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Review

Introduction

Glioma stem cells (GSCs) and astrocytoma cells are 
the predominant malignant cells in glioblastoma. The 
continuous stemness cell reprogramming of GSCs to 
achieve specific cell commitment is a complex pro-
cess within the so-called GSC niches, initially defined 
as perivascular and hypoxic.1–4 Subsequent studies 
found them to be specifically located in periarteriolar 
regions2,4 similar to hematopoietic stem cell niches in 
the bone marrow.3,5 Recent studies indicate that the 
subventricular zone in glioblastoma patients is a major 
niche for neural stem cells in the brain, forming a 
niche protected against radiotherapy, chemotherapy, 
and resection and consequently may contribute to 
tumor recurrence after therapy.6

Scaffold proteins are known to play major roles in 
cell fate, angiogenesis, migration, tumorigenesis, and 

tumor progression.7,8 However, very little is known 
about these proteins in the GSC niche. Scaffold pro-
teins (scaffolins or scaffoldins) are a growing group of 
proteins of signal transduction pathways that share 
four common functions within a given node of the net-
work: (1) they physically connect all proteins involved 
in that node; (2) they locate them in discrete subcellu-
lar compartments; (3) they coordinate the equilibrium 
between positive and negative stimuli; and (4) they 
insulate or encase all proteins in the node to protect 
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Summary
Glioma stem cells (GSCs) live in a continuous process of stemness reprogramming to achieve specific cell commitment 
within the so-called GSC niches, specifically located in periarteriolar regions. In this review, we analyze the expression 
levels, cellular and subcellular location, and role of three scaffold proteins (IQGAP1, FKBP51, and AmotL2) in GSC niches. 
Scaffold proteins contribute to cell differentiation, migration, and angiogenesis in glioblastoma. It could be of diagnostic 
interest for establishing stages, for therapeutic targets, and for improving glioblastoma prognosis, which is still at the 
experimental level. (J Histochem Cytochem 70:9–16, 2022)
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them from inactivation and/or degradation originating 
outside the pathway.9 A-kinase anchor proteins, within 
the protein kinase A signaling pathway, could be the 
paradigm of this group of proteins.9,10 Wide varia-
tions in their gene expression in neuropathy after 
chemotherapy are a common feature of three scaf-
fold proteins, AmotL2 (angiomotin-like 2), IQGAPI, and 
FKBP51 (FK506-binding protein 51), currently under 
investigation by our group.11

In this review, we will consider the expression and 
role of AmotL2, IQGAP1, and FKBP51 in stem cell 
niches.

AmotL2, IQGAP1, and FKBP51 
Scaffoldins in GSC Niches

The protein AmotL2 is fundamental for maintaining 
apical-basal polarity in epithelial tissues by regulating 
cell-to-cell membrane interactions.12 It plays a pivotal 
role in preventing endothelial detachment and pro-
moting vascular tube formation.13–16 The regulation of 
AmotL2 by hypoxia and its effect on cellular migration 

make the study of this protein of particular interest in 
cancer progression and more specifically in tumor 
angiogenesis.17,18 Human AmotL2 occurs as two iso-
forms with a molecular mass of 100 and 60 kDa.12 The 
60-kDa isoform seems to be involved in promoting 
tumor growth and invasion by perturbing cellular 
polarity in a complex process, which is beyond the 
scope of this review.15

The most frequent stencil for AmotL2 immunohis-
tochemistry is strong AmotL2 costaining in Nestin+ 
GSCs (Fig. 1, panels A–C). Within the same stencil, 
scattered GFAP+ astrocytoma cells can be either 
AmotL2+ or AmotL2− in not yet well-defined propor-
tions. However, the expression pattern for AmotL2 
in the glomerular blood vessels shown is very differ-
ent: a number of AmotL2+ cells in arterioles pre-
dominantly surround CD34+ endothelial cells, but, 
strikingly, cubic-shaped endothelial cells are not sur-
rounded by AmotL2+ cells.19 This fact might be indic-
ative of a role for AmotL2+ GSCs in periarteriolar 
areas. AmotL2 is localized in cytoplasm and protru-
sions of differentiated GFAP+ GLIOBLASTOMA cells, 

Figure 1.  Immunolabeling of AmotL2, Nestin, CD34, and GFAP in human glioblastoma sections. (A–C) Vascular glomeruloid bodies. 
Several AMOTL2+/Nestin+ cells can be observed (arrows). (D–F) Double immunolabeling for AMOTL2 and GFAP. Arrows point to 
GB-differentiated cells GFAP+/AMOTL2+, where AMOTL2 is localized in cytoplasm and protrusions. Scale bar, 20 µm. Abbreviations: 
GFAP, glial fibrillary acidic protein; GB, glioblastoma.
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as shown in the double immunofluorescence micro-
graphs in Fig. 1, where most cells are either AmotL2+/
GFAP− or AmotL2−/GFAP+. However, cells that were 
both AmotL2+/GFAP+ occurred less frequently (see 
Fig. 1, panels D–F).

