
Automatic Cough Classification for Tuberculosis Screening in a 
Real-World Environment

Madhurananda Pahar1, Marisa Klopper2, Byron Reeve2, Rob Warren2, Grant Theron2, 
Thomas Niesler1

1Department of Electrical and Electronic Engineering, Stellenbosch University, South Africa

2SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, 
DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and 
Health Sciences, Stellenbosch University, South Africa

Abstract

Objective: The automatic discrimination between the coughing sounds produced by patients with 

tuberculosis (TB) and those produced by patients with other lung ailments.

Approach: We present experiments based on a dataset of 1358 forced cough recordings obtained 

in a developing-world clinic from 16 patients with confirmed active pulmonary TB and 35 

patients suffering from respiratory conditions suggestive of TB but confirmed to be TB negative. 

Using nested cross-validation, we have trained and evaluated five machine learning classifiers: 

logistic regression (LR), support vector machines (SVM), k-nearest neighbour (KNN), multilayer 

perceptrons (MLP) and convolutional neural networks (CNN).

Main Results: Although classification is possible in all cases, the best performance is achieved 

using LR. In combination with feature selection by sequential forward selection (SFS), our best 

LR system achieves an area under the ROC curve (AUC) of 0.94 using 23 features selected from 

a set of 78 high-resolution mel-frequency cepstral coefficients (MFCCs). This system achieves a 

sensitivity of 93% at a specificity of 95% and thus exceeds the 90% sensitivity at 70% specificity 

specification considered by the World Health Organisation (WHO) as a minimal requirement for a 

community-based TB triage test.

Significance: The automatic classification of cough audio sounds, when applied to symptomatic 

patients requiring investigation for TB, can meet the WHO triage specifications for the 

identification of patients who should undergo expensive molecular downstream testing. This 

makes it a promising and viable means of low cost, easily deployable frontline screening for TB, 

which can benefit especially developing countries with a heavy TB burden.
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1. Introduction

Tuberculosis (TB) is a bacterial infection primarily of the lungs and globally a leading cause 

of death (Floyd et al. 2018). Modern diagnostic tests rely on costly laboratory procedures 

requiring specialized equipment (Dewan et al. 2006, Bwanga et al. 2009, Konstantinos 2010, 

Global Health Initiative 2017). However, TB is generally most prevalent in low-income 

settings and is responsible for 95% of deaths due to infectious disease in developing 

countries (WHO 2020b). Due to a high index of suspicion in such high-incidence settings, 

these expensive tests are frequently conducted on patients who meet symptom criteria for 

TB investigation but cough due to other lung ailments. In fact, most people investigated for 

TB do not suffer from the disease (Chang et al. 2008).

The simplest form of TB triaging relies on self-reported symptoms. Although there is no 

cost involved, this has low specificity, resulting in over-testing. Furthermore, TB is also 

associated with stigmatisation, which may result in under-reporting of symptoms, leading 

to under-testing and consequent inadequate care (Nathavitharana et al. 2019). Thus, there is 

a need for a low-cost, point-of-care screening test, such as the automatic classification of 

cough sounds, which would allow a more efficient and widespread application of molecular 

testing. If such an objective audio-based test, which is “specimen-free”, were accurate 

enough, it might offer an improvement in the standard of care (Naidoo et al. 2017).

Coughing is a common symptom of respiratory disease and caused by an explosive 

expulsion of air from the airways (Simonsson et al. 1967). However, the effect of 

coughing on the respiratory system is known to vary (Higenbottam 2002). For example, 

lung diseases can cause the airway to be either restricted or obstructed and this can 

influence the cough acoustics (Chung & Pavord 2008). It has also been postulated that 

the glottis behaves differently under different pathological conditions and that this makes it 

possible to distinguish between coughs due to asthma, bronchitis and pertussis (whooping 

cough) (Korpáš et al. 1996). Therefore, the automatic classification of the acoustic signals 

associated with coughing in order to detect lung diseases like TB seems to be a reasonable 

avenue of investigation.

Vocal audio has been used in various disease classification studies, including the recent 

COVID-19 pandemic (Hassan et al. 2020, Brown et al. 2020). Aspects of speech such 

as phonation and vowel sounds have been used to detect Parkinson’s disease by applying 

machine learning (Almeida et al. 2019, Hemmerling & Sztaho 2019). Respiratory disease 

such as asthma bronchiale (AB) has also been successfully detected by analysing cough 

frequency (Marsden et al. 2016). Finally, cough sounds have been used in the diagnosis 

and screening of pulmonary diseases such as AB, chronic obstructive pulmonary disease 

(COPD) and TB (Infante et al. 2017). The voluntary coughs produced by AB and COPD 

patients were successfully distinguished from those produced by healthy participants using 

discriminant analysis with an accuracy of between 85% and 90% in (Knocikova et al. 2008). 

The detection of coughing associated with asthma was considered in (Al-khassaweneh & 

Bani Abdelrahman 2013), while pertussis was detected with good accuracy using logistic 

regression (LR) in (Pramono et al. 2016). The early detection of congestive heart failure 

(CHF) and COPD, which can increase the fatality rate in an ageing population, using a 
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random forest classifier was considered in (Windmon et al. 2018). Successful detection 

of the seal-like barking cough that can occur in children who suffer from croup or 

laryngotracheobronchitis has been reported in (Sharan et al. 2018). More recently, domain-

specific features like mel-frequency cepstral coefficients (MFCCs) and zero crossing rate 

(ZCR) have shown promise when used to classify coughs (Rudraraju et al. 2020) due 

to pneumonia (Sotoudeh et al. 2020) and COVID-19 (Pahar, Klopper, Warren & Niesler 

2021a, Pahar, Klopper, Warren & Niesler 2021b). The recently introduced generative 

adversarial neural network architecture has also proven to be successful in respiratory 

disease classification (Ramesh et al. 2020).

