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Introduction

The bulk of malignant cells in cancer patients are 
rapidly proliferating differentiated cancer cells, and a 
small fraction of the malignant cells are undifferenti-
ated cancer stem cells (CSCs). CSCs reside in spe-
cific microenvironments or niches where they are 
maintained in a slowly dividing or quiescent state. 
Quiescence of CSCs protects them from the cyto-
toxic effects of chemotherapy and radiotherapy, 
as these therapeutic strategies preferentially target 
proliferating cells. CSC protection in their niches 

causes recurrence of cancer demonstrating the 
importance to develop therapeutic strategies focused 
on CSCs.1–8
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Summary
Energy production by means of ATP synthesis in cancer cells has been investigated frequently as a potential therapeutic 
target in this century. Both (an)aerobic glycolysis and oxidative phosphorylation (OXPHOS) have been studied. Here, we 
review recent literature on energy production in glioblastoma stem cells (GSCs) and leukemic stem cells (LSCs) versus 
their normal counterparts, neural stem cells (NSCs) and hematopoietic stem cells (HSCs), respectively. These two cancer 
stem cell types were compared because their niches in glioblastoma tumors and in bone marrow are similar. In this study, it 
became apparent that (1) ATP is produced in NSCs and HSCs by anaerobic glycolysis, whereas fatty acid oxidation (FAO) 
is essential for their stem cell fate and (2) ATP is produced in GSCs and LSCs by OXPHOS despite the hypoxic conditions 
in their niches with FAO and amino acids providing its substrate. These metabolic processes appeared to be under 
tight control of cellular regulation mechanisms which are discussed in depth. However, our conclusion is that systemic 
therapeutic targeting of ATP production via glycolysis or OXPHOS is not an attractive option because of its unwanted side 
effects in cancer patients. (J Histochem Cytochem 70:29–51, 2022)
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In this review, we discuss targeting of the energy 
metabolism of CSCs in their niches as therapeutic 
strategy. We focus on the synthesis of ATP in glioblas-
toma stem cells (GSCs) in primary brain tumor patients 
and in leukemic stem cells (LSCs) in the bone marrow 
of leukemia patients. ATP synthesis in these stem cell 
types is the focus of our comparison because we have 
previously shown that GSC niches in glioblastoma 
tumors and LSC niches in bone marrow are function-
ally and morphologically similar.9,10 Therefore, energy 
metabolism may well be regulated in a similar way.

(Cancer) Stem Cell Niches

There has been confusion about types of hematopoi-
etic stem cell (HSC)/LSC niches and GSC niches. In 
the past, three types of HSC/LSC niches were 
reported, endosteal, reticular, and perivascular niches, 
whereas five types of GSC niches, perivascular, extra-
cellular matrix (ECM), periarteriolar, perihypoxic, and 
peri-immune niches, have been described. We have 
performed thorough morphological and histological/
histochemical analyses of HSC/LSC niches in human 
bone marrow and GSC niches in human glioblastoma 
tumors. On the basis of these studies, we came to the 
conclusion that both in bone marrow and in glioblas-
toma tumors, only one type of niche exists, the hypoxic 
periarteriolar HSC/LSC and GSC niche and that the 
subtypes that have been described in the past are 
in fact characteristics of that hypoxic periarteriolar 

niche.11–13 We have analyzed quantitatively in sections 
of 16 glioblastoma tumors how many arterioles, capil-
laries, or venules were associated with markers of 
GSCs and their niches. We found GSC niches around 
seven arterioles out of 335 investigated or 2% of arte-
rioles were surrounded by a niche, whereas 924 
venules and 8085 capillaries were not associated with 
GSC niche characteristics.12

In the subventricular zone (SVZ), neural stem cell 
(NSC) niches are hypoxic but not periarteriolar (see 
below). Hypoxia induces and maintains the stemness 
of CSCs and CSCs are well-protected because of their 
low proliferation rate and their well-developed DNA 
repair mechanisms and drug efflux pumps. Receptor-
chemoattractant interactions are responsible for stem 
cell maintenance and retention of stem cells in the 
niches, such as interactions between C-X-C receptor 
type 4 (CXCR4) and chemokine stromal derived factor-
1α (SDF-1α, also named CXCL12), between receptor 
CD44 and chemokine osteopontin (OPN),9,10,12–15 and 
between angiopoietin 1 (Ang1) and its tyrosine kinase 
receptor Tie2.11,16–18 The stemness of CSCs in the 
present review is considered to be characterized by 
the expression of stem cell markers.

GSCs are present in GSC niches in glioblastoma 
tumors and in the SVZ in brains of glioblastoma 
patients (Fig. 1).19 The SVZ is a major niche of normal 
NSCs. The SVZ is morphologically different from GSC 
and HSC/LSC niches, as the SVZ is not associated 
with arterioles, but there is also a close association 

Figure 1.  Immunofluorescence images of paraffin sections of a human SVZ (A) and a human glioblastoma tumor (B) showing NSCs 
and GSCs in the SVZ (A) and GSCs in a periarteriolar niche in the tumor (B). In the SVZ, NSCs are stained in yellow without pink 
staining (CD133+and CD9−) and GSCs are stained in yellow and pink (CD133+ and CD9+), whereas cell nuclei are stained in white. 
In the periarteriolar niche in the glioblastoma tumor, GSCs are stained in yellow with white nuclei. The images were constructed on 
the basis of monochrome images in green, red, and blue after immunofluorescence staining which are shown in Supplemental Figure 
1. The pseudocolor images have been constructed to facilitate clear discrimination of NSCs and GSCs by the color-blind readership 
according to Jambor et al.23 a, lumen of arteriole. Bars, 100 µm. Images have been prepared on the basis of images in Hira et al.9,19 
Abbreviations: SMA, smooth muscle actin; SVZ, subventricular zone; NSCs, neural stem cells; GSCs, glioblastoma stem cells; DAPI, 
4′,6-diamidino-2-phenylindole.
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with blood vessels.18 The SVZ is hypoxic and the 
CXCR4-SDF1α and CD44-OPN interactions are also 
associated with homing of GSCs in the SVZ. Thus, 
GSCs can escape from the effects of cytotoxic therapy 
in the SVZ as they are maintained in slowly dividing 
state and are not removed during surgical resection of 
the tumor. The origin of GSCs is not exactly known. 
One hypothesis is that GSCs originate from NSCs in 
the SVZ and have migrated to form a glioblastoma 
tumor in the brain at distance from the SVZ.20,21 
Another hypothesis is that GSCs arise in the glioblas-
toma tumor, from which they migrate into the SVZ.22

In leukemia patients, LSCs are present in HSC 
niches (Fig. 2) where they are protected in a similar 
way as GSCs in their niches in glioblastoma tumors 
and the SVZ.

