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Abstract

Deep learning models currently achieve human levels of performance on real-world face 

recognition tasks. We review scientific progress in understanding human face processing 

using computational approaches based on deep learning. This review is organized around 

three fundamental advances. First, deep networks trained for face identification generate a 

representation that retains structured information about the face (e.g., identity, demographics, 

appearance, social traits, expression) and the input image (e.g., viewpoint, illumination). This 

forces us to rethink the universe of possible solutions to the problem of inverse optics in vision. 

Second, deep learning models indicate that high-level visual representations of faces cannot be 

understood in terms of interpretable features. This has implications for understanding neural 

tuning and population coding in the high-level visual cortex. Third, learning in deep networks 

is a multistep process that forces theoretical consideration of diverse categories of learning that 

can overlap, accumulate over time, and interact. Diverse learning types are needed to model the 

development of human face processing skills, cross-race effects, and familiarity with individual 

faces.
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1. INTRODUCTION

The fields of vision science, computer vision, and neuroscience are at an unlikely point of 

convergence. Deep convolutional neural networks (DCNNs) now define the state of the art 

in computer-based face recognition and have achieved human levels of performance on real-

world face recognition tasks (Jacquet & Champod 2020, Phillips et al. 2018, Taigman et al. 

2014). This behavioral parity allows for meaningful comparisons of representations in two 
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successful systems. DCNNs also emulate computational aspects of the ventral visual system 

(Fukushima 1988, Krizhevsky et al. 2012, LeCun et al. 2015) and support surprisingly 

direct, layer-to-layer comparisons with primate visual areas (Yamins et al. 2014). Nonlinear, 

local convolutions, executed in cascaded layers of neuron-like units, form the computational 

engine of both biological and artificial neural networks for human and machine-based 

face recognition. Enormous numbers of parameters, diverse learning mechanisms, and high-

capacity storage in deep networks enable a wide variety of experiments at multiple levels of 

analysis, from reductionist to abstract. This makes it possible to investigate how systems and 

subsystems of computations support face processing tasks.

Our goal is to review scientific progress in understanding human face processing with 

computational approaches based on deep learning. As we proceed, we bear in mind wise 

words written decades ago in a paper on science and statistics: “All models are wrong, 

but some are useful” (Box 1979, p. 202) (see the sidebar titled Perspective: Theories and 

Models of Face Processing and the sidebar titled Caveat: Iteration Between Theory and 

Practice). Since all models are wrong, in this review, we focus on what is useful. For 

present purposes, computational models are useful when they give us insight into the human 

visual and perceptual system. This review is organized around three fundamental advances 

in understanding human face perception, using knowledge generated from deep learning 

models. The main elements of these advances are as follows.

1. Deep networks force us to rethink the universe of possible solutions to the 

problem of inverse optics in vision. The face representations that emerge from 

deep networks trained for identification operate invariantly across changes in 

image and appearance, but they are not themselves invariant.

2. Computational theory and simulation studies of deep learning indicate a 

reconsideration of a long-standing axiom in vision science that face or object 

representations can be understood in terms of interpretable features. Instead, in 

deep learning models, the concept of a nameable deep feature, localized in an 

output unit of the network or in the latent variables of the space, should be 

reevaluated.

3. Natural environments provide highly variable training data that can structure the 

development of face processing systems using a variety of learning mechanisms 

that overlap, accumulate over time, and interact. It is no longer possible to invoke 

learning as a generic theoretical account of a behavioral or neural phenomenon.

We focus on deep learning findings that are relevant for understanding human face 

processing—broadly construed. The human face provides us with diverse information, 

including identity, gender, race or ethnicity, age, and emotional state. We use the face to 

make inferences about a person’s social traits (Oosterhof & Todorov 2008). As we discuss 

below, deep networks trained for identification retain much of this diverse facial information 

(e.g., Colón et al. 2021, Dhar et al. 2020, Hill et al. 2019, Parde et al. 2017, Terhörst et 

al. 2020). The use of face recognition algorithms in applied settings (e.g., law enforcement) 

has spurred detailed performance comparisons between DCNNs and humans (e.g., Phillips 

et al. 2018). For analogous reasons, the problem of human-like race bias in DCNNs has also 

been studied (e.g., Cavazos et al. 2020; El Khiyari & Wechsler 2016; Grother et al. 2019; 
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Krishnapriya et al. 2019, 2020). Developmental data on infants’ exposure to faces in the first 

year(s) of life offer insight into how to structure the training of deep networks (Smith & 

Slone 2017). These topics are within the scope of this review. Although we consider general 

points of comparison between DCNNs and neural responses in face-selective areas of the 

primate inferotemporal (IT) cortex, a detailed discussion of this topic is beyond the scope 

of this review. (For a review of primate face-selective areas that considers computational 

perspectives, see Hesse & Tsao 2020). In this review, we focus on the computational and 

representational principles of neural coding from a deep learning perspective.

The review is organized as follows. We begin with a brief review of where machine 

performance on face identification stands relative to humans in quantitative terms. 

Qualitative performance comparisons on identification and other face processing tasks (e.g., 

expression classification, social perception, development) are integrated into Sections 2–

4. These sections consider advances in understanding human face processing from deep 

learning approaches. We close with a discussion of where the next steps might lead.

1.1. Where We Are Now: Human Versus Machine Face Recognition

Deep learning models of face identification map widely variable images of a face onto 

a representation that supports identification accuracy comparable to that of humans. The 

steady progress of machines over the past 15 years can be summarized in terms of the 

increasingly challenging face images that they can recognize (Figure 1). By 2007, the 

best algorithms surpassed humans on a task of identity matching for unfamiliar faces in 

frontal images taken indoors (O’Toole et al. 2007). By 2012, well-established algorithms 

exceeded human performance on frontal images with moderate changes in illumination and 

appearance (Kumar et al. 2009, Phillips & O’Toole 2014). Machine ability to match identity 

for in-the-wild images appeared with the advent of DCNNs in 2013–2014. Human face 

recognition was marginally more accurate than DeepFace (Taigman et al. 2014), an early 

DCNN, on the Labeled Faces in the Wild (LFW) data set (Huang et al. 2008). LFW contains 

in-the-wild images taken mostly from the front. DCNNs now fare well on in-the-wild 

images with significant pose variation (e.g., Maze et al. 2018, data set). Sengupta et al. 

(2016) found parity between humans and machines on frontal-to-frontal identity matching 

but human superiority on frontal-to-profile matching.

Identity matching:

process of determining if two or more images show the same identity or different 

identities; this is the most common task performed by machines

Human face recognition:

the ability to determine whether a face is known

1.2. Expert Humans and State-of-the-Art Machines Work Together

DCNNs can sometimes even surpass normal human performance. Phillips et al. (2018) 

compared humans and machines matching the identity of faces in high-quality frontal 
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images. Although this is generally considered an easy task, the images tested were chosen 

to be highly challenging based on previous human and machine studies. Four DCNNs 

developed between 2015 and 2017 were compared to human participants from five groups: 

professional forensic face examiners, professional forensic face reviewers, superrecognizers 

(Noyes et al. 2017, Russell et al. 2009), professional fingerprint examiners, and students. 

Face examiners, reviewers, and superrecognizers performed more accurately than fingerprint 

examiners, and fingerprint examiners performed more accurately than students. Machine 

performance, from 2015 to 2017, tracked human skill levels. The 2015 algorithm (Parkhi 

et al. 2015) performed at the level of the students; the 2016 algorithm (Chen et al. 2016) 

performed at the level of the fingerprint examiners (Ranjan et al. 2017c); and the two 2017 

algorithms (Ranjan et al. 2017,c) performed at the level of professional face reviewers and 

examiners, respectively. Notably, combining the judgments of individual professional face 

examiners with those of the best algorithm (Ranjan et al. 2017) yielded perfect performance. 

This suggests a degree of strategic diversity for the face examiners and the DCNN and 

demonstrates the potential for effective human–machine collaboration (Phillips et al. 2018).