This work is a direct extension of our previous work in which we demonstrated that 

it is possible to discriminate between the coughs of TB sufferers and healthy controls 

using logistic regression (Botha et al. 2018). However, studies that involve only cases 

with a condition and healthy controls have well-known limitations (Rutjes et al. 2005). 

We now show that it is also possible to distinguish between the coughs of TB patients 

and the coughs of patients suffering from other lung ailments and for whom TB was 

excluded as a diagnosis. In contrast to the controlled environment in which our previous 

recordings were made, the audio data we use in this work were collected at a TB clinic and 

include substantial environmental noise, thereby directly addressing the practical scenario 

encountered at primary health facilities in developing countries. Patients presenting to these 

clinics are typically ill and it is necessary to establish the likelihood of TB disease for further 

referral. This referral is typically achieved by collecting an infectious and difficult to handle 

specimen (sputum) which is tested using an expensive (in a developing world context) test 

that requires laboratory expertise and specialised equipment. As in our previous work, we 

focus on automatic cough classification, and assume that the detection of the start and end 

of coughing has been reliably achieved. We acknowledge that, by sidestepping this detection 

step, difficult practical challenges, such as the processing of cough spasms, have been left 

for future work.

To perform our experiments, it was necessary to compile a new corpus of coughing sounds, 

gathered from patients who suffer from symptoms of TB but do not necessarily have TB. 

This is a priority population for the World Health Organisation (WHO) TB triage test target 

product profile. Our new corpus is of a similar extent to that used in our previous work, but 

is compiled in a more realistic environment, representative of the developing-world primary 

health care environment in which TB screening would likely to be performed. We therefore 

believe it provides a first direct affirmation that automatic sound analysis is a promising and 

viable approach to TB screening in high-incidence settings.

The structure of the remainder of this paper is as follows. The next section will describe our 

new dataset and how it was compiled. Sections 3 and 4 describes the acoustic features we 

consider and the machine learning techniques we evaluate. Section 5 presents our method of 

parameter training and hyperparameter optimisation, followed by the experimental results in 

Section 6. Results are discussed in Section 7 and finally Section 8 concludes the paper.
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2. Data Collection

2.1. Collection Setup

Our data were collected in a busy primary health care clinic in Cape Town, South Africa, 

where mobile recording equipment was deployed in an outside cross-ventilated sputum 

collection booth, as shown in Figure 1. This setup is representative of the typical real-world 

clinic environment in a developing country in which low-cost, easily-deployable automatic 

TB screening is most urgently needed. All recordings were taken between 10 am and 4 

pm by two health care workers without a technical background but who were trained to 

operate the recording equipment. The recording area was not fitted with additional acoustic 

protection and was exposed to noise from a consistently high number of patients and staff 

attending the clinic while the surrounding streets were busy with pedestrians, pets and 

vehicles. Thus, our dataset contains a considerable amount of environmental noise, and 

is representative of the scenario in which a TB screening test would likely be deployed. 

No attempts were made to de-noise the data since we were specifically interested in the 

performance that can be expected in a real-world scenario. Furthermore, experience in the 

related field of automatic speech recognition has shown that noise reduction performed 

before model training is often not beneficial and may reduce robustness to varying input 

conditions (Caballero et al. 2018). This study was approved by the Faculty of Health 

Sciences Research Ethics Committee of Stellenbosch University (N14/10/136) and the City 

of Cape Town (10483). Informed consent was granted for all patients in this study.

2.2. Recording Setup and Annotation

A ZOOM F8N field recorder was used to record the audio captured by a RØDE M3 

condenser microphone (Hsu et al. 1998, Todorović et al. 2015), covered by a standard 

N95 mask which was replaced after each patient. Informal listening tests indicated that 

the mask did not substantially affect the quality of the recorded audio signal. The health 

care workers ensured that the gap maintained between the patient and the microphone was 

10 to 15 centimetres (Figure 2). Each patient was prompted to count from one to ten, 

cough, take a few deep breaths and then cough again, thus producing at least two bursts 

of coughs. All patients in our study were suffering from some sort of respiratory disease. 

So, when they were prompted to cough, they produced a bout of voluntary coughs due to 

the irritation in their respiratory system (Simonsson et al. 1967). In a real-world diagnostic 

scenario, the patient would be asked to produce a voluntary cough. Therefore, our methods 

are appropriate to best approximate the practical application of the TB classifier.

All audio recordings were sampled at 44.1 kHz. The portions of the resulting audio 

recordings that contain coughing were manually annotated using the ELAN multimedia 

software (Wittenburg et al. 2006) as shown in Figure 3. We note that these manually 

annotated stretches of voluntary coughing often contain several cough onsets. The number 

of these onsets for all 1358 cough events (Table 2) is 3124, indicating an average of 2.3 

onsets per cough event. Among the 402 TB and 956 non-TB cough events, there are 973 

and 2151 cough onsets respectively, indicating 2.42±0.83 onsets per TB cough event and 

2.25±0.91 onsets per non-TB cough event. These means and standard deviations suggest that 

the number of cough bursts or onsets per cough event is not an influential factor in the TB 
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cough classification task. In this research, we make no attempt to automatically identify the 

boundaries of such onset subdivisions, and this remains an aspect of our ongoing work. We 

will refer to these stretches of audio containing coughing, such as those annotated in Figure 

3, as cough events in the remainder of this paper.