Isocitrate Dehydrogenase 1/2 
Mutations and ATP Synthesis

Besides the similarity of HSC niches in bone marrow 
that harbor LSCs in leukemia patients and GSC niches 
in glioblastoma tumors, there is another remarkable 
similarity between glioblastoma and leukemia and in 
particular acute myeloid leukemia (AML). Both types 
of cancer are induced in a considerable percentage of 
patients by a distinct mutation in the NADP-dependent 
isocitrate dehydrogenase (IDH) 1 or 2 genes (10–40% 
of AML patients and 5% of glioblastoma patients). 
As IDH1 and IDH2 are both involved in energy 
metabolism including OXPHOS (for recent reviews, 

see previous studies25–27), the effects of the IDH1 and 
IDH2 mutations on ATP production in GSCs and LSCs 
are discussed as well. The mutation occurs in either 
the IDH1 or IDH2 gene in similar amounts in AML 
patients and almost uniquely in IDH1 in glioblastoma,28 
although recently a significant number of IDH2 
mutations were found in glioblastoma patients in the 
Hispanic population in the United States and Mexico.29

ATP Synthesis Pathways

We discuss in the present review ATP synthesis in 
benign and malignant stem cells in the bone marrow 
and the brain, HSCs, NSCs, LSCs, and GSCs (Figs. 1 
and 2). Two major pathways are available in cells for 
ATP production (Fig. 3). The most efficient pathway is 
mitochondrial respiration with the use of oxygen that 
generates 36-mol ATP per mol glucose, whereas cyto-
plasmic glycolysis produces 4-mol ATP per mol glu-
cose without the use of oxygen. ATP production by the 
inefficient glycolytic pathway is a salvage pathway for 
ATP production in case cells are short of oxygen. In 
that anaerobic process, lactate is generated from pyru-
vate and in the early steps of glycolysis, 2-mol ATP per 
mol glucose are needed to keep glycolysis running, 
yielding a net 2-mol ATP per mol glucose from glycoly-
sis. When oxygen is available (aerobic conditions), 
pyruvate is channeled into mitochondria for the more 
efficient ATP production in the oxidative phosphoryla-
tion (OXPHOS) as part of the mitochondrial respiration 
(Fig. 3).

Figure 2.  Chromogenic immunohistochemical images of paraffin sections of human bone marrow. (A) Human CD150-positive HSCs 
(brown) in their periarteriolar niche in healthy bone marrow adjacent to bone and (B) human CD123-positive LSCs (red, arrow head) 
in a HSC niche in bone marrow of a leukemia patient. Endothelial cells of capillaries are CD123 positive as well (asterisk). Hematoxylin 
staining in blue. a, lumen of arteriole. Bars, (A) 100 µm, (B) 25 µm. Tissue sections and staining are prepared according to Hira et al.9 
(A) and El Achi et al.24 Abbreviations: HSCs, hematopoietic stem cells; LSCs, leukemic stem cells.
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It was generally assumed until recently that cancer 
cells use glycolysis irrespective the presence of oxy-
gen as a consequence of dysfunctional or impaired 
mitochondria. However, in most tumors, the use of gly-
colysis for ATP production independently of the pres-
ence of oxygen is an essential part of a “selfish” 
metabolic reprogramming as was explained recently 
by Vaupel and Multhoff.30 Therefore, we have investi-
gated at the electron microscopical (EM) level the 
morphology of mitochondria in differentiated glioblas-
toma cells and GSCs (Fig. 4). The morphology of 
mitochondria from the level of individual mitochon-
drion ultrastructure to the level of the entire mitochon-
drial network in a cell reflects mitochondrial function.31 
Ultrastructurally, the morphology of cristae can be 
highly variable in accordance with the metabolic 
state of mitochondria32,33 and processes that cause 
their functional decline, such as aging.34 Generally, 
more numerous, tightly packed cristae support more 

efficient OXPHOS because the cristae establish inner 
mitochondrial compartments and accommodate pro-
tein complexes of the electron transport chain and ATP 
synthase.35 These protein complexes in turn impact 
the shape of mitochondrial cristae.36–38 Regarding the 
mitochondrial network, mitochondrial fusion that 
produces highly elongated mitochondria supports 
efficient OXPHOS, whereas mitochondrial fission 
that results in smaller and rounded mitochondria 
promotes glycolysis and greater biosynthesis of ana-
bolic precursors.39,40 It appeared that in all glioblas-
toma cells investigated be it differentiated cells or 
GSCs, the morphology of mitochondria is deviant from 
normal cells. Mitochondria in glioblastoma cells are 
generally small, with very dense matrices and disorga-
nized cristae, which is in line with the assumption that 
glycolysis is used by cancer cells for ATP production 
because of defective mitochondria. Similar defective 
mitochondrial ultrastructure in line with a glycolytic 

Figure 3.  Scheme of cellular ATP synthesis via (an)aerobic glycolysis in the cytoplasm (green) and in mitochondria via OXPHOS 
(black). The image was created using Biorender.com. Abbreviations: OXPHOS, oxidative phosphorylation; TCA, tricarboxylic acid 
cycle.
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phenotype was reported also by Vallejo et al.41 for adult 
and pediatric glioblastoma. Therefore, we are investi-
gating at present the activity of the electron transport 
chain in mitochondria of glioblastoma cells at the ultra-
structural level using enzyme histochemical methods, 
such as that for demonstrating cytochrome c oxidase 
activity.42

Nowadays, it is realized that proliferating cells such 
as differentiated cancer cells predominantly use glu-
cose for ATP production in the cytoplasmic glycolysis 
instead of OXPHOS independently of the presence of 
oxygen (the so-called Warburg effect or aerobic gly-
colysis) because glycolysis enables synthesis of build-
ing blocks for macromolecules needed by proliferating 

cells.30,45,46 Moreover, ample NADPH production is 
also facilitated in this way for reductive biosynthetic 
reactions.45,47

Quiescent undifferentiated CSCs have a modest 
need for building blocks and excessive NADPH pro-
duction because of their slow proliferation rate and, 
thus, the question arises what metabolic pathways are 
used by normal stem cells such as HSCs and NSCs 
and by CSCs such as LSCs and GSCs for ATP pro-
duction in their hypoxic niche microenvironment. 
We discuss the cell biological regulation mechanisms 
of these metabolic pathways as far as these are pres-
ently known. These cell biological regulation mecha-
nisms are explained briefly in texts in Boxes that are 

Figure 4.  Electron microscopical (EM) images of mitochondria in human GSCs (A, NCH421 and B, NCH644 primary patient GSCs) 
and in human  differentiated glioblastoma cells (C, U87 cancer cells and D, NIB140 primary patient cancer cells) showing the deviant 
morphology of mitochondria with relatively few and often dilated cristae (DC) and very electron-dense matrices (DM) in both GSCs and 
differentiated glioblastoma cells indicating that glycolysis rather than OXPHOS is used by these cells for ATP production. Bars, 1 µm. 
NCH421 and NCH644 cells are a kind gift of Prof. Dr Christel Herold-Mende, University of Heidelberg, Germany.43 Cell preparations 
and EM imaging procedures were performed as described in Bogataj et al.44 Abbreviations: DC, dilated cristae; GSCs, glioblastoma stem 
cells; OXPHOS, oxidative phosphorylation.
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separate from the main body of text on ATP production 
in HSCs, NSCs, LSCs, and GSCs.

