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Integrative analysis of CRISPR screening 
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Abstract 

Background:  In recent years, the application of functional genetic immuno-oncology screens has showcased the 
striking ability to identify potential regulators engaged in tumor-immune interactions. Although these screens have 
yielded substantial data, few studies have attempted to systematically aggregate and analyze them.

Methods:  In this study, a comprehensive data collection of tumor immunity-associated functional screens was per-
formed. Large-scale genomic data sets were exploited to conduct integrative analyses.

Results:  We identified 105 regulator genes that could mediate resistance or sensitivity to immune cell-induced 
tumor elimination. Further analysis identified MON2 as a novel immune-oncology target with considerable therapeu-
tic potential. In addition, based on the 105 genes, a signature named CTIS (CRISPR screening-based tumor-intrinsic 
immune score) for predicting response to immune checkpoint blockade (ICB) and several immunomodulatory agents 
with the potential to augment the efficacy of ICB were also determined.

Conclusion:  Overall, our findings provide insights into immune oncology and open up novel opportunities for 
improving the efficacy of current immunotherapy agents.

Keywords:  CRISPR screen, Tumor immunity, MON2, Immune checkpoint blockade, Drug repurposing, Connectivity 
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Background
The advent of immune checkpoint blockade (ICB) thera-
pies, such as blockades of programmed cell death 1 (PD-
1), programmed cell death-ligand 1 (PD-L1), or cytotoxic 
T-lymphocyte antigen-4 (CTLA-4), have revolution-
ized the treatment modalities of many cancer types [1]. 
Currently, several agents, including ipilimumab (anti-
CTLA-4) [2], pembrolizumab and nivolumab (anti-
PD-1) [3, 4], and atezolizumab (anti-PD-L1) [5], have 
been approved by the Food and Drug Administration 
(FDA) for clinical use. Besides, similar immune-oncol-
ogy agents targeting LAG3 [6], TIM3 [7] and TIGIT [8] 
are being investigated in ongoing preclinical and clinical 
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studies. Despite the significant advances made in cancer 
immunotherapy, there still exist many challenges in this 
field, such as low response rates and acquired resistance 
[9]. Accordingly, more efforts are required to elucidate 
the mechanisms underlying sensitivity or resistance to 
antitumor immune response and develop more efficient 
immunotherapeutic strategies.

Recently, clustered regularly interspaced short palin-
dromic repeats (CRISPR)/Cas9 technology-based func-
tional screens have been successfully applied to dissect 
potential factors regulating tumor immunity, providing 
a new paradigm for target discovery in a high-through-
put manner [10–13]. Both loss-of-function and gain-
of-function screens can be realized using CRISPR/
Cas9-based systems [14]. Nonetheless, due to the relative 
complexity of the gain-of-function screening technology, 
loss-of-function screening is currently the most com-
monly adopted approach. Depending on the experimen-
tal model, screens can also be classified into two types, 
namely in vitro and in vivo screens [15]. Tumor/immune 
co-culture systems are the basis of in  vitro screens, 
which can easily mimic the interaction between tumor 
and immune cells in in vitro cultures [15]. Compared to 
in vitro models, in vivo models benefit from a preserved 
immune system and an intact tissue microenvironment 
and are thus more likely to identify clinically significant 
targets [15].

To date, immuno-oncology screens have yielded a sub-
stantial amount of high-throughput data. However, no 
systematic analysis has been carried out to integrate these 
data to the best of our knowledge. The present study 
begins to fill this gap by performing a comprehensive 
literature retrieval for immune-oncology screens in pub-
licly available databases. Results from these screens were 
then integrated to identify potential regulators engaged 
in tumor immunity. Novel immuno-oncology targets 
with therapeutic implications and transcriptome signa-
tures for predicting response to cancer immunotherapy 
were determined by leveraging screening-derived results 
and multi-omics data from TCGA Pan-cancer cohort 
and ICB-treated datasets. More importantly, we identi-
fied potential immunomodulatory agents that exhibited 
a synergistic effect with ICBs via an improved signature 
matching approach. Overall, our findings may provide a 
treasure trove for future studies on antitumor immunity 
and hold the potential to improve the efficacy of current 
immunotherapy regimens.