Combined, the data indicate that machine performance has improved from a level 

comparable to that of a person recognizing unfamiliar faces to one comparable to that of 

a person recognizing more familiar faces (Burton et al. 1999, Hancock et al. 2000, Jenkins et 

al. 2011) (see Section 4.1).

2. RETHINKING INVERSE OPTICS AND FACE REPRESENTATIONS

Deep networks force us to rethink the universe of possible solutions to the problem of 

inverse optics in vision. These networks operate with a degree of invariance to image and 

appearance that was unimaginable by researchers less than a decade ago. Invariance refers 

to the model’s ability to consistently identify a face when image conditions (e.g., viewpoint, 

illumination) and appearance (e.g., glasses, facial hair) vary. The nature of the representation 

that accomplishes this is not well understood. The inscrutability of DCNN codes is due to 

the enormous number of computations involved in generating a face representation from 

an image and the uncontrolled training data. To create a face representation, millions 

of nonlinear, local convolutions are executed over tens (to hundreds) of layers of units. 

Researchers exert little or no control over the training data, but instead source face images 

from the web with the goal of finding as much labeled training data as possible. The number 

of images per identity and the types of images (e.g., viewpoint, expression, illumination, 

appearance, quality) are left (mostly) to what is found through web scraping. Nevertheless, 

DCNNs produce a surprisingly structured and rich face representation that we are beginning 

to understand.

2.1. Mining the Face Identity Code in Deep Networks

The face representation generated by DCNNs for the purpose of identifying a face also 

retains detailed information about the characteristics of the input image (e.g., viewpoint, 

illumination) and the person pictured (e.g., gender, age). As shown below, this unified 

representation can solve multiple face processing tasks in addition to identification.
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2.1.1. Image characteristics.—Face representations generated by deep networks both 

are and are not invariant to image variation. These codes can identify faces invariantly over 

image change, but they are not themselves invariant. Instead, face representations of a single 

identity vary systematically as a function of the characteristics of the input image. The 

representations generated by DCNNs are, in fact, representations of face images.

Work to dissect face identity codes draws on the metaphor of a face space (Valentine 1991) 

adapted to representations generated by a DCNN. Visualization and simulation analyses 

demonstrate that identity codes for face images retain ordered information about the input 

image (Dhar et al. 2020, Hill et al. 2019, Parde et al. 2017). Viewpoint (yaw and pitch) can 

be predicted accurately from the identity code, as can media source (still image or video 

frame) (Parde et al. 2017). Image quality (blur, usability, occlusion) is also available as 

the identity code norm (vector length).1 Poor-quality images produce face representations 

centered in the face space, creating a DCNN garbage dump. This organizational structure 

was replicated in two DCNNs with different architectures, one developed by Chen et 

al. (2016) with seven convolutional layers and three fully connected layers and another 

developed by Sankaranarayanan et al. (2016) with 11 convolutional layers and one fully 

connected layer. Image quality estimates can also be optimized directly in a DCNN using 

human ratings (Best-Rowden & Jain 2018).

Face space:

representation of the similarity of faces in a multidimensional space

For a closer look at the structure of DCNN face representations, Hill et al. (2019) 

examined the representations of highly controlled face images in a face space generated 

by a deep network trained with in-the-wild images. The network processed images of 

three-dimensional laser scans of human heads rendered from five viewpoints under two 

illumination conditions (ambient, harsh spotlight). Visualization of these representations in 

the resulting face space showed a highly ordered pattern (see Figure 2). Consistent with the 

network’s high accuracy at face identification, images clustered by identity. Identity clusters 

separated into regions of male and female faces (see Section 2.1.2). Within each identity 

cluster, the images separated by illumination condition—visible in the face space as chains 

of images. Within each illumination chain, the image representations were arranged in the 

space by viewpoint, which varied systematically along the image chain. To further probe the 

coding of identity, Hill et al. (2019) processed images of caricatures of the 3D heads (see 

also Blanz & Vetter 1999). Caricature representations were centered in each identity cluster, 

indicating that the network perceived a caricature as a good likeness of the identity.

DCNN face representation:

output vector produced for a face image processed through a deep network trained for 

faces

1This is the case in networks trained with the Softmax objective function.
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All results from Hill et al. (2019) were replicated using two networks with starkly different 

architectures. The first, developed by Ranjan et al. (2019), was based on a ResNet-101 

with 101 layers and skip connections; the second, developed by Chen et al. (2016), had 

15 convolution and pooling layers, a dropout layer, and one fully connected top layer. 

As measured using the brain-similarity metrics developed in Brain-Score (Schrimpf et al. 

2018), one of these architectures (ResNet-101) was the third most brain-like of the 25 

networks tested. The ResNet-101 network scored well on both neural (V4 and IT cortex) 

and behavioral predictability for object recognition. Hill et al.’s (2019) replication of this 

face space using a shallower network (Chen et al. 2016), however, suggests that network 

architecture may be less important than computational capacity in understanding high-level 

visual codes for faces (see Section 3.2).

Brain-Score:

neural and behavioral benchmarks that score an artificial neural network on its similarity 

to brain mechanisms for object recognition

Returning to the issue of human-like view invariance in a DCNN, Abudarham & Yovel 

(2020) compared the similarity of face representations computed within and across identities 

and viewpoints. Consistent with view-invariant performance, same-identity, different-view 

face pairs were more similar than different-identity, same-view face pairs. Consistent 

with a noninvariant face representation, correlations between similarity scores across head 

view decreased monotonically with increasing view disparity. These results support the 

characterization of DCNN codes as being functionally view invariant but with a view-

specific code. Notably, earlier layers in the network showed view specificity, whereas higher 

layers showed view invariance.

It is worth digressing briefly to consider invariance in the context of neural approaches to 

face processing. An underlying assumption of neural approaches is that “a major purpose 

of the face patches is thus to construct a representation of individual identity invariant to 

view direction” (Hesse & Tsao 2020, pp. 703). Ideas about how this is accomplished have 

evolved. Freiwald & Tsao (2010) posited the progressive computation of invariance via the 

pooling of neurons across face patches, as follows. In early patches, a neuron responds 

to a specific identity from specific views; in middle face patches, greater invariance is 

achieved by pooling the responses of mirror-symmetric views of an identity; in later face 

patches, each neuron pools inputs representing all views of the same individual to create 

a fully view-invariant representation. More recently, Chang & Tsao (2017) proposed that 

the brain computes a view-invariant face code using shape and appearance parameters 

analogous to those used in a computer graphics model of face synthesis (Cootes et al. 1995) 

(see the sidebar titled Neurons, Neural Tuning, Population Codes, Features, and Perceptual 

Constancy). This code retains information about the face, but not about the particular image 

viewed.

Deep networks suggest an alternative that is largely consistent with neurophysiological 

data but interprets the data in a different light. Neurocomputational theory posits that the 

ventral visual system untangles face identity information from image parameters (DiCarlo & 
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Cox 2007). The idea is that visual processing starts in the image domain, where identity 

and viewpoint information are entangled. With successive levels of neural processing, 

manifolds corresponding to individual identities are untangled from image variation. This 

creates a representational space where identities can be separated with hyperplanes. Image 

information is not lost, but rather, is rearranged (for object recognition results, see Hong et 

al. 2016). The retention of image and identity information in DCNN face representations is 

consistent with this theory. It is also consistent with basic neuroscience findings indicating 

the emergence of a representation dominated by identity that retains sensitivity to image 

features (See Section 2.2).

2.1.2. Appearance and demographics.—Faces can be described using what 

computer vision researchers have called attributes or soft biometrics (hairstyle, hair color, 

facial hair, and accessories such as makeup and glasses). The definition of attributes in 

the computational literature is vague and can include demographics (e.g., gender, age, 

race) and even facial expression. Identity codes from deep networks retain a wide variety 

of face attributes. For example, Terhörst et al. (2020) built a massive attribute classifier 

(MAC) to test whether 113 attributes could be predicted from the face representations 

produced by deep networks [ArcFace (Deng et al. 2019) or FaceNet (Schroff et al. 2015)] 

for images from in-the-wild data sets (Huang et al. 2008, Liu et al. 2015). The MAC learned 

to map from DCNN-generated face representations to attribute labels. Cross-validated 

results showed that 39 of the attributes were easily predictable, and 74 of the 113 were 

predictable at reliable levels. Hairstyle, hair color, beard, and accessories were predicted 

easily. Attributes such as face geometry (e.g., round), periocular characteristics (e.g., arched 

eyebrows), and nose were moderately predictable. Skin and mouth attributes were not well 

predicted.

