Table 3.
Comparison of ME recognition performance composite datasets.
| Method | Composite | SMIC-HS | CASME II | SAMM | ||||
|---|---|---|---|---|---|---|---|---|
| UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR | |
| LBP-TOP (Zhao and Pietikainen, 2007) | 0.588 | 0.578 | 0.200 | 0.528 | 0.702 | 0.742 | 0.395 | 0.410 |
| Bi-WOOF (Liong et al., 2018) | 0.629 | 0.622 | 0.572 | 0.582 | 0.780 | 0.802 | 0.521 | 0.512 |
| CapsuleNet (Van Quang et al., 2019) | 0.652 | 0.650 | 0.582 | 0.587 | 0.706 | 0.701 | 0.620 | 0.598 |
| OFF-ApexNet (Gan et al., 2019) | 0.719 | 0.709 | 0.681 | 0.669 | 0.876 | 0.868 | 0.540 | 0.539 |
| Dual-Inception (Zhou et al., 2019) | 0.732 | 0.727 | 0.664 | 0.672 | 0.862 | 0.856 | 0.586 | 0.566 |
| STSTNet (Liong et al., 2019) | 0.735 | 0.760 | 0.680 | 0.701 | 0.838 | 0.868 | 0.658 | 0.681 |
| ELTRCN (Khor et al., 2018) | 0.788 | 0.782 | 0.746 | 0.753 | 0.829 | 0.820 | 0.775 | 0.715 |
| RCN-S (Xia et al., 2020) | 0.746 | 0.710 | 0.651 | 0.657 | 0.836 | 0.791 | 0.764 | 0.656 |
| STSTNet+GA (Liu et al., 2021) | 0.836 | 0.836 | 0.814 | 0.812 | 0.882 | 0.891 | 0.800 | 0.790 |
| RRS+CropNet(ours) | 0.875 | 0.877 | 0.813 | 0.819 | 0.972 | 0.969 | 0.842 | 0.827 |
| ARS+CropNet(ours) | 0.911 | 0.904 | 0.855 | 0.851 | 0.974 | 0.979 | 0.912 | 0.893 |