Materials and methods
CRISPR screening analysis
A total of 22 screens from 11 different studies were 
included in this study. Of these, 17 screens were focused 
on investigating the regulators of immune cell-mediated 

killing, while the other five screens introduced the ICB 
treatment into their experiments which were used to 
identify regulators mediating response to cancer immu-
notherapies. Data of these screens were achieved from 
the supplementary files of corresponding publications. 
Some included studies only provided processed data, 
while some also provided raw count data. For those with-
out raw data, processed data was used directly for subse-
quent analyses; for those providing raw data, MAGeCK 
pipeline (v0.5.9) with default parameters was utilized to 
identify the significantly altered genes and single guide 
RNAs (sgRNAs) [16]. Enriched genes were defined as 
those with positive adj. P < 0.05 and log-fold change > 0 
and depleted genes were defined as those with negative 
adj. P < 0.05 and log-fold change < 0. For those screens 
using mouse models, the resultant mouse genes were 
mapped to orthologous human genes using biomaRt 
package, and genes without known homologous relation-
ships were excluded from subsequent analysis.

Definition of gene functional status
For screen-derived genes and tumor suppressor genes 
(TSGs), functionally relevant events were considered as 
gene inactivation. The definition of inactivation events 
required support from multi-omics data. Briefly, the 
mutation data were first preprocessed, and deleterious 
mutations were defined as loss-of-function mutations 
(including frameshift, stopgain, startloss and stoploss) 
or missense mutations predicted as possibly or prob-
ably damaging (probability score > 0.5) by PolyPhen2 
[17]. Samples with inactivation events were then defined 
as samples presenting deleterious mutations, deep dele-
tions (GISTIC value = − 2), or scaled-expression ≤ − 2. 
For oncogenes (OGs), functionally relevant events were 
considered as gene activation. Considering that the com-
putational prediction of gain-of-function mutations is 
more challenged than loss-of-function mutations with 
relatively low accuracy, mutation data was excluded from 
the definition of activation events [18]. Accordingly, Sam-
ples with activation events were then defined as samples 
presenting high-level amplification (GISTIC value = 2) or 
scaled-expression ≥2.

Statistical analysis
Statistical analysis and graphical visualization were all 
performed in R, version 3.6.0 (https://​cran.r-​proje​ct.​
org/). Depending on the data type, comparison of con-
tinuous variables in two or more than two groups was 
performed using either parametric test (Student’s t-test 
or analysis of variance) or nonparametric test (Wilcoxon 
rank-sum test or Kruskal-Wallis test), and correlation 
between two continuous variables was measured by 
either Pearson correlation or Spearman rank correlation. 

https://cran.r-project.org/
https://cran.r-project.org/
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Contingency table variables were analyzed by Fisher’s 
exact tests. Survival analysis was performed based on 
Kaplan-Meier methods and the statistical significance of 
differences was determined using the log-rank (Mantel-
Cox) test. For those analyses with more than 20 com-
parisons, multiple testing correction was conducted with 
FDR method. The statistical details including the statisti-
cal test used for each dataset are indicated in the figure 
legends. Unless otherwise stated, a p-value of 0.05 was 
considered as being statistically significant. Additional 
detailed methods can be found in the Supplemental 
Materials and Methods.

Results
Summary of included CRISPR screens
In this study, a total of 17 CRISPR screens on the regu-
lators of immune-mediated tumor elimination were 
included (the other five ICB-treated screens were 
described in the following section) (Table S1). To 
improve comprehension, a schematic diagram describ-
ing the process of CRISPR screen in a tumor/immune 
co-culture system is shown in Fig. 1A. Five cancers were 
selected as research objects, among which skin cancer 
(41.18%) was the most commonly studied cancer model, 
followed by breast cancer (23.53%) and colon cancer 
(23.53%) (Fig.  1B). The distribution of screens among 
different screening types, library types, organisms, and 
algorithms was also analyzed. We found that most of the 
included screens were carried out under in vitro condi-
tions (76.47%), using a genome-scale library (88.24%) 
and mouse-derived cell line models (94.12%). Moreo-
ver, DrugZ (47.06%) and MAGeCK (35.29%) were the 
two most adopted algorithms for data analysis (Fig. S1). 
Notably, the included screens all used CRISPR knockout 
(CRISPRko) libraries, which were designed to investigate 
the relationship between the loss-of-function of genes 
and corresponding phenotypes.