The continuous shuffling of identity, attribute, and image information across layers of the 

network was demonstrated by Dhar et al. (2020). They tracked the expressivity of attributes 

(identity, sex, age, pose) across layers of a deep network. Expressivity was defined as the 

degree to which a feature vector, from any given layer of a network, specified an attribute. 

Dhar et al. (2020) computed expressivity using a second neural network that estimated the 

mutual information between attributes and DCNN features. Expressivity order in the final 

fully connected layer of both networks (Resnet-101 and Inception Resnet v2; Ranjan et al. 

2019) indicated that identity was most expressed, followed by age, sex, and yaw. Identity 

expressivity increased dramatically from the final pooling layer to the last fully connected 

layer. This echos the progressive increase in the detectability of view-invariant face identity 

representations seen across face patches in the macaque (Freiwald & Tsao 2010). It also 

raises the computational possibility of undetected viewpoint sensitivity in these neurons (see 

Section 3.1).

Mutual information:

a statistical term from information theory that quantifies the codependence of information 

between two random variables

O’Toole and Castillo Page 7

Annu Rev Vis Sci. Author manuscript; available in PMC 2022 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1.3. Social traits.—People make consistent (albeit invalid) inferences about a 

person’s social traits based on their face (Todorov 2017). These judgments have profound 

consequences. For example, competence judgments about faces predict election success at 

levels far above chance (Todorov et al. 2005). The physical structure of the face supports 

these trait inferences (Oosterhof & Todorov 2008, Walker & Vetter 2009), and thus it is not 

surprising that deep networks retain this information. Using face representations produced 

by a network trained for face identification (Sankaranarayanan et al. 2016), 11 traits (e.g., 

shy, warm, impulsive, artistic, lazy), rated by human participants, were predicted at levels 

well above chance (Parde et al. 2019). Song et al. (2017) found that more than half of 40 

attributes were predicted accurately by a network trained for object recognition (VGG-16; 

Simonyan & Zisserman 2014). Human and machine trait ratings were highly correlated.

Other studies show that deep networks can be optimized to predict traits from images. 

Lewenberg et al. (2016) crowd-sourced large numbers of objective (e.g., hair color) 

and subjective (e.g., attractiveness) attribute ratings from faces. DCNNs were trained to 

classify images for the presence or absence of each attribute. They found highly accurate 

classification for the objective attributes and somewhat less accurate classification for the 

subjective attributes. McCurrie et al. (2017) trained a DCNN to classify faces according to 

trustworthiness, dominance, and IQ. They found significant accord with human ratings, with 

higher agreement for trustworthiness and dominance than for IQ.

2.1.4. Facial expressions.—Facial expressions are also detectable in face 

representations produced by identity-trained deep networks. Colón et al. (2021) found that 

expression classification was well above chance for face representations of images from the 

Karolinska data set (Lundqvist et al. 1998), which includes seven facial expressions (happy, 

sad, angry, surprised, fearful, disgusted, neutral) seen from five viewpoints (frontal and 90- 

and 45-degree left and right profiles). Consistent with human data, happiness was classified 

most accurately, followed by surprise, disgust, anger, neutral, sadness, and fear. Notably, 

accuracy did not vary across viewpoint. Visualization of the identities in the emergent 

face space showed a structured ordering of similarity in which viewpoint dominated over 

expression.

2.2. Functional Invariance, Useful Variability

The emergent code from identity-trained DCNNs can be used to recognize faces 

robustly, but it also retains extraneous information that is of limited, or no, value for 

identification. Although demographic and trait information offers weak hints to identity, 

image characteristics and facial expression are not useful for identification. Attributes 

such as glasses, hairstyle, and facial hair are, at best, weak identity cues and, at worst, 

misleading cues that will not remain constant over extended time periods. In purely 

computational terms, the variability of face representations for different images of an 

identity can lead to errors. Although this is problematic in security applications, coincidental 

features and attributes can be diagnostic enough to support acceptably accurate identification 

performance in day-to-day face recognition (Yovel & O’Toole 2016). (For related arguments 

based on adversarial images for object recognition, see Ilyas et al. 2019, Xie et al. 

2020, Yuan et al. 2020.) A less-than-perfect identification system in computational terms, 
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however, can be a surprisingly efficient, multipurpose face processing system that supports 

identification and the detection of visually derived semantic information [called attributes by 

Bruce & Young (1986)].

What do we learn from these studies that can be useful in understanding human visual 

processing of faces? First, we learn that it is computationally feasible to accommodate 

diverse information about faces (identity, demographics, visually derived semantic 

information), images (viewpoint, illumination, quality), and emotions (expression) in a 

unified representation. Furthermore, this diverse information can be accessed selectively 

from the representation. Thus, identity, image parameters, and attributes are all untangled 

when learning prioritizes the difficult within-category discrimination problem of face 

identification.

Second, we learn that to understand high-level visual representations for faces, we need to 

think in terms of categorical codes unbound from a spatial frame of reference. Although 

remnants of retinotopy and image characteristics remain in high-level visual areas (e.g., 

Grill-Spector et al. 1999, Kay et al. 2015, Kietzmann et al. 2012, Natu et al. 2010, Yue et 

al. 2010), the expressivity of spatial layout weakens dramatically from early visual areas 

to categorically structured areas in the IT cortex. Categorical face representations should 

capture what cognitive and perceptual psychologists call facial features (e.g., face shape, eye 

color). Indeed, altering these types of features in a face affects identity perception similarly 

for humans and deep networks (Abudarham et al. 2019). However, neurocomputational 

theory suggests that finding these features in the neural code will likely require rethinking 

the interpretation of neural tuning and population coding (see Section 3.2).

Third, if the ventral stream untangles information across layers of computations, then we 

should expect traces of identity, image data, and attributes at many, if not all, neural network 

layers. These may variously dominate the strength of the neural signal at different layers (see 

Section 3.1). Thus, various layers in the network will likely succeed in predicting several 

types of information about the face and/or image, though with differing accuracy. For now, 

we should not ascribe too much importance to findings about which specific layer(s) of a 

particular network predict specific attributes. Instead, we should pay attention to the pattern 

of prediction accuracy across layers. We would expect the following pattern. Clearly, for 

the optimized attribute (identity), the output offers the clearest access. For subject-related 

attributes (e.g., demographics), this may also be the case. For image-related attributes, we 

would expect every layer in the network to retain some degree of prediction ability. Exactly 

how, where, and whether the neural system makes use of these attributes for specific tasks 

remain open questions.

3. RETHINKING VISUAL FEATURES: IMPLICATIONS FOR NEURAL CODES

Deep learning models force us to rethink the definition and interpretation of facial features 

in high-level representations. Theoretical ideas about the brain’s solution to complex real-

world tasks such as face recognition must be reconciled at the level of neural units and 

representational spaces. Deep learning models can be used to test hypotheses about how 
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faces are stored in the high-dimensional representational space defined by the pattern of 

responses of large numbers of neurons.

3.1. Units Confound Information that Separates in the Representation Space

Insight into interpreting facial features comes from deep network simulations aimed at 

understanding the relationship between unit responses and the information retained in the 

face representation. Parde et al. (2021) compared identification, gender classification, and 

viewpoint estimation in subspaces of a DCNN face space. Using an identity-trained network 

capable of all three tasks, they tested performance on the tasks using randomly sampled 

subsets of output units. Beginning at full dimensionality (512-units) and progressively 

decreasing sample size, they found no notable decline in identification accuracy for more 

than 3,000 in-the-wild-faces until the sample size reached 16 randomly chosen units (3% 

of full dimensionality). Correlations between unit responses across representations were 

near zero, indicating that individual units captured nonredundant identity cues. Statistical 

power for identification (i.e., separating identities) was uniformly high for all output units, 

demonstrating that units used their entire response range to separate identities. A unit firing 

at its maximum provided no more, and no less, information than any other response value. 