Energy Metabolism of HSCs

HSCs are resident in niches in human bone marrow 
which are hypoxic and periarteriolar and express the 
chemoattractants SDF1α and OPN and their receptors 
CXCR4 and CD44, respectively, which are essential 
for the homing of the slowly dividing or quiescent 
HSCs.9,10 HSC niches are present in red bone marrow 
around arterioles adjacent to endosteum and trabecu-
lar bone. HSC niches are hypoxic despite the fact that 
they are uniquely found around arterioles, but arteri-
oles are transport vessels and not exchange vessels 
like capillaries and thus HSC niches do not receive 
oxygen from the arteriolar lumen.12,13 HSCs produce 
low levels of intracellular reactive oxygen species 
(ROS).11 HSCs are at the top of the pyramid of blood 
cells above hematopoietic progenitor cells (HPCs) and 
differentiated red and white blood cells, including 
megakaryocytes that fragment into thrombocytes, also 
named platelets. In healthy humans, one trillion (1012) 
differentiated red and white blood cells are released 
into the circulation each day. Under normal conditions, 
only relatively few HSCs are involved in the formation 
of new mature red and white blood cells. The vast 
majority of that trillion red and white blood cells origi-
nate from rapidly dividing HPCs which are located in 
HPC niches in the center of the red bone marrow 
around the sinusoids and the central vein and are 
continuous with HSC niches in the periphery of red 

bone marrow around arterioles.11 The newly formed 
differentiating red and white blood cells are released 
into the sinusoids and leave the bone marrow via the 
central vein. The HSCs in their hypoxic periarteriolar 
niches at the periphery of the bone marrow are a life-
long reserve to ensure the availability of stem cells 
during the entire life of individuals and supply HPCs in 
times of depletion of red and/or white blood cells in 
cases of blood loss.48 The HPC niches are also hypoxic 
but intracellular levels of ROS in HPCs are higher than 
those in HSCs.11,49–52

Metabolism including ATP synthesis of HSCs, HPCs, 
and hematopoietic stem and progenitor cells (HSPCs) is 
probably the best studied metabolic aspect in stem cells 
because of the therapeutic relevance of metabolism on 
the ex vivo expansion of phenotypically and function-
ally defined HSPCs harvested from umbilical cord 
blood and peripheral blood for transplantation pur-
poses in malignant and non-malignant diseases.48,53–55 
The term HSPCs is used for the stem-like cells that are 
harvested from umbilical cord blood, bone marrow 
aspirate, and peripheral blood for these purposes.56 
The general consensus is that HSCs are anaerobic 
glycolytic, whereas during the proliferation phases of 
HPCs, the energy metabolism is mixed glycolytic and 
OXPHOS, mainly OXPHOS during the differentiation 
phase and again glycolytic in the maturation phase.54–58 
Anaerobic glycolysis in HSCs is determined by high 
levels of the transcription factors hypoxia-inducible 
factor-1 (HIF-1) and HIF-2 (see Box 1).9,48 Moreover, 
the SDF-1a-CXCR4 axis regulates OXPHOS activity in 
HSCs as well in a thus far unknown manner.59

Box 1.  Hypoxia-inducible Factors (HIFs).

HIF-1, HIF-2, and HIF-3 are heterodimeric transcription factors consisting of an oxygen-labile HIF-1α, HIF-2α, or HIF-3α monomer 
and a common stable β monomer.60,61 The labile monomers are continuously expressed and in normoxic conditions rapidly oxygen-
dependently hydroxylated, ubiquitinated, and proteosomally degraded. They become stabilized in hypoxic conditions.61–64 This 
complex system enables rapid responses to hypoxic insults without the need for de novo protein synthesis.61 When HIF-1α, HIF-2α, 
and HIF-3α become stabilized under hypoxic conditions, they translocate into the cell nucleus and heterodimerize with the stable 
β monomer (HIF-1β or ARNT) to become HIF-1, HIF-2, and HIF-3, respectively, and then bind to the hypoxia-responsive elements 
(HREs) of target genes.61–63 HIF-1 and HIF-2 are closely related and both activate HRE-dependent gene transcription.63 Relatively 
little is known of the function of HIF-3. It is considered to be a negative regulator of HIF-1 and HIF-2 by competition for HIF-1β60,65 
and plays a role in stroke-related diseases.60 HIF-1 and HIF-2 are closely related but transcription of genes differs and HIF-2 is stable 
at higher oxygen concentrations than HIF-1.61 HIF-1 is more acutely responsive to hypoxia, whereas HIF-2 is more chronically 
responsive.61,66 Moreover, HIF-1 induces preferentially transcription of genes of metabolic (glycolytic) enzymes, whereas HIF-2 
induces preferentially angiogenesis-related gene transcription.62,67 Both HIF-1 and HIF-2 promote stemness of cells.66 Downes et al.61 
analyzed which genes are transcriptionally regulated by HIF-1 and HIF-2 in primary human endothelial cells. HIF-1 induced expression 
of 700 genes, whereas HIF-2 induced expression of 1450 genes of which 300 genes were transcriptionally activated by both HIF-1 
and HIF-2.61 An alternative explanation for the differences in expression patterns regulated by HIF-1 and HIF-2 is a difference in cell 
types in which HIF-1 and HIF-2 are active.63 Indeed, we have observed differences in expression levels of HIF-2α and HIF-1α in GSCs 
and endothelial cells of arterioles, respectively.9,19 Inhibitors of HIF-1 and HIF-2 have been discussed recently for their potential use 
to target therapeutically cancer stem cells.68

Abbreviations: ARNT, aryl hydrocarbon receptor nuclear translocator; GSCs, glioblastoma stem cells.
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Both HIFs are master switches in cells to adapt to 
hypoxic conditions67 and are induced by peroxisome 
proliferator-activated receptors (PPARs; see Box 2), 
which are nuclear receptors that act as transcription 
factors.69 In fact, intracellular PPAR levels in HSCs are 
the highest measured in any cell type in the human 
body.70 Inhibition of PPARs promotes ex vivo expan-
sion of HSPCs.54 Moreover, the transcription factor 
Meis1 (see Box 3), that is expressed in HSCs, transac-
tivates HIF-1α expression by a Meis1-binding motif in 

the first intron of the HIF-1α gene.55,67 The transcrip-
tion factor forkhead box O3 (FOXO3; see Box 4) plays 
a role in many metabolic events in cells, among others 
protection against ROS, and is a key regulator of HSC 
quiescence and maintenance of the HSC pool.48 
Finally, autophagy (see Box 5) is also critically impor-
tant to maintain low mitochondrial metabolic activity 
and quiescence of HSCs.71,72 Autophagy and stem cell 
fate are under the control of transcription factor FOXO3 
in both normal stem cells and CSCs.71

Box 2.  Peroxisome Proliferator-activated Receptors (PPARs).