2.3. Dataset Description

Our dataset currently contains coughs from 16 TB and 35 non-TB patients and most 

participants are male with an average age of 38 (Figure 4).

All participants were TB suspects that self-reported an involuntary cough suggestive of an 

underlying lung pathology. Clinical work was limited to bacteriological TB diagnosis for the 

purpose of the study. The participants were not seen by a medical doctor, but rather audio 

samples were collected by the health care workers. Differential diagnosis for diseases other 

than TB was impractical to collect since they would, in general, require several additional 

tests, and even then the diagnosis is often based on treatment-related symptom resolution. 

Therefore, patients were only tested for TB by standardised methods for the purpose of 

the study and no alternative diagnoses were established apart from TB. The inclusion and 

exclusion criteria for the participants are listed in Table 1. This information was collected 

during a formal interview conducted by the health care workers.

Table 2 describes the dataset and shows that there is an imbalance between the number of 

TB and non-TB coughs. We have used AUC as the performance measure as it has a higher 

degree of discriminancy than some other existing performance measures such as accuracy 

for imbalanced datasets (Rakotomamonjy 2004, Huang & Ling 2005, Fawcett 2006). The 

length of all coughs in our dataset is 1045 seconds (17.42 minutes). TB coughs are on 

average 0.74 seconds long with a standard deviation of 0.31, while non-TB coughs are on 

average 0.78 seconds long with a standard deviation of 0.39. Therefore, we note that coughs 

produced by TB patients are of comparable length to the coughs produced by suffers from 

other lung ailments. This is in contrast to our previous finding that the coughs produced 

by TB patients are both longer and greater in number than those produced by healthy 

individuals (Botha et al. 2018).

All recordings were carried out inside the same recording booth (Figures 1 and 2) and there 

was no link between the time or date of recording and whether the subject was TB positive 

or TB negative. Hence, we can assume that the SNR is independent of the TB status. This 

was confirmed by informal listening checks applied to the audio recordings as well as by 

calculating SNR estimates for the recordings of TB and non-TB coughs, as listed in Table 2. 

The table shows that the average SNR is 33.27 dB and 33.93 dB for TB and non-TB coughs 

respectively, and that the difference between these figures (0.67 dB) is much smaller than 

the standard deviation of the SNR estimates of both classes. We have used the Equation 1 to 

estimate SNR (Johnson 2006, Fgee et al. 1999).

SNR(dB) = 10log Ps
Pn

(1)
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where, Ps is the signal power of the cough audio and Pn is the signal power of the 

background noise i.e. the entire audio recording except the coughs, breaths and spoken 

digits uttered by the patients.

For illustration, we show two coughs in Figure 5. The first with human chattering between 

its two onsets (SNR ≈ 22dB) and the second with little background noise (SNR ≈ 45dB).

3. Feature Extraction

The feature extraction process is illustrated in Figure 6. No filtering or pre-processing has 

been applied to the cough audio. We have considered mel-frequency cepstral coefficients 

(MFCCs), log-filterbank energies, zero-crossing rate (ZCR) and kurtosis as features.

3.1. MFCCs

Mel-frequency cepstral coefficients (MFCCs) have been used very successfully as features 

in audio analysis and especially in automatic speech recognition (Han et al. 2006, Pahar & 

Smith 2020). They have also been found to be useful for differentiating dry coughs from 

wet coughs (Chatrzarrin et al. 2011). MFCCs were computed using the following standard 

procedure:

• The audio signal is divided into short frames and the fast Fourier transform 

(FFT) is computed for each.

fmel(f) = 2595 × (1 + f
700) (2)

• Mel-scaled filterbanks are computed (Equation 2) and the log-power spectrum is 

calculated.

• The discrete cosine transformation (DCT) is applied to the output of the mel-

filterbanks and a certain number of the resulting coefficients are retained.

• The long-term mean of each coefficient is calculated and then subtracted.

• Inter-frame derivatives (velocity Δ) and second-order derivatives (acceleration 

ΔΔ) are computed for each coefficient and appended to the already computed 

MFCCs (Azmy 2017). Equation 3 shows the computation of the delta coefficient 

dt for the frames ct−n to ct+n and the number of samples (N) is 2.

dt =
∑n = 1

N n ct + n − ct − n

2∑n = 1
N n2 (3)

3.2. Log-Filterbank Energies

These features (Garreton & Yoma 2011) consist of the log energies computed after applying 

F linearly spaced overlapping triangular filters to the frame power spectrum S(t) which is 
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computed using Equation 4, where X(t) is the FFT of the audio frame and N is the number 

of samples.

S(t) = 1
N X(t)

2
(4)

3.3. ZCR

The zero-crossing-rate (ZCR) is the number of times the signal changes sign within a frame, 

as indicated in Equation 5 (Bachu et al. 2010). ZCR indicates the variability present in the 

signal.

ZCR = 1
T − 1 ∑

t = 1

T − 1
λ(x(t)x(t − 1) < 0) (5)

In Equation 5, λ = 1 when the sign of x(t) and x(t − 1) differ and λ = 0 when the sign of x(t) 
and x(t − 1) is the same and T is the frame length in samples.

3.4. Kurtosis

The kurtosis indicates the tailedness of a probability density (DeCarlo 1997) and specially 

the prevalence of higher amplitudes in an audio signal. Kurtosis has been calculated 

according to Equation 6, where μ is the mean and σ is the standard deviation.