This distinction may seem trivial, but it is not. The data suggest that every output unit acts to 

separate identities to the maximum degree possible. As such, all units participate in coding 

all identities. In information theory terms, this is an ideal use of neural resources.

For gender classification and viewpoint estimation, performance declined at a much faster 

rate than for identification as units were deleted (Parde et al. 2021). Statistical power 

for predicting gender and viewpoint was strong in the distributed code but weak at the 

level of the unit. Prediction power for these attributes was again roughly equivalent for 

all units. Thus, individual units contributed to coding all three attributes, but identity 

modulated individual unit responses far more strongly than did gender or viewpoint. 

Notably, a principal component (PC) analysis of representations in the full-dimensional 

space revealed subspaces aligned with identity, gender, and viewpoint (Figure 3). Consistent 

with the strength of the categorical identity code in the representation, identity information 

dominated PCs explaining large amounts of variance, gender dominated the middle range of 

PCs, and viewpoint dominated PCs explaining small amounts of variation.

The emergence and effectiveness of these codes in DCNNs suggest that caution is needed 

in ascribing significance only to stimuli that drive a neuron to high rates of response. Small-

scale modulations of neural responses can also be meaningful. Let us consider a concrete 

example. A neurophysiologist probing the network used by Parde et al. (2021) would find 

some neurons that respond strongly to a few identities. Interpreting this as identity tuning, 

however, would be an incorrect characterization of a code in which all units participate in 

coding all identities. Concomitantly, few units in the network would appear responsive to 

viewpoint or gender variations because unit firing rates would modulate only slightly with 

changes in viewpoint or gender. Thus, the distributed coding of view and gender across 

units would likely be missed. The finding that neurons in macaque face patch AM respond 

selectively (i.e., with high response rates) to identity over variable views (Freiwald & Tsao 

2010) is consistent with DCNN face representations. It is possible, however, that these units 
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also encode other face and image attributes, but with differential degrees of expressivity. 

This would be computationally consistent with the untangling theory and with DCNN codes.

Macaque face patches:

regions of the macaque cortex that respond selectively to faces, including the posterior 

lateral (PL), middle lateral (ML), middle fundus (MF), anterior lateral (AL), anterior 

fundus (AF), and anterior medial (AM)

Another example comes from the use of generative adversarial networks and related 

techniques to characterize the response properties of single (or multiple) neuron(s) in the 

primate visual cortex (Bashivan et al. 2019, Ponce et al. 2019, Yuan et al. 2020). These 

techniques have examined neurons in areas V4 (Bashivan et al. 2019) and IT (Ponce 

et al. 2019, Yuan et al. 2020). The goal is to progressively evolve images that drive 

neurons to their maximum response or that selectively (in)activate subsets of neurons. 

Evolved images show complex mosaics of textures, shapes, and colors. They sometimes 

show animals or people and sometimes reveal spatial patterns that are not semantically 

interpretable. However, these techniques rely on two strong assumptions. First, they assume 

that a neuron’s response can be characterized completely in terms of the stimuli that 

activate it maximally, thereby discounting other response rates as noninformative. The 

computational utility of a unit’s full response range in DCNNs suggests that reconsideration 

of this assumption is necessary. Second, these techniques assume that a neuron’s response 

properties can be visualized accurately as a two-dimensional image. Given the categorical, 

nonretinotopic nature of representations in high-level visual areas, this seems problematic. If 

the representation under consideration is not in the image or pixel domain, then image-based 

visualization may offer limited, and possibly misleading, insight into the underlying nature 

of the code.

3.2. Direct-Fit Models and Deep Learning

In rethinking visual features at a theoretical level, direct-fit models of neural coding appear 

to best explain deep learning findings in multiple domains (e.g., face recognition, language) 

(Hasson et al. 2020). These models posit that neural computation fits densely sampled 

data from the environment. Implementation is accomplished using “overparameterized 

optimization algorithms that increase predictive (generalization) power, without explicitly 

modeling the underlying generative structure of the world” (Hasson et al. 2020, p. 418). 

Hasson et al. (2020) begins with an ideal model in a small-parameter space (Figure 4). 

When the underlying structure of the world is simple, a small-parameter model will find 

the underlying generative function, thereby supporting generalization via interpolation and 

extrapolation. Despite decades of effort, small-parameter functions have not solved real-

world face recognition with performance anywhere near that of humans.

When the underlying structure of the world is complex and multivariate, direct-fit models 

offer an alternative to models based on small-parameter functions. With densely sampled 

real-world training data, each new observation can be placed in the context of past 

experience. More formally, direct-fit models solve the problem of generalization to new 
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exemplars by experience-scaffolded interpolation (Hasson et al. 2020). This produces face 

recognition performance in the range of that of humans. A fundamental element of the 

success of deep networks is that they model the environment with big data, which can 

be structured in overparameterized spaces. The scale of the parameterization and the 

requirement to operate on real-world data are pivotal. Once the network is sufficiently 

parameterized to fit the data, the exact details of its architecture are not important. This 

may explain why starkly different network architectures arrive at similarly structured 

representations (Hill et al. 2019, Parde et al. 2017, Storrs et al. 2020).

Returning to the issue of features, in neurocomputational terms, the strength of connectivity 

between neurons at synapses is the primary locus of information, just as weights between 

units in a deep network comprise information. We expect features, whatever they are, to be 

housed in the combination of connection strengths among units, not in the units themselves. 

In a high-dimensional multivariate encoding space, they are hyperplane directions through 

the space. Thus, features are represented across many computing elements, and each 

computing element participates in encoding many features (Hasson et al. 2020, Parde et 

al. 2021). If features are directions in a high-dimensional coding space (Goodfellow et al. 

2014), then units act as an arbitrary projection surface from which this information can be 

accessed—albeit in a nontransparent form.

A downside of direct-fit models is that they cannot generalize via extrapolation. The other-

race effect is an example of how face recognition may fail due to limited experience 

(Malpass & Kravitz 1969) (see Section 4.3.2). The extrapolation limit may be countered, 

however, by the capacity of direct-fit models to acquire expertise within the confines of 

experience. For example, in human perception, category experience selectively structures 

representations as new exemplars are learned. Collins & Behrmann (2020) show that this 

occurs in a way that reflects the greater experience that humans have with faces and 

computer-generated objects from novel made-up categories of objects, which the authors 

call YUFOs. They tracked the perceived similarity of pairs of other-race faces and YUFOs 

as people learned novel exemplars of each. Experience changed perceived similarities more 

selectively for faces than for YUFOs, enabling more nuanced discrimination of exemplars 

from the experienced category of faces.

In summary, direct-fit models offer a framework for thinking about high-level visual codes 

for faces in a way that unifies disparate data on single units and high-dimensional coding 

spaces. These models are fueled by the rich experience that we (models) gain from learning 

(training on) real-world data. They solve complex visual tasks with interpolated solutions 

that elude transparent semantic interpretation.

4. RETHINKING LEARNING IN HUMANS AND DEEP NETWORKS

Deep network models of human face processing force us to consider learning as a complex 

and diverse set of mechanisms that can overlap, accumulate over time, and interact. Learning 

in both humans and artificial neural networks can refer to qualitatively different phenomena. 

In both cases, learning involves multiple steps. For DCNNs, these steps are fundamental 

to a network’s ability to recognize faces across image and appearance variation. Human 
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visual learning is likewise diverse and unfolds across the developmental lifespan in a process 

governed by genetics and environmental input (Goodman & Shatz 1993). The stepwise 

implementation of learning is one way that DCNNs differ from previous face recognition 

networks. Considered as manipulable modeling tools, the learning steps in DCNNs force us 

to think in concrete and nuanced ways about how humans learn faces.