PPARα, PPARβ/δ, and PPARγ are key members of the nuclear receptor superfamily of transcription factors that sense nutrients and 
regulate metabolic pathways and in particular FAO.69,73 PPAR β/δ and PPARγ are relevant for HSCs, NSCs, LSCs, and GSCs.66 The 
PML-PPARβ/δ-FAO axis regulates the maintenance of HSC stemness via HIF-1 and HIF-2 activity.70,73 PPARγ is expressed in GSCs 
of the most aggressive subtype of glioblastoma, the mesenchymal subtype74 and in LSCs.75 Counterintuitively, activation of PPARγ 
by agonists is investigated as therapeutic option in GSCs and LSCs because PPARγ upregulation is associated with poor survival of 
glioblastoma patients.74 Hua et al.74 explained this therapeutic effect by PPAR agonists by inhibition of the STAT3 signaling pathway 
(see Box 8) that prevents a proneural-mesenchymal transition in glioblastoma. Yang et al.66 explained opposite therapeutic effects of 
agonists by differential binding to target genes.

Abbreviations: FAO, fatty acid oxidation; HSCs, hematopoietic stem cells; HIF, hypoxia-inducible factor; STAT3, signal transducer and activator of 
transcription 3; NSCs, neural stem cells; LSCs, leukemic stem cells; GSCs, glioblastoma stem cells; PML, promyelocytic leukemia protein.

Box 3.  Myeloid Ecotropic Viral Integration Site 1 (Meis1).

Transcription factor Meis1 was discovered in cancer as a viral integration site and is overexpressed in AML and neuroblastoma76–78 
and is associated with therapy resistance.79 Meis1 is in particular highly expressed in HSCs.80 Meis1 regulates HSC metabolism and 
redox state by inducing HIF-1α and HIF-2α expression.67 Meis1 is a transcription activator-like effector (TALE)-type transcription 
factor. It cooperates with PBX1 and HOXA9 transcription factors to transactivate target genes such as those of HIF-1α and  
HIF-2α.80 Knockdown of Meis1 causes downregulation of HIF-1 and HIF-2 activity with concomitant increased ROS levels and loss 
of HSC quiescence.81 Meis1 levels are frequently upregulated in AML.2,55,82 Recently, Turan et al.80 developed two small molecule 
Meis1 inhibitors to modulate HSC activity as Meis1 is a key regulator of HSCs. Meis1 inhibition downregulates HIF-1 and HIF-2 
activity and reduces HSC quiescence. Therefore, inhibitors of Meis1 may become applicable for transplantation purposes and in 
anticancer therapy.

Abbreviations: AML, acute myeloid leukemia; HSCs, hematopoietic stem cells; HIF, hypoxia-inducible factor; ROS, reactive oxygen species.

Box 4.  Forkhead Box O3 (FOXO3).

Transcription factors FOXO1, FOXO3, FOXO4, and FOXO6 are expressed in mammals in a tissue-specific manner.83–85 FOXO 
proteins and in particular FOXO3 are longevity genes.85 FOXO3 is an important transcription factor in stem cells and CSCs in blood 
and brain and thus for HSCs, NSCs, LSCs, and GSCs,86 whereas FOXO1 is an important transcription factor in endothelial cells.87,88 
The functions of nuclear FOXO1 and FOXO3 are largely overlapping.89 FOXO3 transcription activity promotes the stemness of 
stem cells and CSCs and their quiescence,86 whereas FOXO1 promotes quiescence of mature endothelial cells and is downregulated 
during angiogenesis.87,88 FOXO1 and FOXO3 promote glycolysis and inhibit OXPHOS and ROS production. As both FOXO1 and 
FOXO3 promote quiescence of cells, they are considered to be tumor suppressors, but this view may well be too simplistic.85,86,89 
FOXOs promote invasion and metastasis of cancer cells by promoting the epithelial–mesenchymal switch and by upregulation of 
the expression of various extracellular proteases.83,89 Furthermore, FOXO1 and FOXO3 upregulation is associated with poor 
prognosis of leukemia and glioblastoma patients and therapy resistance.89 This may well be a consequence of both protection of 
LSCs and GSCs and promotion of invasion and metastasis. As far as we know, these aspects of transcriptional activity of FOXO1 and 
especially FOXO3 have not yet been investigated, except for the studies of Firat and Niedermann84 and Xu et al.90 The first study 
demonstrated that FOXO3 is involved in GSC maintenance after irradiation84 and the second study showed that FOXO3 expression 
is high in temozolomide-resistant glioblastoma cells.90

Libby et al.86 state that it is intriguing that two cancer types (leukemia and glioblastoma) use one and the same protein (FOXO3) to 
keep the stemness of LSCs and GSCs and the related metabolic shift. Independently, we have concluded that niches of both HSCs 
and LSCs and of NSCs and GSCs are functionally similar.9,10

Abbreviations: OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; GSCs, glioblastoma stem cells; CSCs, cancer stem cells;  
HSCs, hematopoietic stem cells; NSCs, neural stem cells; LSCs, leukemic stem cells.
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A number of seemingly contradictory aspects is 
apparent in the energy metabolism of HSCs in their 
niches.48 A major issue is that HSCs are anaerobic gly-
colytic but cannot survive without mitochondria.48,100 
This riddle was at least partly solved by demonstrating 
that PPARs induce both cytoplasmic anaerobic gly-
colysis and mitochondrial fatty acid oxidation (FAO; 
Fig. 3).54,70,73 The latter is equally important for main-
taining a viable population of HSCs.70,101,102 OXPHOS 
is inhibited in HSC mitochondria at the level of pyruvate 
conversion into acetyl-CoA by pyruvate dehydroge-
nase after its phosphorylation by pyruvate dehydroge-
nase kinase (PDK).48,70,103 When PDK is inhibited, 
quiescence of HSCs is lost and levels of ROS are ele-
vated. Thus, pyruvate entry into the mitochondria has a 
strong impact on HSC fate.48 This finding shows that 
the presence of mitochondria does not mean that all 
their metabolic pathways are active.48,59,69,70,101,102 
HSC quiescence can also be interrupted by signaling 
from differentiated blood cells, for example, by the che-
mokine (C-C motif) ligand-6 (CCL-6) secreted by 
eosinophils.104

It has to be realized that the cellular mechanisms of 
HSCs as described here are not necessarily relevant 
for the in vivo situation in human red bone marrow. The 
studies have been performed either on mouse bone 
marrow or human ex vivo HSPCs harvested from 
umbilical cord blood or peripheral blood. For example, 
low levels of oxygen have been measured in HSC 
niches in mouse bone marrow.105 Nevertheless, we 
think it is safe to conclude that HSCs in their hypoxic 
periarteriolar niches adjacent to endosteum and tra-
becular bone are anaerobic glycolytic and only use 
particular functions of mitochondria, for example FAO, 
whereas other functions such as OXPHOS are shut 
down, to meet their metabolic needs as quiescent 

long-living cells. How HSCs exactly use mitochondria 
remains to be investigated.48 HSCs contain relatively 
many partially inactive mitochondria not only to meet 
their metabolic needs but also to be able to rapidly 
switch on mitochondrial activity in case HSCs need to 
become HPCs.48

In conclusion, HSCs are dependent on anaerobic 
glycolysis for their energy supply, whereas FAO is 
essential for their stem cell fate.