Determination of antitumor immunity‑related regulators
Based on data from these screens, we sought to find out 
potential regulator genes involved in antitumor immu-
nity. Each screen could identify a plethora of enriched 
or depleted single guide RNAs (sgRNAs). Considering 
that no gain-of-function screens were included in this 
study, results from all the screens here could be inter-
preted in the same manner. Briefly, the knockout of 
genes that exert positive effects on anti-tumor immune 
response (such as genes associated with antigen pres-
entation) resulted in resistance of corresponding tumor 
cells to T-cell mediated killing, thus enriching their 
sgRNAs (these genes were named as sensitizer genes 
hereafter). Conversely, the knockout of genes that 
promote tumor immune escape (such as CD274) can 

enhance the sensitivity of tumor cells to T cell-medi-
ated killing, leading to the depletion of sgRNAs (these 
genes were named as resistor genes hereafter). The sen-
sitizer and resistor genes in each screen were identified 
respectively. A tumor type-dependent result can be 
found in Table S2. All the results from different screens 
were then integrated and only those genes presented 
across two or more screens were selected for further 
analyses (Fig. 1C). This step yielded a preliminary list of 
181 sensitizers and 427 resistors.

Given that the overall accuracy of screening results 
remained far from perfect, we intended to further nar-
row down this gene list to obtain more reliable candi-
date regulators. To this end, three well-proven tumor 
immunity-related gene signatures, namely ESTIMATE-
based immune signature [19], cytolytic activity (CYT) 
signature [20], and MHC signature [21], were leveraged 
to discern sensitizer and resistor genes with potential 
functional significance. Specifically, we first calculated 
the corresponding scores of these three signatures based 
on the expression profiles from the TCGA Pan-Cancer 
cohort [22]. The functional status (a dichotomous vari-
able, 0 = non-inactivation; 1 = inactivation) of each can-
didate sensitizer/resistor gene in each TCGA sample 
was determined using multi-omics TCGA data, which 
included expression, mutation, and copy number vari-
ation (CNV) data (see Materials and methods section). 
Given that all the candidate regulators were derived 
from the results of CRISPRko screens, we defined loss-
of-function (inactivating) status as the main functional 
event. Then, the associations between the functional sta-
tus of each sensitizer/resistor gene and the abundance 
of each signature could be determined by adopting a 
regression-based approach. After controlling for cancer 
type and adjusting for the multiple testing, associations 
with adj. P < 0.05 were deemed statistically significant. It 
should be noted that higher scores obtained for the three 
signatures indicated an enhanced anti-tumor immune 
response [23]. Therefore, according to the definition of 
sensitizer/resistor genes, sensitizers should be negatively 
associated with these signatures (lower scores upon inac-
tivation), while resistors should be positively associated 
(higher scores upon inactivation). As indicated by the 
results, resistors exhibited an incline for a higher propor-
tion of positive associations, albeit not significant, which 
could prove the rationality of this filtering approach to 
some extent (Fig.  1D). Functional sensitizer genes were 
defined as genes with significant negative associations 
(adj. P < 0.05 and coefficient < 0) with all three signatures 
(n = 65), while functional resistor genes were defined as 
genes with significant positive associations (adj. P < 0.05 
and coefficient > 0) with all three signatures (n = 40) 
(Fig. 1E, Table S3).
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Functional analysis of sensitizers and resistors
We conducted gene ontology (GO)-based functional simi-
larity (FS) and annotation analysis to determine the func-
tional characteristics of these sensitizer and resistor genes. 
The FS scores of each gene pair across all 105 genes were 

first computed and visualized on a heatmap (Fig.  2A). 
Besides, the distribution of FS scores of each sensitizer 
and resistor gene was also analyzed (Fig. S2A). Concep-
tually, a gene that had higher similarity with others was 
more likely to possess a central or significant role. In this 