In this section, we outline the learning layers in human face processing (Section 4.1), 

introduce the layers of learning used in training machines (Section 4.2), and consider 

the relationship between the two in the context of human behavior (Section 4.3.1). The 

human learning layers support a complex, biologically realized face processing system. The 

machine learning layers can be thought of as building blocks that can be combined in a 

variety of ways to model human behavioral phenomena. At the outset, we note that machine 

learning is designed to maximize performance—not to model the development of the human 

face processing system (Smith & Slone 2017). Concomitantly, the sequential presentation of 

training data in DCNNs differs from the pattern of exposure that infants and young children 

have with faces and objects (Jayaraman et al. 2015). The machine learning steps, however, 

can be modified to model human learning more closely. In practical terms, fully trained 

DCNNs, available on the web, are used (almost exclusively) to model human neural systems 

(see the sidebar titled Caveat: Iteration Between Theory and Practice). It is important, 

therefore, to understand how (and why) these models are configured as they are and to 

understand the types of learning tools available for modeling human face processing. These 

steps may provide computational grounding for basic learning mechanisms hypothesized in 

humans.

4.1. Human Learning for Face Processing

To model human face processing, researchers need to consider the following types of 

learning. The most specific form of learning is familiar face recognition. People learn the 

faces of specific familiar individuals (e.g., friends, family, celebrities). Familiar faces are 

recognized robustly over challenging changes in appearance and image characteristics. The 

second-most specific is local population tuning. People recognize own-race faces more 

accurately than other-race faces, a phenomenon referred to as the other-race effect (e.g., 

Malpass & Kravitz 1969). This likely results from tuning to the statistical properties of 

the faces that we see most frequently—typically faces of our own race. The third-most 

specific is nfamiliar face recognition. People can differentiate unfamiliar faces perceptually. 

Unfamiliar refers to faces that a person has not encountered previously or has encountered 

infrequently. Unfamiliar face recognition is less robust to image and appearance change than 

is familiar face recognition. The least specific form of learning is object recognition. At 

a fundamental level of analysis, faces are objects, and both share early visual processing 

wetware.

4.2. How Deep Convolutional Neural Networks Learn Face Identification

Training DCNNs for face recognition involves a sequence of learning stages, each with a 

concrete objective. Unlike human learning, machine learning stages are executed in strict 

sequence. The goal across all stages of training is to build an effective method for converting 

images of faces into points in a high-dimensional space. The resulting high-dimensional 
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space allows for easy comparison among faces, search, and clustering. In this section, we 

sketch out the engineering approach to learning, working forward from the most general to 

the most specific form of learning. This follows the implementation order used by engineers.

4.2.1. Object classification (between-category learning): Stage 1.—Deep 

networks for face identification are commonly built on top of DCNNs that have been 

pretrained for object classification. Pretraining is carried out using large data sets of objects, 

such as those available in ImageNet (Russakovsky et al. 2015), which contains more than 

14 million images of over 1,000 classes of objects (e.g., volcanoes, cups, chihuahuas). 

The object categorization training procedure involves adjusting the weights on all layers 

of the network. For training to converge, a large training set is required. The loss function 

optimized in this procedure typically uses the well-understood cross-entropy loss + Softmax 

combination. Most practitioners do not execute this step because it has been performed 

already in a pretrained model downloaded from a public repository in a format compatible 

with DCNN software libraries [e.g., PyTorch (Paszke et al. 2019), TensorFlow (Abadi et al. 

2016)]. Networks trained for object recognition have proven better for face identification 

than networks that start with a random configuration (Liu et al. 2015, Yi et al. 2014).

4.2.2. Face recognition (within-category learning): Stage 2.—Face recognition 

training is implemented in a second stage of training. In this stage, the last fully connected 

layer that connects to object-category nodes (e.g., volcanoes, cups) is removed from the 

results of the Stage 1 training. Next, a fully connected layer that maps to the number of 

face identities available for face training is connected. Depending on the size of the face 

training set, the weights of either all layers or all but a few layers at the beginning of the 

network are updated. The former is common when very large numbers of face identities are 

available for training. In academic laboratories, data sets include 5–10 million face images 

of 40,000–100,000 identities. In industry, far larger data sets are often used (Schroff et 

al. 2015). A technical difficulty encountered in retraining an object classification network 

to a face recognition network is the large increase in the number of categories involved 

(approximately 1,000 objects versus 50,000+ faces). Special loss functions can address this 

issue [e.g., L2-Softmax/crystal loss (Ranjan et al. 2017), NormFace (Wang et al. 2017), 

angular Softmax (Li et al. 2018), additive Softmax (Wang et al. 2018), additive angular 

margins (Deng et al. 2019)].

When the Stage 2 face training is complete, the last fully connected layer that connects to 

the 50,000+ face identity nodes is removed, leaving below it a relatively low-dimensional 

(128- to 5,000-unit) layer of output units. This can be thought of as the face representation. 

This output represents a face image, not a face identity. At this point in training, any 

arbitrary face image from any identity (known or unknown to the network) can be processed 

by the DCNN to produce a compact face image descriptor across the units of this layer. If 

the network functions perfectly, then it will produce identical codes for all images of the 

same person. This would amount to perfect image and appearance generalization. This is not 

usually achieved, even when the network is highly accurate (see Section 2).

In this state, the network is commonly employed to recognize faces not seen in training 

(unfamiliar faces). Stage 2 training supports a surprising degree of generalization (e.g., 
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pose, expression, illumination, and appearance) for images of unfamiliar faces. This general 

face learning gives the system special knowledge of faces and enables it to perform within-

category face discrimination for unfamiliar faces (O’Toole et al. 2018). With or without 

Stage 3 training, the network is now capable of converting images of faces into points in a 

high-dimensional space, which, as noted above, is the primary goal of training. In practice, 

however, Stages 3 and 4 can provide a critical bridge to modeling behavioral characteristics 

of the human face processing system.

4.2.3. Adapting to local statistics of people and visual environments: Stage 
3.—The objective of Stage 3 training is to finalize the modification of the DCNN weights to 

better adapt to the application domain. The term application domain can refer to faces from 

a particular race or ethnicity or, as it is commonly used in industry, to the type of images 

to be processed (e.g., in-the-wild faces, passport photographs). This training is a crucial step 

in many applications because there will be no further transformation of the weights. Special 

care is needed in this training to avoid collapsing the representation into a form that is too 

specific. Training at this stage can improve performance for some faces and decrease it for 

others.

Whereas Stages 1 and 2 are used in the vast majority of published computational work, in 

Stage 3, researchers diverge. Although there is no standard implementation for this training, 

fine-tuning and learning a triplet loss embedding (van der Maaten & Weinberger 2012) are 

common methods. These methods are conceptually similar but differ in implementation. 

In both methods, (a) new layers are added to the network, (b) specific subsets of layers 

are frozen or unfrozen, and (c) optimization continues with an appropriate loss function 

using a new data set with the desired domain characteristics. Fine-tuning starts from an 

already-viable network state and updates a nonempty subset of weights, or possibly all 

weights. It is typically implemented with smaller learning rates and can use smaller training 

sets than those needed for full training. Triplet loss is implemented by freezing all layers and 

adding a new, fully connected layer. Minimization is done with the triplet loss, again on a 

new (smaller) data set with the desired domain characteristics.

A natural question is why Stage 2 (general face training) is not considered fine-tuning. The 

answer, in practice, comes down to viability and volume. When the training for Stage 2 

starts, the network is not in a viable state to perform face recognition. Therefore, it requires 

a voluminous, diverse data set to function. Stage 3 begins with a functional network and can 

be tuned effectively with a small targeted data set.

This face knowledge history provides a tool for adapting to local face statistics (e.g., race) 

(O’Toole et al. 2018).