Energy Metabolism of NSCs

Energy metabolism of quiescent NSCs and the drastic 
alterations in this metabolism associated with the con-
version of NSCs into neural progenitor cells (NPCs) 
are very much the same as those of HSCs and HPCs, 
as is shown here.

The developing brain is mainly glycolytic and uses 
FAO, and this energy metabolism shifts toward the use 
of glucose rather than lipids during adolescence and 
becomes more and more OXPHOS dependent.106 In 
the adult brain, OXPHOS is the major source of ATP in 
neurons, whereas astrocytes remain glycolytic and 
produce lactate that is exported into the ECM to be 
consumed by neurons that take up lactate and convert 
it to pyruvate to fuel OXPHOS.86,106,107 However, cer-
tain areas of the human brain remain glycolytic and 
contain quiescent NSCs such as the SVZ that lines the 
lateral ventricles, the subgranular zone (SGZ) between 
the granule cell layer and the hilus of the dentate 
gyrus of the hippocampus, and a few areas in the 
hypothalamus.106,108–111 FOXO3 regulates glycolysis in 
NSCs and plays a significant role in the maintenance 
of the stem cell fate of NSCs in combination with the 
low oxygen levels in SVZ and SGZ in a similar way as 
in quiescent HSCs.86,108 It also stabilizes HIF-1α 

Box 5.  Autophagy.

In the lysosomes of cells, molecular substrates such as carbohydrates, proteins, lipids, and nucleic acids but also damaged organelles 
such as mitochondria and peroxisomes are degraded into their building blocks that can be reused in biosynthetic processes and 
metabolic processes. The acidic environment in lysosomes and the over 60 hydrolases that are active in the lumen of lysosomes are 
responsible for the degradation. Autophagy, endocytosis, and phagocytosis provide the molecular substrates.91 Autophagy plays an 
important role in stem cells because it is a protection mechanism for their quiescence and longevity by preventing cellular stress.92 
However, recently indications have been found that lysosomal regulation of stem cell metabolism is more than just autophagy. 
Lysosomes seem to play a central role in the regulation of HSC and NSC metabolism and their activation into HPCs and NPCs by 
coordinating anabolic and catabolic processes by nutrient sensing.91,93–96 Lysosomes are abundant in HSCs and NSCs and scarce in 
HPCs and NPCs.93,96 Fundamental research and clinical trials are ongoing at the moment to analyze whether inhibition of autophagy 
has anticancer therapeutic benefits92 because autophagy in GSCs and LSCs is involved in therapeutic resistance by removal of 
damaged cellular components.97 For example, repurposing of nicardipine, a calcium channel antagonist that is FDA approved to treat 
elevated blood pressure, in combination with temozolomide sensitizes GSCs to temozolomide by inhibiting autophagy.98 Autophagy 
protects cells during early steps of carcinogenesis, but once cancer cells are established, autophagy protects cancer cells against 
therapeutically induced cellular damage.92,97,99

Abbreviations: HSCs, hematopoietic stem cells; NSCs, neural stem cells; HPCs, hematopoietic progenitor cells; NPCs, neural progenitor cells;  
GSCs, glioblastoma stem cells; LSCs, leukemic stem cells; FDA, Food and Drug Administration.
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and thus regulates the activity of HIF-1 and possibly of 
HIF-2.86 Intracellular levels of promyelocytic leukemia 
protein (PML; see Box 6) that is involved in the forma-
tion of nuclear bodies in NSCs as well as in HSCs are 
also important for their quiescence. Loss of PML 
induces loss of quiescence and upregulation of prolif-
eration, whereas loss of PML has been found to be 
associated with decreased levels of PPARγ in HSCs.73,86

In rodents, NSCs of the SVZ are needed perma-
nently throughout life to differentiate into neurons and 
astrocytes that migrate toward the olfactory bulb, 
whereas in humans, this renewal of the neuronal cir-
cuits that are responsible for smell hardly occurs or 
does not occur at all.106,118,119 In humans, it has been 
observed that NSCs become NPCs that proliferate 
and differentiate as a consequence of ischemic stroke 
and that NPCs migrate to the damaged brain tissue for 
repair.108,120–123

Quiescent NSCs in the SVZ and SGZ are anaerobic 
glycolytic and need FAO,106,108 exactly like HSCs. The 
FAO inhibitor etomoxir causes depletion of both quies-
cent NSCs and HSCs indicating the importance of 
FAO for their stem cell fate.86,124–126 When NSCs 
become activated, for example, by an ROS spike and 
become NPCs, mitochondria switch to OXPHOS127–129 
and upregulate the redox state,128,130–132 whereas gly-
colysis and FAO are downregulated and lipogenesis is 
elevated.106,108 Upregulation of the redox state involves 
higher ROS production and more active defense 
mechanisms against ROS, which is orchestrated by 
increased expression of the transcription factor 
erythroid 2-related factor 2 (Nrf2; see Box 7) that 
senses oxidants and regulates antioxidant defense.133 
Besides the spike of ROS that can activate NSCs 
into NPCs, branched chain amino acids, the endog-
enous neuroprotective bile acid tauroursodeoxycho-
lic acid, interferon γ, and signal transducer and 
activator of transcription 3 (STAT3; see Box 8) have 
been reported recently to activate human NSCs into 
NPCs in vitro or in vivo in rodents.134–137 Whether these 
inducers of switches of NSCs into NPCs are active in 
vivo in humans is not known yet.

Finally, the role of glutamine/glutamate in NSCs and 
NPCs is not exactly known. Recently, a novel method-
ology to analyze dynamically cell metabolism in time 
was reported with the example of an extracellular shot 
of glutamine (15 mM) to both human NSCs and NPCs 
in vitro. Analysis of metabolites in the cells in time 
showed that NSCs and NPCs responded in a similar 
way to the extracellular glutamine shot and it mainly 
involved levels of amino acids, indicating that the glu-
tamine did not affect energy metabolism very much.148 
It may well be that glutamine/glutamate play their role 
in tumorigenesis.149

In conclusion, NSCs are dependent on anaerobic 
glycolysis for their energy supply, whereas FAO is 
essential for their stem cell fate. Thus, NSCs and 
HSCs function in very similar ways for their energy 
supply.

Energy Metabolism of LSCs

Similarly to their HSC counterparts, LSCs need a 
hypoxic environment. Therefore, hijacking the hypoxic 
periarteriolar HSC niches in bone marrow is an attrac-
tive option for LSCs.9,10 Metabolic pathways that 
provide metabolites needed for anabolic cell growth 
are upregulated in LSCs150 and mitochondria play an 
essential role in these pathways in LSCs as has 
recently been reviewed by Panuzzo et al.26 Whereas 
HSCs depend on anaerobic glycolysis for generation 
of ATP, LSCs produce ATP mainly via OXPHOS.26,151,152 
OXPHOS is more efficient as energy producer than 
glycolysis and sustains LSC energy requirements for 
survival.153 Damage by ROS that are generated by 
OXPHOS is resisted by antioxidative mechanisms.151 
Raffel et al.152 showed by quantitative proteomics that 
in comparison with HSCs, LSCs have a profoundly 
altered mitochondrial metabolism, both at the tran-
scriptional (mRNA) level and at the posttranslational 
(protein) level. Not only OXPHOS was distinctly differ-
ent but also FAO, lipid synthesis, and amino acid 
metabolism.26,152 Glutamine and glutamate are efficiently 
converted into α-KG via upregulated glutaminase 

Box 6.  Promyelocytic Leukemia Protein (PML).

