or in a fac-
tory. These devices are powerful for their class of electronics, being
able for a couple of TFLOPS (Tera floating point operations) at a
reduced energy consumption(for the latest autonomous capable
cars) or at GFLOPS(Giga floating point operations) - for the latest
factory tech, but are not at the level of new GPUs and distributed
systems. Factoring in that optimizing for consumption is also a
mandatory requirement for vehicles, one can easily grasp the need
for further compression and acceleration, while maintaining accu-
racy high. For factory equipment, the main constraint for the
deployment of deep learning defect detection algorithms is the fact
that for industrial computers the computing power is not that
great and the memory available is also questionable. While the
power consumption requirement is not ”a hard constraint”, mem-
ory is a problem, thus compression is justified also for factory
applications. As a summary of the needs for defect detection: the
models needs to be high accuracy, run at high speed, while needing
a few MBs of memory or a few tens of MBs for operation and also
consuming as little power as possible per every GFLOPS of compu-
tation. Furthermore, an upcoming trend in detection is to limit the
data transfers between the processor responsible for data acquisi-
tion(field device) and the cloud system. The main intuition behind
this is the fact that you lose valuable time (and also money), by
sending every bit of data to the cloud for processing and then send-
ing back the results of the processing operation to the field-device.
Thus, more and more computing on the edge devices are developed
such as: the Intel Neural Compute Stick or the Nvidia Jetson family
of development boards. These are custom built and optimized for



Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
deep learning applications, thus even though they lack in process-
ing power and memory size, they are able to comfortably run these
network models. Training models will be still performed on large
distributed systems or via the cloud, but deployment and opera-
tion will be performed ”cloud free”. Also, data security and storage
needs to be taken into consideration!.
Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This research was funded by a grant of the Romanian National
Authority for Scientific Research, CNDI-UEFISCDI, project number
PN-III-P2-2.1-PED-2019–1660, contract number 387PED2020.

References

[1] Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for
computer vision: A brief review. Comput Intell Neurosci 2018.

[2] LeCun Y. 1.1 deep learning hardware: Past, present, and future. 2019 IEEE
International Solid-State Circ Conf - (ISSCC) 2019:12–9.

[3] LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in
vision. In: Proceedings of 2010 IEEE international symposium on circuits and
systems. p. 253–6.

[4] Murthy CB, Hashmi MF, Bokde N, Geem ZW. Investigations of object detection
in images/videos using various deep learning techniques and embedded
platforms–a comprehensive review. Appl Sci 2020;10:3280.

[5] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:
2005 IEEE Computer society conference on computer vision and pattern
recognition (CVPR’05) 2005; vol. 1: 886–93.

[6] Girshick RB, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate
object detection and semantic segmentation. 2014 IEEE conference on
computer vision and pattern recognition 2014:580–7.

[7] Redmon J, Divvala S, Girshick RB, Farhadi A. You only look once: Unified, real-
time object detection. In: 2016 IEEE conference on computer vision and
pattern recognition (CVPR). p. 779–88.

[8] Viola P, Jones MJ. Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE computer society conference on
computer vision and pattern recognition, CVPR 2001 1. p. I-I..

[9] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Commun ACM 2012;60:84–90.

[10] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput
Vision 2004;1:321–31.

[11] Conners R, Harlow C. A theoretical comparison of texture algorithms. IEEE
Trans Pattern Anal Mach Intell PAMI-2 1980:204–22.

[12] Sassi OB, Slima M, Chtourou K, Hamida A. Improved spatial gray level
dependence matrices for texture analysis. Int J Comput Sci Inform Technol
2012;4:209–19.

[13] Wang X, Albregtsen F, Foyn B. Texture features from gray level gap length
matrix. MVA 1994.

[14] Yang J, Guo J. Image texture feature extraction method based on regional
average binary gray level difference co-occurrence matrix. In: 2011
International conference on virtual reality and visualization. p. 239–42.

[15] Shabat AM, Tapamo J. A comparative study of local directional pattern for
texture classification. In: 2014 World symposium on computer applications &
research (WSCAR). p. 1–7.

[16] Rioul O, Duhamel P. Fast algorithms for discrete and continuous wavelet
transforms. IEEE Trans Inf Theory 1992;38:569–86.

[17] Oberst U. The fast fourier transform. SIAM J Control Optim 2007;46
(2):496–540. doi: https://doi.org/10.1137/060658242.

[18] Ghazvini M, Monadjemi S, Movahhedinia N, Jamshidi K. Defect detection of
tiles using 2d-wavelet transform and statistical features. Int J Electr Comput
Eng 2009;3:89–92.