Fig. 1  Identification of regulators involved in antitumor immune response by integrative analyses of immune-oncology screening data. A 
Schematic illustration of the process of pooled CRISPR/Cas9 knockout screens using tumor/immune co-culture systems. This screening approach 
was adopted by most of the included experiments. B Distribution of screens across different cancer types. C Common sensitizer genes (left) and 
resistor genes (right) identified by different screens. The top 10 genes were labeled in each plot. D Association between the functional status of 
sensitizers/resistors and the abundance of immune/cytolytic activity/MHC scores. Statistical significance of associations was determined using 
regression analysis, adjusting for cancer type. Comparison between sensitizers and resistors was conducted using Fisher’s exact tests. E Intersections 
of the resultant genes from three different filtering approaches. The results of sensitizers (left) and resistors (right) were displayed separately
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regard, some critical transcription factor genes involved 
in tumor immunity, such as STAT1 and STAT2, were 
observed to have relatively high similarities with other 
genes. Intriguingly, the comparison between sensitizer 

and resistor genes suggested that resistors had significantly 
higher internal similarity (P = 0.0001, Fig. S2B). To charac-
terize the biological processes related to these sensitizers 
and resistors, we next performed functional annotation 

Fig. 2  The overall characterization of sensitizer and resistor genes. A Similarity matrix representing the Gene Ontology (GO)-based functional 
similarity (FS) scores between each pair of sensitizers/resistors. B GO functional annotation of sensitizer genes (upper) and resistor genes (lower) 
based on the occurrence frequency. Only the top five terms were presented. C Distribution of the inactivation event numbers of sensitizers (left) 
and resistors (right) across different TCGA cancer types. D Heatmap showing the inactivation events of subtype-specific sensitizer/resistor genes 
across six immune subtypes. Subtype-specific genes were determined using logistic regression. Only statistically significant genes were presented. 
E Functional annotation of subtype-specific sensitizer/resistor genes using information from ImmPort (immpo​rt.​org). F Distribution of the 
inactivation event numbers of sensitizers (upper) and resistors (lower) across different immune subtypes

http://immport.org


Page 6 of 16Li et al. Molecular Cancer            (2022) 21:2 

based on the occurrence frequency of GO-BP terms from 
the Molecular Signatures Database (MSigDB) [24]. The 
results suggested that sensitizer genes tended to engage 
in immune-related processes, while resistor genes were 
mostly involved in some metabolic and biosynthetic pro-
cesses (Fig. 2B, Table S4).

Dysregulation patterns of sensitizers and resistors
We also sought to explore the dysregulated expression 
patterns of these genes across different cancer types and 
immune subtypes. First, we focused on investigating the 
expression pattern of genes between tumor tissues and 
adjacent tissues. Differential expression analysis was con-
ducted on 105 sensitizer and resistor genes across cancers 
in both tumor and normal tissues (n > 2). The results sug-
gested that the differential patterns of the two gene types 
were inconsistent across different cancer types. Overall, 
in 57.9% of all cancer types, a numerically higher propor-
tion of up-regulated resistor genes could be observed (Fig. 
S3). Next, the distribution of the inactivation events of 
sensitizer and resistor genes across different cancer types 
was analyzed (Fig. 2C). A more objective relationship was 
observed between resistors and sensitizers in each cancer 
type by calculating the normalized resistor-sensitizer ratio 
(Fig. S4A).

In addition, we also delineated the relationship between 
the dichotomous functional status of these genes and 
multi-class immune subtypes from a previous publication 
(C1-C6) [25]. To identify subtype-specific sensitizers or 
resistors, a logistic regression-based approach was adopted, 
and genes with adj. P < 0.05 and log2 odds ratio (OR) > 1.5 in 
certain immune subtypes were defined as the specific genes 
of this subtype. The analysis yielded a total of 37 subtype-
specific genes (35 out of 37 were sensitizers), including two 
C1-specific genes, 10 C4-specific genes, and 25 C5-specific 
genes (Fig.  2D). The functions of these genes were then 
annotated using GO information from ImmPort (immpo​
rt.​org) [26]. Interestingly, we observed that the inactivation 
events of multiple C5-specific genes were related to the 
process of antigen processing and presentation (Fig.  2E). 
Then, the distribution of the inactivation events of sensitiz-
ers and resistors across six immune subtypes was analyzed 
(Fig.  2F), and the corresponding normalized sensitizer-
resistor ratios were also calculated (Fig. S4B). Among the 
six subtypes, C5 had the highest average number of inacti-
vation events of sensitizers (n = 9.24) as well as the highest 
normalized sensitizer-resistor ratio (r = 2.89), which was 

consistent with its property as an immunologically quiet 
subtype [25].