PML is a protein that is active in the cell nucleus by the formation of nuclear bodies, the so-called PML-NBs.112 PML stabilizes the 
genome and interacts with at least 120 different cellular proteins by physical association with PML-NBs. It is considered to be a 
tumor suppressor protein because it downregulates cell proliferation, whereas its inactivation and downregulation are associated 
with cancer.112 PML induces quiescence of HSCs and NSCs and it stimulates their FAO and PPAR signaling.113,114 For the same 
reason, it is also important for LSCs and GSCs.86,115 Therefore, PML may be an important player in the protection of LSCs and GSCs 
in their niches and thus, PML may be a tumor suppressor protein that can also promote cancer as FOXO3 does.114,116 Therapeutic 
inhibition of PML eradicates LSCs.116 Furthermore, PML affects the tumor microenvironment as it inhibits angiogenesis via inhibition 
of mTOR.117

Abbreviations: FAO, fatty acid oxidation; PPAR, peroxisome proliferator-activated receptor; FOXO3, forkhead box O3; HSCs, hematopoietic stem 
cells; NSCs, neural stem cells; LSCs, leukemic stem cells; GSCs, glioblastoma stem cells; mTOR, mammalian target of rapamycin.
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and glutamate dehydrogenase activities.26,154 This 
pathway produces NADPH which is essential for 
reduction of glutathione.26,47,155,156 Inhibition of FAO or 
amino acid uptake reduces OXPHOS activity in LSCs 
indicating that both pathways supply substrate for 
OXPHOS.26,154,157 Recently, it was found that the adre-
nomedullin-calcitonin receptor-like receptor axis158 
and spleen tyrosine kinase159 both induce OXPHOS 
activity in LSCs. Inhibition or knock down of both pro-
teins specifically targets LSCs in AML.158,159

Reactive aldehydes that are produced during FAO 
are effectively detoxified by upregulated fatty aldehyde 
dehydrogenase, more specifically named aldehyde 
dehydrogenase 3a2 (ALDH3A2), in LSCs.160,161

There is a strong competition in the niches between 
HSCs and LSCs. In this competition, LSCs have a 
greater competitive advantage.151 This advantage is 
at least partly caused by assistance of mesenchymal 
stem cells (MSCs) to LSCs. MSCs are present in 
niches of HSCs and LSCs (Fig. 5A) and assistance of 
MSCs enables LSCs to keep their leukemic pheno-
type and chemotherapy resistance as was demon-
strated in an in vivo mouse model of AML. LSCs 
co-opt energy sources and antioxidant defense 
mechanisms provided by MSCs in the niches to sur-
vive chemotherapy. Assistance of LSCs was proven 
to be provided at the expense of HSCs.162 It is not 
described by Forte et al.162 how the exchange from 
MSCs to LSCs takes place but extracellular vesicles 
(EVs),163,164 tunneling nanotubes (TNTs), and/or 

tumor microtubes165,166 may well play a role in these 
exchange processes. Furthermore, extracellular ATP 
provides resistance of LSCs against chemotherapy 
by a cAMP-mediated mitochondrial stress response. 
cAMP is produced by the ectonucleotidase CD39 that 
converts extracellular ATP into cAMP that is then 
internalized by LSCs.167

All these data have been published recently and 
indicate that LSCs in hypoxic periarteriolar HSC niches 
in the bone marrow are different from HSCs with 
respect to energy metabolism (anaerobic glycolysis 
versus OXPHOS and altered FAO and amino acid 
metabolism) and that LSCs in HSC niches are also 
aided by the microenvironment to survive chemother-
apy. This stresses that LSCs have to be removed from 
HSC niches to optimize the efficiency of anti-LSC ther-
apy, for example, by interfering with their attachment in 
HSC niches by SDF-1α-CXCR4 with the use of the 
CXCR4 inhibitor plerixafor.9,10

In a considerable percentage of AML patients  
(10–20%), cancer cells harbor the IDH1 or IDH2 
mutation.25,28,168 The IDH1 and IDH2 mutations occur 
in similar numbers of AML patients and are mutually 
exclusive.28 The effects of IDH1 or IDH2 mutations on 
the production of ATP [OXPHOS versus (an)aerobic 
glycolysis] in LSCs do not seem to be profound. The 
mutations cause metabolic rewiring from aerobic 
glycolysis to OXPHOS in LSCs and differentiated 
leukemia cells26,168 independently of their differen-
tiation status. Therefore, we assume that in both 

Box 7.  Erythroid 2-related Factor 2 (Nrf2).

Nrf2 is a transcription factor that is a major regulator of antioxidant defense in cells by checking intracellular levels of ROS and other 
oxidants. Nrf2 is continuously expressed in cells and at low oxidant levels rapidly ubiquitinated and proteosomally degraded. Nrf2 
senses cellular oxidant levels by the oxidation rate of cysteine thiols. When the rate becomes too high, Nrf2 becomes stabilized133 in 
a similar way as HIF1α and HIF2α expression is regulated. Nrf2 promotes transcription of genes that are involved in the formation 
of reduced glutathione, ROS detoxification, and degradation of xenobiotics,138,139 and Nrf2 induces the activity of NADPH-producing 
dehydrogenases and activates HIFs.140,141 NADPH is a major substrate for cellular detoxifying enzyme systems.27,47 Nrf2 activity is 
important for HSCs, HPCs, and HSPCs, but it may also be beneficial for cancer cells in relation to therapy resistance. On the other 
hand, Nrf2 knockout mice are more susceptible to develop cancer.133 Therefore, it can be concluded that under normal conditions, 
Nrf2 protects against ROS damage, whereas in CSCs, Nrf2 is an important player in therapy resistance.139

Abbreviations: ROS, reactive oxygen species; HIF, hypoxia-inducible factor; HSCs, hematopoietic stem cells; HPCs, hematopoietic progenitor cells; 
HSPCs, hematopoietic stem and progenitor cells; CSCs, cancer stem cells.

Box 8.  Signal Transducer and Activator of Transcription 3 (STAT3).

STAT3 is a transcription factor and transcription activator and its activity is induced by members of the interleukin-6 (IL-6) cytokine 
family via phosphorylation by Janus family kinases (JAKs) that enables translocation of STAT3 into the cell nucleus.137,142 STAT3 knock 
out is lethal in embryos, but in adult tissues, conditional knock out results in mild phenotypes and has multiple, sometimes seemingly 
contradictory, functions.142 For example, STAT3 has been found to be involved in self-renewal of stem cells and in differentiation of 
(cancer) stem cells into progenitor cells, or in upregulation of OXPHOS and downregulation of ROS production. STAT3 can also be 
translocated into mitochondria to promote OXPHOS by binding to complex 1 and it also induces expression of OXPHOS-related 
genes.137 Regulatory T cells (Tregs) in GSC niches produce IL-6 and promote GSC stemness via IL-6-STAT3 signaling.143 Effects of 
inhibition of STAT3 on stemness of GSCs are presently being investigated.144–147

Abbreviations: OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; GSCs, glioblastoma stem cells.
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IDH1/2-mutated LSCs and differentiated leukemia 
cells, mitochondrial metabolism including OXPHOS is 
prevailing. However, as far as we know, this assump-
tion has not been tested experimentally yet.