[19] Karayiannis Y, Stojanovic R, Mitropoulos P, Koulamas C, Stouraitis T, Koubias S,
Papadopoulos G. Defect detection and classification on web textile fabric using
multiresolution decomposition and neural networks, ICECS’99. In: Proceedings
of ICECS ’99. 6th IEEE international conference on electronics, circuits and
systems (Cat. No.99EX357) vol. 2;1999: 765–8.
47
[20] Vallerand S, Maldague X. Defect characterization in pulsed thermography: a
statistical method compared with kohonen and perceptron neural networks.
Ndt & E Int 2000;33:307–15.

[21] Pham DT, Soroka A, Ghanbarzadeh A, Koç E, Otri S, Packianather M. Optimising
neural networks for identification of wood defects using the bees algorithm.
In: 2006 4th IEEE international conference on industrial informatics; 2006. p.
1346–51.

[22] Gao W, Chen X, Chen D. Genetic programming approach for predicting service
life of tunnel structures subject to chloride-induced corrosion. J Adv Res
2019;20:141–52.

[23] Kasban H, Zahran O, Arafa H, El-Kordy M, El-Araby S, El-Samie FE. Welding
defect detection from radiography images with a cepstral approach. Ndt & E
Int 2011;44:226–31.

[24] Tonazzini A, Salerno E, Abdel-Salam Z, Harith MA, Marras L, Botto A,
Campanella B, Legnaioli S, Pagnotta S, Poggialini F, Palleschi V. Analytical
and mathematical methods for revealing hidden details in ancient
manuscripts and paintings: A review. J Adv Res 2019;17:31–42.

[25] Unay D, TCTS BG. Apple defect detection and quality classification with mlp-
neural networks, 2002.

[26] Mishra S, Sarkar U, Taraphder S, Datta S, Swain D, Saikhom R, Panda S,
Laishram M. Principal component analysis. Int J Livestock Res 2017:1. doi:
https://doi.org/10.5455/ijlr.20170415115235.

[27] Dudzik S. Characterization of material defects using active thermography and
an artificial neural network. Metrol Meas Syst 2013;20:491–500.

[28] Brzakovic D, Vujovic N. Designing a defect classification system: A case study.
Pattern Recognit 1996;29:1401–19.

[29] Newman T, Jain AK. A survey of automated visual inspection. Comput Vis
Image Underst 1995;61:231–62.

[30] Rui H, Ji-nan G, Xiao-hong S, Yong-tao H, Uddin S. A rapid recognition method
for electronic components based on the improved yolo-v3 network.
Electronics 2019;8:825.

[31] Redmon J, Farhadi A. Yolov3: An incremental improvement, ArXiv abs/
1804.02767.

[32] Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications, ArXiv abs/1704.04861.

[33] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. Ssd: Single shot
multibox detector. In: ECCV; 2016.

[34] Ren S, He K, Girshick RB, Sun J. Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell
2015;39:1137–49.

[35] Andrei-Alexandru T, Henrietta DE. Low cost defect detection using a deep
convolutional neural network. 2020 IEEE International conference on
automation, quality and testing, robotics (AQTR) 2020:1–5.

[36] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition, CoRR abs/1409.1556.

[37] Badmos O, Kopp A, Bernthaler T, Schneider G. Image-based defect detection in
lithium-ion battery electrode using convolutional neural networks. J Intell
Manuf 2020;31:885–97.

[38] Li Y, Han Z, Xu H, Liu L, Li X, Zhang K. Yolov3-lite: A lightweight crack detection
network for aircraft structure based on depthwise separable convolutions.
Appl Sci 2019;9:3781.

[39] Adibhatla VA, Chih H-C, Hsu C-C, Cheng J, Abbod M, Shieh J. Defect detection in
printed circuit boards using you-only-look-once convolutional neural
networks. Electronics 2020;9:1547.

[40] Redmon J, Farhadi A. Yolo9000: Better, faster, stronger. In: 2017 IEEE
conference on computer vision and pattern recognition (CVPR); 2017. p.
6517–25.

[41] Li J, Su Z, Geng J, Yin Y. Real-time detection of steel strip surface defects based
on improved yolo detection network. IFAC-PapersOnLine 2018;51:76–81.

[42] Ding F, Zhuang Z, Liu Y, Jiang D, Yan X, Wang Z. Detecting defects on solid
wood panels based on an improved ssd algorithm, Sensors (Basel, Switzerland)
20.

[43] Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks.
2017 IEEE conference on computer vision and pattern recognition (CVPR)
2017:2261–9.

[44] Tao X, Zhang D, Wang Z, Liu X, Zhang H, Xu D. Detection of power line insulator
defects using aerial images analyzed with convolutional neural networks. IEEE
Trans Syst, Man, Cybernet: Syst 2020;50:1486–98.