Λx = 1
T − 1 ∑

t = 1

T − 1 x(t) − μ
σ4 (6)

3.5. Feature extraction hyperparameters

The feature extraction process is influenced by a number of hyperparamamters, listed in 

Table 3. Each cough event is first divided evenly into between 1 and 4 sections. From 

each section, non-overlapping consecutive frames are used to extract features which are 

averaged. Finally, these average feature vectors for each section are concatenated, increasing 

the dimensionality of the feature vector by a factor equal to the number of sections. The 

number of sections is a feature extraction hyperparameter, indicated in Table 3. For example, 

when using 13 MFCCs; (3 × 13 + 2) = 41 features are extracted from each frame making the 

dimension of the feature vector (41 × 1). Therefore when four sections are used, the feature 

vector presented to the classifier has dimensions (164 × 1).

For log-filterbank energies, the number of filters in the filterbank is another hyperparameter. 

For MFCCs, the number of coefficients that are computed can also be varied. While 13 

MFCCs are generally accepted to reflect the level of discrimination of the human auditory 

system, we have also considered a larger number of MFCCs in our experiments.
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The frame length corresponds to the number of time-domain samples per frame. Since the 

audio was sampled at 44.1 kHz, by varying the frame lengths from 256 to 4096 samples, 

features are extracted from frame durations varying between approximately 5 and 100 msec. 

By varying the number of log-filterbank filters and MFCCs, the spectral resolution of the 

features was varied. The only form of feature normalisation applied before classifier training 

was cepstral mean normalisation which was performed on a per-recording basis.

4. Classifier Description

Five classifiers have been considered for discrimination between TB and non-TB coughs.

4.1. Logistic Regression (LR)

Logistic regression (LR) models have in some clinical situations been found to outperform 

more sophisticated classifiers (Christodoulou et al. 2019). We came to the same conclusion 

in our previous work into TB cough classification (Botha et al. 2018), where these models 

comfortably outperformed hidden-Markov model (HMM) and decision tree (DT) classifiers.

The output of an LR model varies between 0 and 1, making it very useful in binary 

classification. It can also be considered as a single neuron neural network. The output of an 

LR classifier is given by:

P = 1
1 + e−(a + bx) (7)

where, the scalar a and the vector b are the parameters of the model and P is the classifier 

probability.

We have considered the gradient descent weight regularisation strength ν1 as well as lasso 

(l1 penalty) and ridge (l2 penalty) estimators to be hyperparameters which were optimised 

during nested k-fold cross-validation (Figure 7). We have used Equation 8 to estimate the l1 

penalty (ν2) and Equation 9 to estimate l2 penalty (ν3) while optimising the loss function of 

the LR model (Yamashita & Yabe 2003, Tsuruoka et al. 2009).

ν2 = ∑
i = 1

n
(yi − ∑

j
xijβj)

2 + λ ∑
j = 1

p
βj (8)

ν3 = ∑
i = 1

n
(yi − ∑

j
xijβj)

2 + λ ∑
j = 1

p
βj

2
(9)

In Equations 8 and 9, x and y are the independent and dependent variables respectively.

4.2. k-Nearest Neighbour (KNN)

The k-nearest neighbour classifier bases its decision on the class labels of the k nearest 

neighbours in the training set. This machine learning algorithm has in the past successfully 

been able to both detect (Monge-Álvarez et al. 2018, Pramono et al. 2019, Vhaduri et 
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al. 2019) and classify (Wang et al. 2006, Pramono et al. 2016, Pahar, Klopper, Warren & 

Niesler 2021b) sounds such as coughs and snores. Our KNN classifier uses the Euclidean 

distance to calculate similarity.

4.3. Support Vector Machines (SVM)

Support vector machines (SVM) classifiers have performed well in both detecting and 

classifying coughing sounds (Tracey et al. 2011, Bhateja et al. 2019, Sharan et al. 2017). We 

have used both linear and non-linear SVM classifiers, based on the computation in Equation 

10.

ϕ(w) = 1
2wTw − J(w, b, a) (10)

where, w is the weight vector, a and b are the coefficients and J(w,b,a) is the term to 

minimise during hyperparameter optimisation for the parameters listed in Table 4.

4.4. Multilayer Perceptron (MLP)

The LR model described in the previous section was intended to be our baseline, and we 

hoped to improve classification performance using a multilayer perceptron (MLP) neural 

network. Unlike LR, the MLP is capable of learning non-linear relationships by using 

multiple layers of neurons to separate input and output. The MLP classifier is based on 

Equation 11, which shows the computation of a single neuron.

y = ϕ( ∑
i = 1

n
wixi + b) = ϕ wTx + b (11)

Here, x is the input-vector, w is the weight-vector, b is the bias and ϕ is the nonlinear 

activation function. The weights and the bias are optimised during supervised training.

We have optimised the loss function by using l2 penalty estimator, shown in Equation 9 and 

stochastic gradient descent. The l2 penalty estimator, stochastic gradient descent learning 

rate and the number of hidden layers have been considered as the hyperparameters (Table 4) 

which were optimised using nested k-fold cross-validation (Figure 7).

4.5. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a popular deep neural network architecture which 

has proved particularly effective in image classification (Krizhevsky et al. 2017, Lawrence et 

al. 1997). The core of a CNN can be expressed by Equation 12, where net(t, f) is the output 

of the convolutional layer (Albawi et al. 2017).

net(t, f) = (x ∗ w)[t, f] = ∑
m

∑
n

x[m, n]w[t − m, f − n] (12)

In this equation, ∗ is the convolution operation, w is the filter or kernel matrix and x is 

the input image. The rectified linear activation function was used in the hidden layers and 

the softmax activation function is applied in the final layer of our CNN architecture (Qi et 
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al. 2017). The CNN hyperparameters that are optimised during nested cross-validation are 

listed in Table 4.