In conclusion, LSCs depend on OXPHOS for their 
energy requirements despite the fact that LSCs are 
hiding in protective hypoxic periarteriolar niches in the 
bone marrow, whereas FAO and amino acids are 
needed in the mitochondria to fuel OXPHOS.

Energy Metabolism of GSCs

GSCs play an essential role in glioblastoma tumor 
development, growth, and aggressiveness. Besides a 
low proliferation rate that protects GSCs in their 
hypoxic niches, GSCs possess efficient DNA repair 
mechanisms and a well-developed drug efflux ABC 
transporter system.169–171 GSCs express stem cell 
markers, such as SOX2, NANOG, OLIG2, NESTIN, 
IDI1, MYC, and MUSHASHI1, and cell surface pro-
teins, such as CD133, CD44, LICAM, and CD15170 
and CD9 (Fig. 1)172 that mediate interactions with their 
microenvironment of their niches. Furthermore, GSCs 
interact with differentiated glioblastoma cells and 
promote malignant progression of glioblastoma.173 
GSCs remain undifferentiated by genetic and epigen-
etic alterations in signaling pathways such as Notch, 

bone morphogenetic protein, nuclear factor kappa B, 
and Wnt.174–177

GSC niches harbor various non-malignant cell 
types such as immune cells and MSCs (Fig. 5B) that 
are recruited to the glioblastoma tumor site. The 
dynamic and complex interactions within niches pro-
mote GSC therapeutic resistance and antitumor 
immune responses. Among the non-cancerous cell 
types that are present in GSC niches, microglial cells 
and macrophages prevail.178 Macrophages are differ-
entiated monocytes from the bone marrow, whereas 
microglial cells are derived from the yolk sac.179,180 
Microglial cells are predominant in newly diagnosed 
tumors, whereas monocyte-derived macrophages are 
predominant in recurrent tumors in GSC niches.181 
GSCs recruit macrophages through chemoattrac-
tants such as vascular endothelial growth factor, col-
ony stimulating factor 1, SDF-1α, interleukin-6 (IL-6), 
IL-1b, and the ECM protein periostin, which polarize 
macrophages to an immune-suppressive and angio-
genic phenotype that promotes tumor growth and pro-
gression.182 Not all macrophages are protumoral but 
for successful application of antitumor macrophages, 
a better understanding of interactions of GSCs and 
macrophages is urgently needed.183

Recently, involvement of cell types and proteins in 
CSCs and in particular in GSCs has been reviewed, 

Figure 5.  Immunofluorescence images of human CD105-positive MSCs (green, arrows) in a periarteriolar HSC niche in healthy bone 
marrow adjacent to bone (A) and a periarteriolar GSC niche in a glioblastoma tumor (B). Monochrome images of CD105-positive MSCs 
in green and DAPI fluorescence (nuclei) in blue and the composition images in green and blue are shown. Smooth muscle cells in the 
tunica media (tm) of the arterioles are also CD105 positive. ta, Tunica adventitia of the arterioles. Tissue sections and immunofluores-
cence staining are prepared as described in Hira et al.9 Bars, 100 µm. Abbreviations: MSCs, mesenchymal stem cells; HSC, hematopoietic 
stem cell; GSC, glioblastoma stem cell; DAPI, 4′,6-diamidino-2-phenylindole.
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such as a novel cell type, the telocyte,184 scaffold 
proteins,185,186 the renin–angiotensin system,187 and 
specific proteases and their endogenous inhibitors.188

MSCs are another cell type that infiltrates glio-
blastoma tumors and are present in GSC niches, as 
they are in HSC niches in bone marrow (Fig. 5).9,189 
MSCs are important players in glioblastoma because 
they stimulate proliferation and invasive behavior 
in differentiated glioblastoma cells and increase 
the self-renewal capacity of GSCs.9,189–191 MSCs that 
express CD105 are demonstrated in periarteriolar 
GSC niches in Fig. 5. Cancer cells, including GSCs, 
can acquire mitochondria from MSCs in their niches 
via TNT-mediated intercellular communication. The 
acquisition of mitochondria increases OXPHOS and 
ATP production in cancer cells as well as indirectly 
affects their general metabolism. As a consequence, 
cancer cells change their invasive and proliferative 
properties and increase their capacity to develop 
therapeutic resistance.192 MSCs also release EVs 
that contain miRNAs that enhance tumorigenicity of 
GSCs.193

Energy metabolism of GSCs is less well studied than 
that of NSCs, HSCs, and LSCs, but the general con-
sensus is that both IDH1 wild-type and IDH1-mutated 
GSCs mainly use OXPHOS for the generation of ATP, 
whereas IDH1wt-differentiated glioblastoma cells use 
aerobic glycolysis and IDH1-mutated differentiated 
glioblastoma cells use OXPHOS for ATP production as 
a consequence of the metabolic rewiring.27,194–197 FAO 
is essential for GSCs107,198,199 as it is for NSCs, HSCs, 
and LSCs.

A number of proteins have been described recently 
that may serve as therapeutic target to reduce OXPHOS 
activity, especially in GSCs, such as translocator pro-
tein (TSPO), insulin-like growth factor 2 mRNA-binding 
protein 2 (IGF2BP2 or IMP2), oncostatin M, and glyc-
erol-3-phosphate dehydrogenase (GPDI).27 TSPO is a 
transmembrane protein in the outer mitochondrial 
membrane of glial cells200 and is highly expressed in 
glioma.201 Loss of TSPO results in a shift from OXPHOS 
toward glycolysis. IGF2BP2 is involved in the mainte-
nance of CSCs202 by delivering electron transport chain 
subunit-encoding mRNAs to mitochondria and contrib-
uting to complex I and IV assembly.203 Oncostatin M is 
a cytokine of the IL-6 subfamily and is expressed in 
brain by various cell types (neurons, astrocytes, and 
microglia) and is involved in immunosurveillance in the 
brain.204 Its receptor is specifically expressed by GSCs 
in mitochondria and interacts with complex I to promote 
OXPHOS. Deletion of the oncostatin M receptor reduces 
OXPHOS activity, but increases ROS levels and sensi-
tizes GSCs to irradiation.205 GPDI is expressed by 
GSCs but not by NSCs.43 GSCs express GPDI in 

relation with their quiescence and has been proposed 
as an attractive therapeutic target in glioblastoma.