[45] Chen J, Liu Z, Wang H, Núñez A, Han Z. Automatic defect detection of fasteners
on the catenary support device using deep convolutional neural network. IEEE
Trans Instrum Meas 2018;67:257–69.

[46] Feng C, Liu M-Y, Kao C-C, Lee T-Y. Deep active learning for civil infrastructure
defect detection and classification, 2017.

[47] Huang Y, Qiu C, Wang X, Wang S, Yuan K. A compact convolutional neural
network for surface defect inspection. Sensors (Basel, Switzerland) 20.

[48] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv 2: Inverted
residuals and linear bottlenecks. 2018 IEEE/CVF conference on computer
vision and pattern recognition 2018:4510–20.

[49] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016
IEEE conference on computer vision and pattern recognition (CVPR)
2016:770–8.

[50] Duy-Dinh Le SS. ilsvrc2011.nsc.bow.dense4mul.sift.soft-500-vl2.ils.
[51] Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally W, Keutzer K. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and <1mb model size,
ArXiv abs/1602.07360.

http://refhub.elsevier.com/S2090-1232(21)00064-3/h0005
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0005
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0010
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0010
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0015
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0015
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0015
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0020
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0020
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0020
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0030
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0030
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0030
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0035
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0035
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0035
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0040
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0040
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0040
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0045
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0045
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0050
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0050
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0055
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0055
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0060
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0060
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0060
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0065
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0065
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0070
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0070
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0070
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0075
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0075
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0075
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0080
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0080
https://doi.org/10.1137/060658242
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0090
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0090
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0090
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0100
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0100
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0100
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0110
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0110
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0110
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0115
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0115
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0115
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0120
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0120
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0120
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0120
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0125
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0125
https://doi.org/10.5455/ijlr.20170415115235
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0135
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0135
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0140
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0140
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0145
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0145
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0150
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0150
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0150
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0170
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0170
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0170
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0175
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0175
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0175
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0185
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0185
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0185
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0190
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0190
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0190
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0195
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0195
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0195
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0205
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0205
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0215
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0215
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0215
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0220
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0220
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0220
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0225
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0225
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0225
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0230
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0230
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0240
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0240
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0240
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0245
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0245
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0245


Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure and Eva-Henrietta Dulf Journal of Advanced Research 35 (2022) 33–48
[52] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, ArXiv abs/1502.03167.

[53] Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks.
In: 2017 IEEE conference on computer vision and pattern recognition (CVPR).
p. 2261–9.

[54] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception
architecture for computer vision. In: 2016 IEEE conference on computer vision
and pattern recognition (CVPR). p. 2818–26.

[55] Cui C, Ye Z, Li Y, Li X, Yang M, Wei K, et al. Semi-supervised recognition under a
noisy and fine-grained dataset, ArXiv abs/2006.10702.

[56] Yalniz IZ, Jégou H, Chen K, Paluri M, Mahajan D. Billion-scale semi-supervised
learning for image classification, ArXiv abs/1905.00546.

[57] Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J. Dual path networks. In: NIPS; 2017.
[58] Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier

architecture search. In: AAAI.
[59] Touvron H, Vedaldi A, Douze M, Jégou H. Fixing the train-test resolution

discrepancy: Fixefficientnet, ArXiv abs/2003.08237.
[60] Xie Q, Hovy E, Luong M-T, Le QV. Self-training with noisy student improves

imagenet classification. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). p. 10684–95.

[61] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
et al. An image is worth 16x16 words: Transformers for image recognition at
scale, ArXiv abs/2010.11929.

[62] Zhang S, Wen L, Bian X, Lei Z, Li S. Single-shot refinement neural network for
object detection. In: 2018 IEEE/CVF conference on computer vision and pattern
recognition. p. 4203–12.

[63] Bochkovskiy A, Wang CY, Liao H. Yolov4: Optimal speed and accuracy of object
detection, ArXiv abs/2004.10934.

[64] Gao Z, Wang L, Wu G. Lip: Local importance-based pooling. In: 2019 IEEE/CVF
international conference on computer vision (ICCV). p. 3354–63.

[65] Long X, Deng K, Wang G, Zhang Y, Dang Q, Gao Y, et al. Pp-yolo: An effective
and efficient implementation of object detector, ArXiv abs/2007.12099.

[66] dong Liu Y, Wang Y, Wang S, Liang T, Zhao Q, Tang Z, et al. Cbnet: A novel
composite backbone network architecture for object detection. In: AAAI; 2020.

[67] Zoph B, Ghiasi G, Lin TY, Cui Y, Liu H, Cubuk ED, et al. Rethinking pre-training
and self-training, ArXiv abs/2006.06882.

[68] Qiao S, Chen LC, Yuille A. Detectors: Detecting objects with recursive feature
pyramid and switchable atrous convolution, ArXiv abs/2006.02334.