Graphically well described as a molecular puppeteer,20 
IQGAP1 is the IQ motif that contains Ras GTPase-
activating protein 1. IQGAP1 is a highly versatile 
regulating protein involved in cellular processes, 
ranging from cytoskeleton organization to cell cycle. 
Ubiquitously expressed in cells and tissues,20,21 it 
determines the direction that should be taken in a 
given node in many signaling pathways,22–26 thereby 
contributing to processes such as cell migration, 
angiogenesis, and tumor progression.27–31 Establishing 
differences between the IQGAP1 function on healthy 
versus cancer cells and tissues is extraordinarily com-
plex and, consequently, alluring for structural, molecu-
lar, and cancer and cell biology researchers. Rather 
than on structural variations, the changes in the func-
tion of the protein driving to pathological migration, cell 

cycle deregulation, and most oncogenic-related pro-
cesses seem to be related to the amount of protein 
and the scaffolding groups of proteins nucleated by 
IQGAP1. An excellent example of IQGAP1 nucleation 
is with calmodulin, driving the activation of PI3Kα and 
Akt in KRAS-, HRAS-, and NRAS-driven cancers.32 
Thereby, it seems that a given protein not so frequently 
attached to IQGAP1 is mutated (or splices a deletion) 
and increases its affinity for this scaffoldin and nucle-
ates a node that ultimately increases the activity of a 
pathway, deregulates a complex cell function, and initi-
ates or cooperates in tumor progression.

In glioblastoma, the amount of IQGAP1 protein and 
subcellular localization are heterogeneous, located in 
cytosol, nucleus, and plasma membrane, but more prom-
inent in podosome/invadopodia-like structures,19,30 filo-
podia,33 and microvesicles ready to be released bound 
to its upstream effector cdc42.24 Though ubiquitous, 
Nestin+ cells express low levels of IQGAP1 or no IQGAP1 
at all (Fig. 2, panels A–B), as in GFAP+-differentiated 
astrocytoma cells, where IQGAP1 expression is variable. 

Figure 2.  Immunolabeling of IQGAP1, Nestin, GFAP, and F-actin in human glioblastoma tissue sections. (A–B) IQGAP1+/Iba1+/
Nestin+ (white arrow) and IQGAP1+/Iba1+/Nestin− (yellow arrows) cells are present in GB vascular glomeruloid body. (C–D) Tumor-
associated arteriole: IQGAP1+ immunolabeling is mainly present in the cytoplasm and nuclei of endothelial cells (white arrow). Note 
GFAP+ protrusions enveloping the blood vessel. Scale bar, 20 µm. Abbreviations: GFAP, glial fibrillary acidic protein; GB, glioblastoma.
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However, IQGAP1 is very abundant in the cell mem-
branes and nuclei of endothelial cells of arterioles (Fig. 2, 
panels C–D), mainly in podosomes/invadosomes.30 
Moreover, IQGAP1 is also found in the soma of scarce 
neurons, but not in the axon.30 Recently, specifically cre-
ated stable IQGAP1 knockdown MA2 melanoma cells 
were used to confirm IQGAP1 as a crucial protein for 
metastasis through the extravasation regulation of these 
cells when injected in mice.34 Furthermore, it has been 
recently reported that the co-occurrence of glioblastoma 
and melanoma is likely not coincidental and shows sev-
eral molecular causes in common,35 including 
IQGAP1expression and its interaction with members of 
the S100 family of Ca2+-binding proteins.36

FKBP51 (gene: FKBP5) is an immunophilin protein, 
a peptidyl-prolyl isomerase,37 and a cochaperone in 
the Hsp90 system in a concerted antagonist role with 
its homologue, FKBP52.38 FKBP51 commutes among 
cytoplasm, nucleus, and mitochondria,39–42 interacting 
with many molecular partners in pivotal nodes in sev-
eral signaling pathways.38,43 Altered expression levels 
of FKBP51 have been reported in a number of cancers 

and cancer models,43–49 including gliomas and glio-
blastoma,50–54 as well as in mental disorders.55