5. Classifier Training and Hyperparameter Optimisation

5.1. Nested cross-validation

Because our dataset is small, we consistently used nested 5-fold cross-validation in all 

experiments. As shown in Figure 7, an outer loop divides the dataset into training (80%) 

and testing (20%) partitions where it is ensured that there is no patient overlap. Within 

this outer loop, the training portion is again divided into two independent inner loops: one 

performing 4-fold and the other 2-fold cross-validation. The former is used to optimise the 

hyperparameter listed in Table 4, while the latter is used to determine the equal error rate 

which is used as part of the classifier decision. There was no patient overlap also within the 

inner loops and the gender balance was even.

This cross-validation strategy makes the best use of our small dataset by allowing all patients 

to be used for training, hyperparameter optimisation, and final testing while ensuring 

unbiased optimisation and a strict per-patient separation between all training, development 

and testing portions while all folds contain the same proportion of both classes.

5.2. Hyperparameter Optimisation

Each classifier has different hyperparameters, as shown in Table 4, which were optimised 

during nested k-fold cross-validation. For the LR classifier, these were ν1, the gradient 

descent weight regularisation as well as ν2 and ν3, the lasso (l1) and ridge (l2) penalty 

estimators. For the KNN classifier, the number of neighbours ϰ1 and the leaf-size ϰ2 were 

considered as hyperparameters, while for the SVM the regularisation strength ζ1 and the 

coefficient of the radial basis function kernel ζ2 were optimised. For the MLP, the number 

of hidden neurons ξ1, the l2 penalty ξ2 and the stochastic gradient descent learning rate ξ3 

were considered. Finally, for the CNN, the number of convolutional layers α1, the dropout 

rate α2 and the batch size α3 were optimised.

5.3. Classifier Evaluation

The area under the receiver operating characteristic (ROC) curve (AUC) has been used 

as the primary evaluation metric of the classifier’s performance due to its higher degree 

of discriminancy for an imbalanced dataset such as ours and because it is widely used in 

medical diagnosis since 1970s (Rakotomamonjy 2004, Huang & Ling 2005, Fawcett 2006). 

It also indicates how well the classifier has performed over a range of decision thresholds.

Receiver operating characteristic (ROC) curves were calculated within the inner loop of 

nested cross-validation. From these ROC curves, the decision threshold that achieves an 

equal-error-rate (γEE) was computed. If the mean per-frame TB probability for a cough is P
and the number of frames in a cough is K, then the cough is labelled as a TB cough, when 

P > γEE, where:
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P =
∑i = 1

K P (Y = 1 ∣ X, θ)
K

(13)

Defining the indicator variable C as:

C = 1 if P ≥ γEE
0 otherwise

(14)

We define two TB index scores: TBI1 and TBI2 by following Equation 15 and 16.

TBI1 =
∑i = 1

N1 C
N1

(15)

TBI2 =
∑i = 1

N2 P (Y = 1 ∣ X)
N2

(16)

In Equation 15, N1 is the number of coughs obtained from the patient, while in Equation 

16, N2 indicates the total number of frames of cough audio gathered from the patient. 

Hence, Equation 15 computes a per-cough average probability while Equation 16 computes 

a per-frame average probability. Finally, a patient is classified as having TB when either 

the per-cough average probability is greater than 0.5, i.e. more than half of all coughs were 

classified as TB, or the per-frame average probability over all coughs is greater than γ.

TB =
1 if TBI1 > 0.5
1 if TBI2 > γ
0 otherwise

(17)

Several variations of Equation 17 were considered, for example using only TBI1 or only 

TBI2 or including a threshold also for TBI1. However, the presented formulation was found 

to be the most effective.

Accuracies, positive predictive values (PPV) and negative predictive values (NPV) have also 

been calculated at the outer loop of the cross-validation scheme using Equation 18, 19 and 

20 respectively.

Accuracy = TP+TN
TP+FP + TN + FN (18)

PPV = TP
TP+FP (19)
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NPV = TN
FN+TN (20)

Here, TP = true positives; TN = true negatives; FP = false positives and FN = false negatives.

6. Results

6.1. Classifier Performance

The performance of classifiers trained and evaluated using the nested cross-validation 

procedure, described in Section 5.1, is shown in Table 5. The mean and standard deviation 

of the AUC was calculated over the outer cross-validation folds. The feature-extraction 

hyperparameters (Table 3) as well as the associated optimal classifier hyperparameters 

determined within the inner loop of nested cross-validation (Table 4) are also given for each 

classifier architecture. Classifier hyperparameters producing the highest AUC in the outer 

folds have been noted as the ‘optimal classifier hyperparameters’ in Table 5. Even for our 

small dataset, this procedure was computationally intensive.

6.2. Feature Selection

As an additional experiment, sequential forward selection (SFS) (Devijver & Kittler 

1982) was applied to discover the best performing individual features responsible for 

distinguishing between TB and non-TB coughs. SFS is a greedy selection procedure that, 

starting from a single feature, sequentially finds the additional feature that contributes the 

most to classification performance. SFS was applied within the inner cross-validation loop 

to the best performing system in Table 5, which uses 26 MFCCs with appended velocity 

(Δ) and acceleration (ΔΔ) coefficients, and therefore 78 features in total. The results of this 

selection are shown in Figure 8.

We see in Figure 8 that optimal performance is achieved using 23 of the total 78 features and 

near-optimal performance is achieved using as few as four features. These best-four features 

are the 3rd, the 11th, the velocity (Δ) of the 14th, and the 12th MFCCs. It is interesting to 

note that the first acceleration (ΔΔ) feature to be chosen appears only in the 9th position, 

after the best-four and the 5th, 17th, 7th, and 18th MFCCs. Figure 8 also shows that there are 

several features that lead to deteriorated performance and should therefore be omitted from 

the classifier.