[69] Tan M, Pang R, Le QV. Efficientdet: Scalable and efficient object detection. In:
2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR);
2020. p. 10778–87.

[70] Misra D. Mish: A self regularized non-monotonic activation function. In:
BMVC; 2020.

[71] Ghiasi G, Lin T-Y, Pang R, Le QV. Nas-fpn: Learning scalable feature pyramid
architecture for object detection. In: 2019 IEEE/CVF conference on computer
vision and pattern recognition (CVPR). p. 7029–38.
48
[72] Chao P, Kao CY, shan Ruan Y, Huang CH, Lin Y. Hardnet: A low memory traffic
network. In: 2019 IEEE/CVF international conference on computer vision
(ICCV); 2019. p. 3551–60.

[73] He K, Gkioxari G, Dollár P, Girshick RB. Mask r-cnn. IEEE Trans Pattern Anal
Mach Intell 2020;42:386–97.

[74] Du X, Lin T-Y, Jin P, Ghiasi G, Tan M, Cui Y, Le QV, Song X. Spinenet: Learning
scale-permuted backbone for recognition and localization. In: 2020 IEEE/CVF
conference on computer vision and pattern recognition (CVPR). p. 11589–98.

[75] LoweDavid G. Distinctive image features from scale-invariant keypoints. Int J
Comput Vision.

[76] Touvron H, Vedaldi A, Douze M, Jégou H. Fixing the train-test resolution
discrepancy: Fixefficientnet, ArXiv abs/2003.08237.

[77] Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, et al. Searching for
mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV); 2019. p. 1314–24.

[78] Evgeniou T, Pontil M. Support vector machines: Theory and applications. In:
Machine Learning and Its Applications.

[79] He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans Pattern Anal Mach Intell
2015;37:1904–16.

[80] Girshick RB. Fast r-cnn. In: 2015 IEEE International conference on computer
vision (ICCV); 2015. p. 1440–8.

[81] Wu B, Iandola FN, Jin P, Keutzer K. Squeezedet: Unified, small, low power fully
convolutional neural networks for real-time object detection for autonomous
driving. In: 2017 IEEE conference on computer vision and pattern recognition
workshops (CVPRW). p. 446–54.

[82] Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally W, Keutzer K. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <1mb model size,
ArXiv abs/1602.07360.

[83] Tan M, Le QV. Efficientnet: Rethinking model scaling for convolutional neural
networks, ArXiv abs/1905.11946.

[84] Wang CY, Liao H, Yeh IH, Wu YH, Chen PY, Hsieh JW. Cspnet: A new backbone
that can enhance learning capability of cnn. In: 2020 IEEE/CVF conference on
computer vision and pattern recognition workshops (CVPRW); 2020. p. 1571–
80.

[85] Xie S, Girshick RB, Dollár P, Tu Z, He K. Aggregated residual transformations for
deep neural networks. In: 2017 IEEE conference on computer vision and
pattern recognition (CVPR). p. 5987–95.

[86] Chen B, Ghiasi G, Liu H, Lin T-Y, Kalenichenko D, Adam H, Le QV. Mnasfpn:
Learning latency-aware pyramid architecture for object detection on mobile
devices. In: 2020 IEEE/CVF conference on computer vision and pattern
Recognition (CVPR). p. 13604–13.

[87] Cheng Y, Wang D, Zhou P, Zhang T. A survey of model compression and
acceleration for deep neural networks, ArXiv abs/1710.09282.

http://refhub.elsevier.com/S2090-1232(21)00064-3/h0265
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0265
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0265
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0270
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0270
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0270
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0290
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0290
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0300
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0300
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0300
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0310
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0310
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0310
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0320
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0320
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0355
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0355
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0355
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0365
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0365
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0370
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0370
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0370
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0390
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0390
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0395
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0395
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0395
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0405
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0405
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0405
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0405
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0425
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0425
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0425
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0430
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0430
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0430
http://refhub.elsevier.com/S2090-1232(21)00064-3/h0430

	A review on modern defect detection models using DCNNs – Deep convolutional neural networks
	Introduction
	Related work
	Traditional computer vision or shallow methods
	Deep learning era applications

	Defect detection deep learning frameworks
	RCNN
	SPPNet
	Fast-RCNN
	Faster-RCNN
	YOLO
	SSD-Single shot detector
	SqueezeDet
	YOLOv2
	Mask-RCNN
	YOLOv3
	EfficientDet
	CSPNet
	Mnas-FPN MobileNets for detection
	YOLOv4
	SpineNet used for detection
	PP-YOLO

	Model compression and acceleration
	Experiments and datasets used for benchmarking
	Conclusions
	Further developments

	Compliance with Ethics Requirements
	Declaration of Competing Interest
	Acknowledgement
	References