Virtually all types of human glioblastoma tumor 
cells express FKBP51 in a different cellular and sub-
cellular fashion. A subpopulation of Iba1+/CD31+ 
macrophages/microglia expresses FKBP51 in nuclei 
(Fig. 3, panel A, white arrows), whereas in other mac-
rophages/microglia groups FKBP51 is found in the 
cytoplasm.19 In GFAP+/FKBP51+ cells, FKBP51 is also 
intranuclear, although to a lesser extent.19 FKBP51+/
CD31+/Iba1+ cells are adjacent to the lumen of arteri-
oles (Fig. 3, panels A–C, yellow arrow) but not around 
capillaries. To our knowledge, no specific association 
of FKBP51 expression levels with resting or active 
microglia has been reported in glioblastoma; however, 
it is interesting to mention an association of FKBP51 
protein in the altered immune function and inflamma-
tion state of microglia and the development of psycho-
logical disorders, including anxiety and depression.56–59 
Regarding FKBP51 protein expression in stem cells, 
it is common to find a high amount of this immu-
nophilin, along with actin-rich core-like cellular 

Figure 3.  Immunolabeling of FKBP51, CD31, Nestin, Iba1, and F-actin in human glioblastoma tissue sections. (A–C) Iba1+/CD31+ 
macrophages/microglia express FKBP51 in nuclei (white arrows). Yellow arrow points to FKBP51+/CD31+/Iba1+ cells adjacent to the 
lumen of arterioles. (D–F) White arrows point to FKBP51+/Nestin+ cells, where FKBP51 protein localizes along with the actin-rich 
core-like cellular structures. Scale bar, 20 µm.
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structures in Nestin+ GSC cells (Fig. 3, panels D–F, 
white arrows).

Concluding Remarks, Glioblastoma 
Staging, and Therapy Perspectives

Rather than filling moonlighting roles, scaffold proteins 
have multifunctional molecules that hide proteins to 
avoid contact with others and guide the signal in a 
specific direction. The final objective is to modulate 
complex cell functions such as migration, proliferation, 
or regulation of gene expression, all three on the basis 
of cancer. As reviewed here, AmotL2, IQGAP1, and 
FKBP51 are greatly involved in the angiogenesis 
and cell migration of glioblastoma. Although several 
authors have identified that AmotL2,60 FKBP51,59 or 
IQGAP153,61,62 protein expression levels exert a rele-
vant role in glioma progression and aggressiveness, a 
scale for pathology staging or prognosis has not 
been stablished yet. Consequently, the potential use 
of these scaffoldins as milestones for staging or as 
references for prognosis is worth to be set and consid-
ered as targets for the treatment of glioblastoma. In 
this later line of research, successful in vitro experi-
ments blocking any of these scaffoldins in several can-
cer cells have been reported.

AmotL2 is accepted as a tumor suppressor.22 The 
expression of AMOTL2 can be increased through miR-
135b and miR-135a inhibition, resulting in a remark-
able decrease in cell viability, self-renewal, and stem 
cell marker expression in spheroids obtained from 
medulloblastoma.63

IQGAP1 small interfering RNA significantly inhib-
ited cell proliferation, adhesion, migration, and inva-
sion in U251 and U373 glioma cell lines.64 Direct 
repression of IQGAP1 by epigenetically silenced miR-
124 in endometrial cancer cells can reverse epithelial-
to-mesenchymal transition by inhibiting IQGAP1 gene 
expression.65 The Pseudomonas aeruginosa N-acyl 
homoserine lactone targets IQGAP1 and modulates 
epithelial cell migration65 in Caco-2 cells. However, this 
product does not affect proliferation or viability.

IQGAP1 nucleates MEK and its target ERK, and the 
increase and decrease in intracellular IQGAP1 con-
centrations result in impairment of stimulation of MEK 
and ERK mitogenic activity23; consequently, designing 
drugs for blocking this node is an exciting topic for 
researchers in onco-pharmacology.

FKBP51 overexpression inhibits BT325 cell prolif-
eration by inducing G0/G1 cell cycle arrest. This over-
expression enhances the susceptibility of BT325 to 
carmustine, a standard adjuvant chemotherapy for 
glioma treatment.66 In a search for depression and 

posttraumatic stress disorder treatments, through a 
screening of 1280 pharmacologically active com-
pounds, three compounds rescued FKBP51-mediated 
suppression of glucocorticoid receptor (GR) and one 
disrupted the association of FKBP51 with GR/Hsp90.67 
Some of these compounds targeting the FKBP51/GR/
Hsp90 complex may be a viable approach for treating 
glioblastoma because FKBP51 is expressed at high 
levels in all kinds of glioblastoma cells, including GSCs 
and vascular endothelial cells.19

Evidence pointed out in this review shows a promis-
ing research field in physiopathology, personalized 
diagnosis, and subsequent scaffoldin-directed therapy 
of glioblastoma that, unquestionably, will improve bad 
prognosis currently.
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