Finally, Figure 9 shows the ROC curves for the classifier subjected to SFS, both when using 

all 78 and when using the best 23 features. We see that SFS affords better classification 

performance across a wide range of operating conditions.

7. Discussion

The results in Table 5 show that LR outperforms the other four classifiers, achieving an 

AUC of 0.86 and an accuracy of 84.54%. Figure 8 shows that, by applying SFS to this 

LR classifier and retaining the top 23 features, the AUC is further improved to 0.94. 

Among these 23 selected features, velocity and acceleration coefficients appear only once 

in the top nine features. Hence near-optimal performance can be achieved by using MFCCs 

Pahar et al. Page 12

Physiol Meas. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



without added velocity or acceleration. Figure 9 shows that this system is able to achieve 

a sensitivity of 93% at a specificity of 95% which exceeds the minimal requirement for 

a community-based TB triage test of 90% sensitivity at 70% specificity set by the WHO 

(WHO 2014).

The LR model was intended to be our baseline, and we had hoped to improve classification 

performance using more complex models, such as the MLP and CNN which both contain 

multiple neurons and can model non-linear relationships. However, it seems that our dataset 

is too small and perhaps too noisy for the greater flexibility of neural networks to be of 

benefit. We note that other researchers have also reported the superiority of LR in some 

clinical prediction tasks (Christodoulou et al. 2019). We also note that all our classifiers 

have been evaluated within the same nested k-fold cross-validation scheme. Hence, even 

though the more complex neural network architectures such as the CNN might in future 

benefit from more training data, our comparison between the classifiers is justifiable and the 

achieved performance is a reflection of what is currently possible.

Table 5 also shows that, for all classifiers, splitting the cough audio signal into 

multiple sections does not lead to improved performance, which suggests that the 

acoustic information in all phases of a cough is equally important for the purposes of 

TB classification. However, increasing the number of MFCCs does provide consistent 

improvements, as does the use of longer frames. MFCCs are shown to outperform linearly 

spaced log-filterbank energies as features, which is in contrast to the indications in our 

previous work (Botha et al. 2018). However, in our previous work, only a classical MFCC 

configuration (13 coefficients, with appended velocity and acceleration) was considered. 

Here, we find that better performance can be achieved using a larger number of MFCCs 

than is necessary to model the discriminatory characteristics of human hearing. This again 

leads us to conclude that the classifier is to some extent basing its decision on acoustic 

information not perceivable by a human listener.

When compared with the simpler log-filterbank energies, MFCCs have the additional 

advantage of providing a simple and effective way to compensate for convolutional channel 

variability by means of mean normalisation. The dataset we use in this work is more noisy 

and less controlled than the one we used in our previous work. For example, the microphone 

position is generally a little different between recordings since it does not remain in the 

collection booth overnight. Hence the advantages of channel normalisation may weigh more 

strongly for the dataset we consider here.

Finally, we have seen that the number of features can be reduced in a greedy fashion to 

optimise performance. The highest AUC is achieved when using 23 of the possible 78 

features, and near-optimal performance can be achieved using as few as four features. 

This is of particular importance with a view to implement audio TB screening on mobile 

computing devices, such as smartphones, since computational effort is saved by reducing the 

dimensionality of the feature vector. Implementation on a consumer mobile device would 

make the algorithm portable, inexpensive and easy to apply, which makes it attractive in 

under-resourced environments.
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8. Conclusion and Future Work

We have shown for the first time that it is possible to automatically distinguish between 

the forced coughing sounds of tuberculosis (TB) patients and the coughing sounds of 

patients with other lung ailments. This strengthens our previous work which indicated that 

such discrimination is possible between the coughs of TB patients and healthy controls. In 

contrast to diseases such as croup coughs, which can be classified with higher accuracy 

(Sharan et al. 2017, Sharan et al. 2018), the sounds of coughs by TB sufferers do not appear 

to possess obviously identifiable characteristics. This view is based on informal listening 

tests of our data, as well as the personal opinions of several medical practitioners who we 

consulted during the course of this research. The identification of precisely which aspects of 

the cough signal are important for TB classification are a subject of our ongoing work.

Our experiments are based on a newly-compiled dataset recorded in a noisy primary 

healthcare clinic. Hence, we also show that TB cough classification is possible in the type 

of real-world environment that may be expected at a screening facility in a developing 

country. Using nested cross-validation, five machine learning classifiers were evaluated. 

By applying logistic regression (LR) and performing sequential forward selection (SFS) to 

select the top 23 of 78 high-resolution MFCC features, an area under the ROC curve (AUC) 

of 0.94 was achieved which shows that MFCCs without velocity or acceleration can produce 

near-optimal performance. This classifier achieves 93% sensitivity at 95% specificity, which 

exceeds the 90% sensitivity at 70% specificity specification considered by the World Health 

Organisation (WHO) as a minimal requirement for community-based triage testing (WHO 

2014).

The proposed screening by automatic analysis of coughing sounds is non-intrusive, can be 

applied without specialist medical expertise or laboratory facilities, produces a result quickly 

and can be implemented on readily-available and inexpensive consumer hardware, such as 

a smartphone. It therefore may represent a useful tool in the fight against TB especially in 

developing countries where the TB burden is high, such as our own setting in Cape Town, 

South Africa (Blaser et al. 2016, Mulongeni et al. 2019). Recent studies have shown that, 

in South Africa, there are currently on average between 600 and 700 TB cases per 100,000 

people (WHO 2020a, NICD n.d., Kanabus n.d.).