Promising inhibitors of mitochondrial activity 
of GSCs have been described as well.107,144,195,206–210 
Mudassar et  al.210 proposed to inhibit OXPHOS to 
increase the low oxygen levels in hypoxic GSC niches 
to sensitize GSCs to irradiation by repurposing anti-
malaria drugs such as atovaquone, ivermectin, pro-
guanil, mefloquine, and quinacrine. Lonidamine (LND) 
is an antiglycolytic drug with limited clinical effects in 
cancer patients207,211–213 but LND in a mitochondria-
targeting form (Mito-LND) appears to be a selective 
OXPHOS inhibitor with very low toxicity in mice.213 
These characteristics of Mito-LND makes it an attrac-
tive candidate to target CSCs in general and GSCs in 
glioblastoma.

Verteporfin has been Food and Drug Administration 
(FDA) approved to treat macular degeneration in the 
eye. It inhibits OXPHOS at complex III and IV and is 
specifically effective against GSCs and not to differen-
tiated glioblastoma cells or normal cells.214 Recently, 
verteporfin was suggested to be a therapeutic agent 
for epidermal growth factor receptor (EGFR)-amplified 
and EGFR-mutant glioblastoma on the basis of a study 
using cultured glioblastoma cells.215

The FDA-approved antidiabetic drug metformin and 
the FDA-approved antimalaria drug chloroquine have 
been tested in a phase IB clinical trial to investigate 
whether repurposing of these drugs can optimize 
standard treatment of IDH1-mutated glioblastoma and 
other IDH1-mutated cancer types, but failed to induce 
a clinical response.27,197,216 Alternatively, phenformin is 
a lipophilic analogue of metformin and may reach 
higher levels in mitochondria of cancer cells and 
thus may be more effective in the treatment of IDH1-
mutated cancer cells.196 Metformin and phenformin 
inhibit complex I of OXPHOS, whereas metformin, 
phenformin, and chloroquine inhibit α-KG produc-
tion from glutamine and glutamate by glutamate 
dehydrogenase.27 Effects of the FAO inhibitor eto-
moxir were compared with the effects of a ketogenic 
diet. It appeared that etomoxir prolonged survival of 
mice, whereas the ketogenic diet did not affect survival 
or even reduced survival of the mice. It was also found 
that IDH1 wild-type and IDH1-mutated cells were not 
differently affected by a ketogenic diet  although 
IDH1-mutated cells use FAO in a different way than 
IDH1 wild-type cells.198 In another study of the effects 
of a ketogenic diet in vitro and in vivo reported mod-
est effects, if any.217 Therefore, ketogenic diets for 
glioblastoma patients have to be applied with care to 
avoid unnecessary negative effects on the quality-of-
life of glioblastoma patients because these diets are 
difficult to maintain.
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Repurposing of anti-GSC drugs was reviewed 
recently.218

A different approach was proposed by Hira et al.9,10 
to sensitize GSCs to radiotherapy and chemotherapy. 
GSCs are kept in their hypoxic periarteriolar niches in 
glioblastoma tumors and the SVZ19 by SDF-1α-CXCR4 
interactions in a similar way as HSCs and LSCs are 
kept in their hypoxic periarteriolar bone marrow niches. 
Inhibition of CXCR4 by FDA-approved plerixafor is 
used successfully to remove LSCs out of the bone mar-
row niches to render them more sensitive to chemo-
therapy and HSCs in healthy donors to be harvested in 
the peripheral blood for stem cell transplantation.10 It is 
suggested to remove GSCs from their niches in glio-
blastoma before radiotherapy or chemotherapy.9,10

Concluding Remarks

The present review of the literature shows clearly that 
quiescent NSCs and HSCs in their niches behave very 
similar with respect to energy metabolism. The cells 
are present in a hypoxic environment and depend on 
anaerobic glycolysis and FAO. When needed, both 
stem cell types are activated and become progenitor 
cell types that leave the NSC and HSC niches and 
switch to OXPHOS and lipid synthesis and downregu-
late glycolysis and FAO. In both cell types, similar cell 
biological regulation mechanisms of their stemness 
and ATP metabolism are involved (Fig. 6). Moreover, 
mitochondria are present in both quiescent stem cell 
types but are only partially active (FAO and not 
OXPHOS) and when needed can switch rapidly to an 
altered metabolism in proliferating progenitor cells 
(OXPHOS and lipid biogenesis but not FAO).

GSCs and LSCs appear to be quiescent and keep 
their stemness in similar ways with FAO and OXPHOS 
activity for ATP production. So, it seems that inhibition 
of OXPHOS is a therapeutic option to eradicate GSCs 
and LSCs to diminish the risk of recurrence of glioblas-
toma or AML (Fig. 7).

However, we argued recently against energy 
metabolism as target for therapy in cancer.27 First, 
inhibition of aerobic glycolysis in differentiated cancer 
cells has proven in a host of clinical trials to be either 
ineffective or to cause unwanted side effects.144,211–213 
Second, cancer is hypothesized to be a redox dis-
ease.219 Therefore, Watson220 argued that physical 
exercise prevents cancer as well as diabetes, demen-
tia, and cardiovascular diseases by producing low lev-
els of ROS that are needed for correctly folding 
proteins in the endoplasmic reticulum. Generation of 
low levels of ROS reduces the risk of cancer,221 pro-
longs survival of cancer patients and delays recur-
rence of cancer,222 and improves quality-of-life of 

cancer patients including glioblastoma patients.223,224 
Because ROS are generated during OXPHOS,27,67 we 
conclude that systemic treatment of cancer patients 
with OXPHOS inhibitors is not an effective therapeutic 
option and leads to adverse effects in patients. 
Therefore, disruption of the interactions between 
CSCs and their protective niches seems to be a more 
promising option as therapeutic strategy because 
CSCs are then mobilized out of the niches resulting in 
their differentiation and proliferation and ultimately 
their sensitization to radiotherapy and chemother-
apy.9,10 This approach is currently being investigated 
by using the FDA-approved drug plerixafor that inhib-
its CXCR4 to remove LSCs from bone marrow niches 
before chemotherapeutic treatment in AML and mul-
tiple myeloma patients and for harvesting HSCs in 
patients or healthy donors for HSC transplantation (for 
a recent review, see Hira et  al.10). Clinical trials are 
ongoing at the moment to investigate whether removal 
of GSCs from their niches before irradiation or temo-
zolomide chemotherapy of glioblastoma patients is an 
effective therapeutic option.10

In conclusion, energy metabolism (OXPHOS) in 
leukemic and GSCs is not a likely therapeutic avenue 
because OXPHOS is needed for ROS production in 

Figure 6.  Cell biological regulation mechanisms of ATP syn-
thesis in relationship to the maintenance of stemness of HSCs 
and NSCs. The image was created using Biorender.com. 
Abbreviations: PML, promyelocytic leukemia protein; PPARs, per-
oxisome proliferator-activated receptors; FOXO3, forkhead box 
O3; FAO, fatty acid oxidation; OXPHOS, oxidative phosphoryla-
tion; HSCs, hematopoietic stem cells; STAT3, signal transducer 
and activator of transcription 3; NSCs, neural stem cells; HIF, 
hypoxia-inducible factor; Meis1, myeloid ecotropic viral integra-
tion site 1; Nrf2, nuclear factor erythroid 2-related factor 2.
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healthy cells and tissues of cancer patients as a first-
line anticancer barrier.
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