4.2.4. Learning individual people: Stage 4.—In psychological terms, learning 

individual familiar faces involves seeing multiple, diverse images of the individuals to whom 

the faces belong. As we see more images of a person, we become more familiar with their 

face and can recognize it from increasingly variable images (Dowsett et al. 2016, Murphy et 

al. 2015, Ritchie & Burton 2017). In computational terms, this translates into the question of 

how a network can learn to recognize a random set of special (familiar) faces with greater 
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accuracy and robustness than other nonspecial (unfamiliar) faces—assuming, of course, 

the availability of multiple, variable images of the special faces. This stage of learning is 

defined, in nearly all cases, outside of the DCNN, with no change to weights within the 

DCNN.

The problem is as follows. The network starts with multiple images of each familiar identity 

and can produce a representation for each of the images–but what then? There is no standard 

familiarization protocol, but several approaches exist. We categorize these approaches first 

and link them to theoretical accounts of face familiarity in Section 4.3.3.

The first approach is averaging identity codes, or 1-class learning. It is common in machine 

learning to use an average (or weighted average) of the DCNN-generated face image 

representations as an identity code (see also Crosswhite et al. 2018, Su et al. 2015). 

Averaging creates a person-identity prototype (Noyes et al. 2021) for each familiar face.

The second is individual face contrast, or 2-class learning. This technique employs direct 

learning of individual identities by contrasting them with all other identities. There are two 

classes because the model learns what makes each identity (positive class) different than all 

other identities (negative class). The distinctiveness of each familiar face is enhanced relative 

to all other known faces (e.g., Noyes et al. 2021).

The third is multiple face contrast, or K-class learning. This refers to the use of identification 

training for a random set of (familiar) faces with a simple network (often a one-layer 

network). The network learns to map DCNN-generated face representations of the available 

images onto identity nodes.

The fourth approach is fine-tuning individual face representations. Fine-tuning has also been 

used for learning familiar identities (Blauch et al. 2020a). It is an unusual method because 

it alters weights within the DCNN itself. This can improve performance for the familiarized 

faces but can limit the network’s ability to represent other faces.

These methods create a personal face learning history that supports more accurate and robust 

face processing for familiar people (O’Toole et al. 2018).

4.3. Mapping Learning Between Humans and Machines

Deep networks rely on multiple types of learning that can be useful in formulating and 

testing complex, nuanced hypotheses about human face learning. Manipulable variables 

include order of learning, training data, and network plasticity at different learning stages. 

We consider a sample of topics in human face processing that can be investigated by 

manipulating learning in deep networks. Because these investigations are just beginning, we 

provide an overview of the work in progress and discuss possible next steps in modeling.

4.3.1. Development of face processing.—Early infants’ experience with faces is 

critical for the development of face processing skills (Maurer et al. 2002). The timing of this 

experience has become increasingly clear with the availability of data sets gathered using 

head-mounted cameras in infants (1–15 months of age) (e.g., Jayaraman et al. 2015, Yoshida 

& Smith 2008). In seeing the world from the perspective of the infant, it becomes clear 
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that the development of sensorimotor abilities drives visual experience. Infants’ experience 

transitions from seeing only what is made available to them (often faces in the near range), 

to seeing the world from the perspective of a crawler (objects and environments), to seeing 

hands and the objects that they manipulate (Fausey et al. 2016, Jayaraman et al. 2015, 

Smith & Slone 2017, Sugden & Moulson 2017). Between 1 and 3 months of age, faces are 

frequent, temporally persistent, and viewed frontally at close range. This early experience 

with faces is limited to a few individuals. Faces become less frequent as the child’s first year 

progresses and attention shifts to the environment, to objects, and later to hands (Jayaraman 

& Smith 2019).

The prevalence of a few important faces in the infants’ visual world suggests that early 

face learning may have an out-sized influence on structuring visual recognition systems. 

Infants’ visual experience of objects, faces, and environments can provide a curriculum for 

teaching machines (Smith et al. 2018). DCNNs can be used to test hypotheses about the 

emergence of competence on different face processing tasks. Some basic computational 

challenges, however, need to be addressed. Training with very large numbers of objects (or 

faces) is required for deep network learning to converge (see Section 4.2.1). Starting small 

and building competence on multiple domains (faces, objects, environments) might require 

basic changes to deep network training. Alternatively, the small number of special faces in 

an infant’s life might be considered familiar faces. Perception and memory of these faces 

may be better modeled using tools that operate outside the deep network on representations 

that develop within the network (Stage 4 learning; Section 4.2.4). In this case, the quality of 

the representation produced at different points in a network’s development of more general 

visual knowledge varies (Stages 1 and 2 of training; Sections 4.2.1 and 4.2.2). The learning 

of these special faces early in development might interact with the learning of objects and 

scenes at the categorical level (Rosch et al. 1976, Yovel et al. 2012). A promising approach 

would involve pausing training in Stages 1 and 2 to test face representation quality at various 

points along the way to convergence.

4.3.2. Race bias in the performance of humans and deep networks.—People 

recognize own-race faces more accurately than other-race faces. For humans, this other-race 

effect begins in infancy (Kelly et al. 2005, 2007) and is manifest in children (Pezdek et al. 

2003). Although it is possible to reverse these effects in childhood (Sangrigoli et al. 2005), 

training adults to recognize other-race faces yields only modest gains (e.g., Cavazos et al. 

2019, Hayward et al. 2017, Laurence et al. 2016, Matthews & Mondloch 2018, Tanaka & 

Pierce 2009). Concomitantly, evidence for the experience-based contact hypothesis is weak 

when it is evaluated in adulthood (Levin 2000). Clearly, the timing of experience is critical 

in the other-race effect. Developmental learning, which results in perceptual narrowing 

during a critical childhood period, may provide a partial account of the other-race effect 

(Kelly et al. 2007, Sangrigoli et al. 2005, Scott & Monesson 2010).

Perceptual narrowing:

sculpting of neural and perceptual processing via experience during a critical period in 

child development
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Face recognition algorithms from the 1990s and present-day DCNNs differ in accuracy 

for faces of different races (for a review, see Cavazos et al. 2020; for a comprehensive 

test of race bias in DCNNs, see Grother et al. 2019). Although training with faces of 

different races is often cited as a cause of race effects, it is unclear which training stage(s) 

contribute to the bias. It is likely that biased learning affects all learning stages. From the 

human perspective, for many people, experience favors own-race faces across the lifespan, 

potentially impacting performance through multiple learning mechanisms (developmental, 

unfamiliar, and familiar face learning). DCNN training may also use race-biased data at all 

stages. For humans, understanding the role of different types of learning in the other-race 

effect is challenging because experience with faces cannot be controlled. DCNNs can serve 

as a tool for studying critical periods and perceptual narrowing. It is possible to compare 

the face representations that emerge from training regimes that vary in the time course of 

exposure to faces of different races. The ability to manipulate training stage order, network 

plasticity, and training set diversity in deep networks offers an opportunity to test hypotheses 

about how bias emerges. The major challenge for DCNNs is the limited availability of face 

databases that represent the diversity of humans.

4.3.3. Familiar versus unfamiliar face recognition.—Face familiarity in a deep 

network can be modeled in more ways than we can count. The approaches presented in 

Section 4.2.4 are just a beginning. Researchers should focus first on the big questions. 

How do familiar and unfamiliar face representations differ—beyond simple accuracy and 

robustness? This has been much debated recently, and many questions remain (Blauch et 

al. 2020a,b; Young & Burton 2020; Yovel & Abudarham 2020). One approach is to ask 

where in the learning process representations for familiar and unfamiliar faces diverge. The 

methods outlined in Section 4.2.4 make some predictions.

In the individual and multiple face contrast methods, familiar and unfamiliar face 

representations are not differentiated within the deep network. Instead, familiar face 

representations generated by the DCNN are enhanced in another, simpler network populated 

with known faces. A familiar face’s representation is affected, therefore, by the other faces 

that we know well. Contrast techniques have preliminary empirical support. In the work of 

Noyes et al. (2021), familiarization using individual-face contrast improved identification for 

both evasion and impersonation disguise. It also produced a pattern of accuracy similar to 

that seen for people familiar with the disguised individuals (Noyes & Jenkins 2019). For 

humans who were unfamiliar with the disguised faces, the pattern of accuracy resembled 

that seen after general face training inside of the DCNN. There is also support for multiple-

face contrast familiarization. Perceptual expertise findings that emphasize the selective 

effects of the exemplars experienced during highly skilled learning are consistent with this 

approach (Collins & Behrmann 2020) (see Section 3.2).