Our study has several limitations and we aim to improve those in our future work. Firstly, 

although our dataset is unique, it is also rather small compared to some other datasets used 

for cough detection (Pahar, Miranda, Diacon & Niesler 2021) and classification (Sharma 

et al. 2020). We believe this is why more advanced classifiers, such as a convolutional 

neural network (CNN), did not offer any performance advantage in our experiments (Pahar, 

Klopper, Warren & Niesler 2021b). We are extending the dataset, hoping that this will 

allow such more advanced classifiers to perform better than the LR baseline. Secondly, we 

are currently using only the recordings of the cough sounds as a basis of classification. 

The speech audio which was also recorded as part of our data collection might allow 

classifier accuracy to be improved and this investigation is currently ongoing. Thirdly, the 

manually annotated cough events sometimes contain multiple bursts of cough onsets and 

methods that identify such bursts within a cough event automatically are also a subject of 
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our ongoing investigation. Fourthly, we have evaluated our classifier using only a single 

dataset. To better establish the ability of the classifier to correctly process truly unseen 

data, an additional validation-only dataset is required. We are in the process of planning 

such a data collection effort, where recordings will be made in different but also noisy 

primary healthcare environments. Fifthly, participants were recruited into this study based on 

a self-reported cough. This approach may miss patients who have a cough but do not report 

it. To address this, further studies without cough as an eligibility criterion are required. 

Finally, the proposed system is not yet ready for practical implementation. The automatic 

detection of the cough within the recorded audio must be considered, as well as the practical 

integration of our classifier on a mobile device, as well as the consideration of additional 

audio captured by a stethoscope (Pasterkamp et al. 1997), also form part of our ongoing 

work.
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Figure 1: Recording booth:
Cough recordings were made in a standard cross-ventilated sputum collection booth 

situated outside on the premises of a primary health care clinic in a high-density urban 

neighbourhood of Cape Town, South Africa. The first panel shows the inside of the booth 

while the second shows a member of the research staff explaining the recording process 

to a study participant. The recording environment can be considered challenging due to a 

constant and considerable level of environmental noise. Co-authors Dr. Byron Reeve (left 

panel) and Dr. Marisa Klopper (right panel) gave their consent to have their visible faces 

appear in this figure.
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Figure 2: Recording setup:
During recording, the patient stands in front of a microphone covered by a standard N95 

mask at a distance of approximately 10 to 15 centimetres. For each patient, the recording 

session lasted approximately 5 minutes on average. Data collection took place next to a busy 

road, as shown in the inset.
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Figure 3: Cough annotation process:
The start and end times of all cough events were manually annotated by the label ‘c’ in 

the audio recording using the ELAN software. This figure shows the manual annotation 

of three consecutive cough events. The three labelled cough events include two, three and 

two individual cough onsets respectively. The manual annotation process indicated the start 

and the end times of audio containing coughing, but did not label such onsets. However, it 

revealed that the average number of such onsets is almost equal across the TB and non-TB 

classes. Each manually annotated cough event was subsequently automatically divided into 

sections, as described in Section 3.5.
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Figure 4: 
Demographic distribution of the patients show that most of the participants are middle-

aged and male patients dominant over the female patients.
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Figure 5: Examples of a noisy and a clean cough:
The noisy cough contains human chattering between its two phases and the clean cough 

contains minimal background noise.
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Figure 6: Feature extraction:
Each raw cough recording, as shown in Figure 3, is automatically split into individual 

sections after which features including MFCCs (including velocity Δ and acceleration ΔΔ), 

linearly spaced log-filterbank energies (including velocity Δ and acceleration ΔΔ), zero 

crossing rate and kurtosis are extracted. For example, when using 13 MFCCs, (13 × 3 + 2) 

= 41 features including Δ, ΔΔ, zero crossing rate and kurtosis are extracted for each section. 

The number of sections, MFCCs and linearly spaced filters are used as feature extraction 

hyperparameters listed in Table 3.
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Figure 7: 
Nested k-fold cross-validation was used for hyperparameter optimisation as well as the 

training and evaluation of all classifiers.
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Figure 8: Sequential Forward Selection
(SFS) applied to the best performing system (LR) in Table 5 which uses a total 78 features 

(26 MFCCs with appended velocity and acceleration). A maximum AUC of 0.94 is achieved 

using the best 23 features to discriminate TB patients from non-TB patients. The error bars 

(standard deviation) of the AUC is indicated every 5 features.
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Figure 9: 
Mean ROC curves for the LR classifier when distinguishing between TB and non-TB 

patients with and without SFS (Figure 8). The former uses all 78 features while the latter 

retains only the 23 best features. A sensitivity of 93% is achieved at 95% specificity and this 

exceeds the minimum WHO specification for community-based TB triage testing.
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Table 1:

Inclusion and exclusion criteria for participants who are included in our dataset summarised in Table 2.

Inclusion Exclusion

 • Age > 18 years, AND  • No consent

 • if HIV negative:  • On TB treatment during the 60 days prior to 
enrolment

  – Cough for > 2 weeks, AND

  – Additional symptoms (any of night sweats, fever, weight loss, coughing blood)  • Unable to provide sputum specimens for testing 
to confirm TB

 • Unable to provide cough audio

 • if HIV positive:

  – Cough for any duration, AND

   * Additional symptoms (any of night sweats, fever, weight loss, coughing 
blood), OR

   * In regular contact with known TB case
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Table 2:

Dataset description: Composition of the dataset used for experimentation. All recorded patients were ill, 

either with tuberculosis (TB) or with a different lung ailment.

No. of patients No. of coughs Avg coughs per 
patient

Avg length of coughs Avg SNR of coughs Total length of coughs

TB 16 402 25.1 0.74 sec 33.27±15.11 dB 299 sec

Non-TB 35 956 27.3 0.78 sec 33.93±19.24 dB 746 sec

Total 51 1358 26.6 0.77 sec 33.72 dB 1045 sec
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Table 3:

Feature extraction hyperparameters for which the results are shown in Table 5.

Hyperparameter Description Range

Frame length (ℱ = ) Length of the frames (in samples) from which features were extracted 2k where k = 8, 9, …, 12

No. of sections (S = ) Number of sections into which frames were grouped 1, 2, 3, 4

No. of linearly spaced filters (ℬ = ) Number of filters used to extract log-filerbank energies 40 to 200 in steps of 20

No. of MFCCs (ℳ = ) Number of lower order MFCCs coefficients retained 13, 26, 39
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Table 4:

Classifier hyperparameters which are optimised using nested k-fold cross-validation.

Hyperparameter Classifier Range

Regularisation Strength (ν1) LR 10−7 to 107

l1 penalty (ν2) LR 0 to 1 in steps of 0.05

l2 penalty (ν3) LR 0 to 1 in steps of 0.05

No. of Neighbours (χ1) KNN 10 to 100 in steps of 10

Leaf size (χ2) KNN 5 to 30 in steps of 5

Regularisation Strength (ζ1) SVM 10−7 to 107

RBF kernel coefficient (ζ2) SVM 10−7 to 107

No. of hidden neurons (ξ1) MLP 10 to 100 in steps of 10

l2 penalty (ξ2) MLP 10−7 to 105

Stochastic gradient descent learning rate (ξ3) MLP 0 to 1 in steps of 0.05

No. of Convolutional Layers (α1) CNN 2k where k = 4, 5, 6

Dropout Rate (α2) CNN 0.1 to 0.5 in steps 0.2

Batch Size (α3) CNN 2k where k = 6, 7, 8
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Table 5:

Classifier performance in discriminating TB patients from non-TB patients: The performance achieved 

by each considered classifier architecture in terms of the area under the ROC curve (AUC). Optimal classifier 

hyperparameters, determined during cross-validation, are also shown. Mean and standard deviations of AUC 

are calculated over the five outer folds of the nested k-fold cross-validation, shown in Figure 7.

Classifier Feature Hyperparameters Mean 
AUC

Mean 
SD

Mean 
Accuracy

Mean 
PPV

Mean 
NPV

Optimal Classifier 
Hyperparameters

LR ℳ = 13; ℱ = 211;
S = 1 0.8000 0.0519 78.82% 75.41% 83.29% ν1=100, ν2=0.15, ν3=0.85

LR ℳ = 13; ℱ = 210;
S = 1 0.7842 0.0645 75.93% 72.59% 80.43%

ν1=0.001, ν2=0.25, 
ν3=0.75

LR ℳ = 13; ℱ = 211;
S = 1 0.7477 0.0402 72.67% 70.36% 75.56% ν1=10, ν2=0.15, ν3=0.85

LR ℳ = 26; ℱ = 211;
S = 1 0.8632 0.0601 84.54% 80.56% 89.71% ν1 =0.01, ν2 =0.3, ν3 =0.7

LR ℳ = 26; ℱ = 211;
S = 1 0.7845 0.0491 76.22% 72.9% 80.67%

ν1=0.00001, ν2=0.45, 
ν3=0.55

LR ℳ = 39; ℱ = 211;
S = 1 0.7458 0.0531 72.11% 70.14% 74.51% ν1=0.0001, ν2=0.7, ν3=0.3

LR ℳ = 39; ℱ = 211;
S = 1 0.7402 0.0455 73.02% 70.57% 76.14% ν1=0.0001, ν2=0.4, ν3=0.6

LR ℬ = 60; ℱ = 211;
S = 1 0.7526 0.0507 72.89% 70.26% 76.31% ν1=0.1, ν2=0.45, ν3=0.55

KNN ℳ = 26; ℱ = 211;
S = 1 0.7701 0.0505 75.09% 71.89% 79.38% χ1=80 χ2=20

KNN ℳ = 26; ℱ = 211;
S = 1 0.7394 0.0385 70.76% 68.95% 72.96% χ1=60 χ2=15

SVM ℳ = 26; ℱ = 211;
S = 1 0.7435 0.0543 71.91% 69.69% 74.7% ζ1=0.01 ζ2=100

SVM ℳ = 39; ℱ = 210;
S = 1 0.7291 0.0495 70.05% 67.95% 72.71% ζ1=0.001 ζ2=0.0001

MLP ℳ = 13; ℱ = 211;
S = 1 0.7389 0.0457 71.16% 68.91% 74.02% ξ1=80, ξ2=0.0001, ξ3=0.65

MLP ℳ = 26; ℱ = 211;
S = 1 0.8000 0.0391 77.87% 75.13% 81.28% ξ1=50, ξ2=0.001, ξ3=0.55

MLP ℳ = 39; ℱ = 211;
S = 1 0.7742 0.0409 76.47% 73.63% 80.09% ξ1=30, ξ2=0.01, ξ3=0.35

CNN ℳ = 26; ℱ = 211;
S = 1 0.7109 0.0409 68.89% 67.7% 70.25% α1=32 α2=0.3, α3=128

CNN ℳ = 39; ℱ = 210
S = 1 0.7001 0.0301 68.71% 67.52% 70.07% α1=64 α2=0.1, α3=128
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