Familiarization by averaging and fine-tuning both improve performance, but at a cost. 

For example, averaging the DCNN representations increased performance for evasion 

disguise by increasing tolerance for appearance variation (Noyes et al. 2021). It decreased 

performance, however, for imposter disguise by allowing too much tolerance for appearance 

variation. Averaging methods highlight the need to balance the perception of identity across 

variable images with an ability to tell similar faces apart.
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Familiarization via fine-tuning was explored by Blauch et al. (2020a), who varied the 

number of layers tuned (all layers, fully connected layers, only the fully connected layer 

mapping the perceptual layer to identity nodes). Fine-tuning applied at lower layers alters 

the weights within the deep network to produce a perceptual representation potentially 

affected by familiar faces. Fine-tuning in the mapping layer is equivalent to multiclass 

face contrast learning (Blauch et al. 2020b). Blauch et al. (2020b) show that fine-tuning 

the perceptual representation, which they consider analogous to perceptual learning, is not 

necessary for producing a familiarity effect (Blauch et al. 2020a).

These approaches are not (necessarily) mutually exclusive and therefore can be combined to 

exploit useful features of each.

4.3.4. Objects, faces, both.—The organization of face-, body-, and object-selective 

areas in the ventral temporal cortex has been studied intensively (cf. Grill-Spector & Weiner 

2014). Neuroimaging studies in childhood reveal the developmental time course of face 

selectivity and other high-level visual tasks (e.g., Natu et al. 2016; Nordt et al. 2019, 2020). 

How these systems interact during development in the context of constantly changing input 

from the environment is an open question. DCNNs can be used to test functional hypotheses 

about the development of object and face learning (see also Grill-Spector et al. 2018).

In the case of machine learning, face recognition networks are more accurate when 

pretrained to categorize objects (Liu et al. 2015, Yi et al. 2014), and networks trained 

with only faces are more accurate for face recognition than networks trained with only 

objects (Abudarham & Yovel 2020, Blauch et al. 2020a). Human-like viewpoint invariance 

was found in a DCNN trained for face recognition but not in one trained for object 

recognition (Abudarham & Yovel 2020). In machine learning, networks are trained first 

with objects, and then with faces. Moreover, networks can simultaneously learn object and 

face recognition (Dobs et al. 2020), which incurs minimal duplication of neural resources.

4.4. New Tools, New Questions, New Data, and a New Look at Old Data

Psychologists have long posited diverse and complex learning mechanisms for faces. Deep 

networks provide new tools that can be used to model human face learning with greater 

precision than was possible previously. This is useful because it encourages theoreticians to 

articulate hypotheses in ways specific enough to model. It may no longer be sufficient to 

explain a phenomenon in terms of generic learning or contact. Concepts such as perceptual 

narrowing should include ideas about where and how in the learning process this narrowing 

occurs. A major challenge ahead is the sheer number of knobs to be set in deep networks. 

Plasticity, for example, can be dialed up or down, and it can be applied to selected network 

layers or specific face diets administered across multiple learning stages (in sequence or 

simultaneously). The list goes on. In all of the topics discussed, and others not discussed, 

theoretical ideas should specify the manipulations thought to be most critical. We should 

follow the counsel of Box (1976) to avoid worrying selectivity and instead focus on what is 

most important. New tools succeed when they facilitate the discovery of things that we did 

not know or had not hypothesized. Testing these hypotheses will require new data and may 

suggest a reevaluation of existing data.
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5. THE PATH FORWARD

In this review, we highlight fundamental advances in thinking brought about by deep 

learning approaches. These networks solve the inverse optics problem for face identification 

by untangling image, appearance, and identity over layers of neural-like processing. 

This demonstrates that robust face identification can be achieved with a representation 

that includes specific information about the face image(s) actually experienced. These 

representations retain information about appearance, perceived traits, expressions, and 

identity.

Direct-fit models posit that deep networks operate by placing new observations into the 

context of past experience. These models depend on overparameterized networks that 

create a high-dimensional space from real-world training data. Face representations housed 

within this space project onto units, thereby confounding stimulus features that (may) 

separate in the high-dimensional space. This raises questions about the transparency and 

interpretability of information gained by examining the response properties of network units. 

Deep networks can be studied at the both micro- and macroscale simultaneously and can 

be used to formulate hypotheses about the underlying neural code for faces. A key to 

understanding face representations is to reconcile the responses of neurons to the structure 

of the code in the high-dimensional space. This is a challenging problem best approached by 

combining psychological, neural, and computational methods.

The process of training a deep network is complex and layered. It draws on learning 

mechanisms aimed at objects and faces, visual categories of faces (e.g., race), and special 

familiar faces. Psychological and neural theory considers the many ways in which people 

and brains learn faces from real-world visual experience. DCNNs offer the potential to 

implement and test sophisticated hypotheses about how humans learn faces across the 

lifespan.

We should not lose sight of the fact that a compelling reason to study deep networks is that 

they actually work, i.e., they perform nearly as well as humans, on face recognition tasks 

that have stymied computational modelers for decades. This might qualify as a property of 

deep networks that is importantly right (Box 1976). There is a difference, of course, between 

working and working like humans. Determining whether a deep network can work like 

humans, or could be made to do so by manipulating other properties of the network (e.g., 

architectures, training data, learning rules), is work that is just beginning.
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PERSPECTIVE: THEORIES AND MODELS OF FACE PROCESSING

Box (1976) reminds us that scientific progress comes from motivated iteration between 

theory and practice. In understanding human face processing, theories should be used to 

generate the questions, and machines (as models) should be used to answer the questions. 

Three elemental concepts are required for scientific progress. The first is flexibility. 

Effective iteration between theory and practice requires feedback between what the 

theory predicts and what the model reveals. The second is parsimony. Because all models 

are wrong, excessive elaboration will not find the correct model. Instead, economical 

descriptions of a phenomenon should be preferred over complex descriptions that capture 

less fundamental elements of human perception. Third, Box (1976, p. 792) cautions us 

to avoid “worrying selectivity” in model evaluation. As he puts it, “since all models are 

wrong, the scientist must be alert to what is importantly wrong.”

These principles represent a scientific ideal, rather than a reality in the field of face 

perception by humans and machines. Applying scientific principles to computational 

modeling of human face perception is challenging for diverse reasons (see the sidebar 

titled Caveat: Iteration Between Theory and Practice below). We argue, as Cichy & 

Kaiser (2019) have, that although the utility of scientific models is usually seen in terms 

of prediction and explanation, their function for exploration should not be underrated. 

As scientific models, DCNNs carry out high-level visual tasks in neurally inspired 

ways. They are at a level of development that is ripe for exploring computational and 

representational principles that actually work but are not understood. This is a classic 

problem in reverse engineering—yet the use of deep learning as a model introduces 

a dilemma. The goal of reverse engineering is to understand how a functional but 

highly complex system (e.g., the brain and human visual system) solves a problem 

(e.g., recognizes a face). To accomplish this, a well-understood model is used to test 

hypotheses about the underlying mechanisms of the complex system. A prerequisite of 

reverse engineering is that we understand how the model works. Failing that, we risk 

using one poorly understood system to test hypotheses about another poorly understood 

system. Although deep networks are not black boxes (every parameter is knowable) 

(Hasson et al. 2020), we do not fully understand how they recognize faces (Poggio et 

al. 2020). Therefore, the primary goal should be to understand deep networks for face 

recognition at a conceptual and representational level.
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CAVEAT: ITERATION BETWEEN THEORY AND PRACTICE

Box (1976) noted that scientific progress depends on motivated iteration between theory 

and practice. Unfortunately, a motivation to iterate between theory and practice is not a 

reasonable expectation for the field of computer-based face recognition. Automated face 

recognition is big business, and the best models were not developed to study human 

face processing. DCNNs provide a neurally inspired, but not copied, solution to face 

processing tasks. Computer scientists formulated DCNNs at an abstract level, based on 

neural networks from the 1980s (Fukushima 1988). Current DCNN-based models of 

human face processing are computationally refined, scaled-up versions of these older 

networks. Algorithm developers make design and training decisions for performance and 

computational efficiency. In using DCNNs to model human face perception, researchers 

must choose between smaller, controlled models and larger-scale, uncontrolled networks 

(see also Richards et al. 2019). Controlled models are easier to analyze but can be 

limited in computational power and training data diversity. Uncontrolled models better 

emulate real neural systems but may be intractable. The easy availability of cutting-edge 

pretrained face recognition models, with a variety of architectures, has been the deciding 

factor for many research labs with limited resources and expertise to develop networks. 

Given the widespread use of these models in vision science, brain-similarity metrics for 

artificial neural networks have been developed (Schrimpf et al. 2018). These produce 

a Brain-Score made up of a composite of neural and behavioral benchmarks. Some 

large-scale (uncontrolled) network architectures used in modeling human face processing 

(See Section 2.1) score well on these metrics.

A promising long-term strategy is to increase the neural accuracy of deep networks 

(Grill-Spector et al. 2018). The ventral visual stream and DCNNs both enable 

hierarchical and feedforward processing. This offers two computational benefits 

consistent with DCNNs as models of human face processing. First, the universal 

approximation theorem (Hornik et al. 1989) ensures that both types of networks can 

approximate any complex continuous function relating the input (visual image) to the 

output (face identity). Second, linear and nonlinear feedforward connections enable fast 

computation consistent with the speed of human facial recognition (Grill-Spector et al. 

2018, Thorpe et al. 1996). Although current DCNNs lack other properties of the ventral 

visual system, these can be implemented as the field progresses.
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NEURONS, NEURAL TUNING, POPULATION CODES, FEATURES, AND 
PERCEPTUAL CONSTANCY

Barlow (1972, p. 371) wrote, “Results obtained by recording from single neurons in 

sensory pathways…obviously tell us something important about how we sense the world 

around us; but what exactly have we been told?” In answer, Barlow (1972, p. 371) 

proposed that “our perceptions are caused by the activity of a rather small number 

of neurons selected from a very large population of predominantly silent cells. The 

activity of each single cell is thus an important perceptual event and it is thought to be 

related quite simply to our subjective experience.” Although this proposal is sometimes 

caricatured as the grandmother cell doctrine (see also Gross 2002), Barlow simply asserts 

that single-unit activity can be interpreted in perceptual terms, and that the responses 

of small numbers of units, in combination, underlie subjective perceptual experience. 

This proposal reflects ideas gleaned from studies of early visual areas that have been 

translated, at least in part, to studies of high-level vision.

Over the past decade, single neurons in face patches have been characterized as selective 

for facial features (e.g., aspect ratio, hair length, eyebrow height) (Freiwald et al. 2009), 

face viewpoint and identity (Freiwald & Tsao 2010), eyes (Issa & DiCarlo 2012), and 

shape or appearance parameters from an active appearance model of facial synthesis 

(Chang & Tsao 2017). Neurophysiological studies of face and object processing also 

employ techniques aimed at understanding neural population codes. Using the pattern 

of neural responses in a population of neurons (e.g., IT), linear classifiers are used 

often to predict subjective percepts (commonly defined as the image viewed). For 

example, Chang & Tsao (2017) showed that face images viewed by a macaque could 

be reconstructed using a linear combination of the activity of just 205 face cells in face 

patches ML–MF and AM. This classifier provides a real neural network model of the 

face-selective cortex that can be interpreted in simple terms.

Population code models generated from real neural data (a few hundred units), however, 

differ substantially in scale from the face- and object-selective cortical regions that they 

model (1mm3 of the cerebral cortex contains approximately 50,000 neurons and 300 

million adjustable parameters; Azevedo et al. 2009, Kandel et al. 2000, Hasson et al. 

2020). This difference in scale is at the core of a tension between model interpretability 

and real-world task generalizability (Hasson et al. 2020). It also creates tension between 

the neural coding hypotheses suggested by deep learning and the limitations of current 

neuroscience techniques for testing these hypotheses. To model neural function, an 

electrode gives access to single neurons and (with multi-unit recordings) to relatively 

small numbers of neurons (a few hundred). Neurocomputational theory based on direct 

fit models posits that overparameterization (i.e., the extremely high number of parameters 

available for neural computation) is critical to the brain’s solution to real-world problems 

(see Section 3.2). Bridging the gap between the computational and neural scale of these 

perspectives remains an ongoing challenge for the field.
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SUMMARY POINTS

1. Face representations generated by DCNN networks trained for identification 

retain information about the face (e.g., identity, demographics, attributes, 

traits, expression) and the image (e.g., viewpoint).

2. Deep learning face networks generate a surprisingly structured face 

representation from unstructured training with in-the-wild face images.

3. Individual output units from deep networks are unlikely to signal the presence 

of interpretable features.

4. Fundamental structural aspects of high-level visual codes for faces in deep 

networks replicate over a wide variety of network architectures.

5. Diverse learning mechanisms in DCNNs, applied simultaneously or in 

sequence, can be used to model human face perception across the lifespan.
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FUTURE ISSUES

1. Large-scale systematic manipulations of training data (race, ethnicity, image 

variability) are needed to give insight into the role of experience in structuring 

face representations.

2. Fundamental challenges remain in understanding how to combine deep 

networks for face, object, and scene recognition in ways analogous to the 

human visual system.

3. Deep networks model the ventral visual stream at a generic level, arguably up 

to the level of the IT cortex. Future work should examine how downstream 

systems, such as face patches, could be connected into this system.

4. In rethinking the goals of face processing, we argue in this review that 

some longstanding assumptions about visual representations should be 

reconsidered. Future work should consider novel experimental questions and 

employ methods that do not rely on these assumptions.
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Figure 1. 
The progress of computer-based face recognition systems can be tracked by their ability to 

recognize faces with increasing levels of image and appearance variability. In 2006, highly 

controlled, cropped face images with moderate variability, such as the images of the same 

person shown, were challenging (images adapted with permission from Sim et al. 2002). In 

2012, algorithms could tackle moderate image and appearance variability (the top 4 images 

are extreme examples adapted with permission from Huang et al. 2012; the bottom two 

images adapted with permission from Phillips et al. 2011). By 2018, deep convolutional 

neural networks (DCNNs) began to tackle wide variation in image and appearance, (images 

adapted with permission from the database in Maze et al. 2018). In the 2012 and 2018 

images, all side-by side images show the same person except the bottom pair of 2018 panels.
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Figure 2. 
Visualization of the top-level deep convolutional neural network (DCNN) similarity space 

for all images from Hill et al. (2019). (a–f) Points are colored according to different 

variables. Grey polygonal borders are for illustration purposes only and show the convex 

hull of all images of each identity. These convex hulls are expanded by a margin for 

visibility. The network separates identities accurately. In panels a and d, the space is divided 

into male and female sections. In panels b and e, illumination conditions subdivide within 

identity groupings. In panels c and f, the viewpoint varies sequentially within illumination 

clusters. Dotted-line boxes in panels a–c show areas enlarged in panels d–g. Figure adapted 

with permission from Hill et al. (2019).
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Figure 3. 
Illustration of the separation of the task-relevant information into subspaces for an identity-

trained deep convolutional neural network (DCNN). Each plot shows the similarity (cosine) 

between principal components (PCs) of the face space and directional vectors in the space 

that are diagnostic of identity (top), gender (middle), and viewpoint (bottom). Figure 

adapted with permission from Parde et al. (2021).
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Figure 4. 
(a) A model with too few parameters fails to fit the data. (b) The ideal-fit model fits 

with a small number of parameters and has generative power that supports interpolation 

and extrapolation. (c) An overfit function can model noise in the training data. (d) An 

overparameterized model generalizes well to new stimuli within the scope of the training 

samples. Figure adapted with permission from Hasson et al. (2020).
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