The functional characterization of sensitizers and resistors 
across cancers
Theoretically, the loss of sensitizer genes (such as B2M) 
should enable tumors to resist immune attack, while the 
loss of resistor genes (such as CD274) could augment the 
cytotoxic effects of immune cells on tumors. However, the 
actual functions of these genes may vary across different 
cancer types. To characterize the actual functions of sen-
sitizers and resistors within each cancer type, we designed 
a computational approach (Fig. 3A). Briefly, we first manu-
ally curated a list of immune-related features with anti−/
pro-tumor activity, including immune cells, immune 
checkpoint genes, and inflammatory cytokines (Table S5). 
Then, the associations between the dichotomous status 
of sensitizers/resistors and the abundance of immune-
related features were calculated using a regression-based 
approach. Sensitizer-related (S-related) features were 
defined as anti-tumor features with negative association 
(lower activity upon inactivation) or pro-tumor features 
with a positive association (higher activity upon inactiva-
tion) with sensitizer genes. Resistor-related (R-related) 
features were defined in an analogous way. Accordingly, 
the number of S−/R-related features for each sensitizer 
or resistor genes in each cancer type could be determined 
(Fig. S5A-B). Conceptually, a sensitizer/resistor with 
greater S−/R-related feature number is more likely to have 
a crucial role in anti-tumor immunity. We also calculated 
the total S−/R-related feature number across different can-
cers of sensitizers and resistors, respectively (Fig.  3B, C). 
Notably, it could be observed that some well-recognized 
immune regulators, such as B2M and TAP1, were relatively 
top-ranked. Besides, we also found that resistor genes have 
more related features than sensitizer genes (Fig. 3D).

Identification of MON2 as novel immuno‑oncology target
To investigate whether the functional status of sensitizers 
and resistors was associated with the survival outcome of 
cancer patients, we conducted Cox proportional hazards 
regression analysis for all the 105 sensitizer and resistor 
genes, controlling for confounding factors including cancer 
type and age. The immune subtype of C2 was found to have 
an immune-inflamed phenotype, and thus there might 
exist more interactions between cancer cells and cytotoxic 
immune cells in tumors of this subtype [25]. Therefore, for 

Fig. 3  Functional determination of sensitizers and resistors. A Visualization of the definition of S−/R-related features. B The total number of 
S-related features across all the cancer types of sensitizer genes. C The total number of R-related features across all the cancer types of resistor 
genes. D Comparison of the numbers of related features between sensitizers and resistors. Statistical significance of difference was determined 
using Wilcoxon rank-sum test

(See figure on next page.)

http://immport.org
http://immport.org
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Fig. 3  (See legend on previous page.)
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the C2 subtype, the impact of the functional status of sen-
sitizers and resistors on prognosis was more likely to be 
mediated by antitumor immunity-associated mechanisms. 
Accordingly, only 2591 cases in the C2 subtype were uti-
lized to conduct this analysis, which yielded 3 and 10 signif-
icant prognostic sensitizer and resistor genes, respectively 
(Fig. 4A). Besides, we explored the prognostic associations 
of sensitizers and resistors in ICB-treated datasets. A total 
of 10 datasets from eight different studies were collected, 
which were then integrated into a metadata set (Table S6). 
The dichotomous functional status of sensitizer and resis-
tor genes in this set was defined similarly to the TCGA 
Pan-Cancer cohort. Survival analysis in the metadata set 
identified nine significant prognostic genes, including 
five sensitizers and four resistors (Fig.  4A). Interestingly, 
it could be observed that most of the sensitizers (75%) 
served as unfavorable prognostic factors (hazard ratio > 1 
upon inactivation), while most of the resistors (93%) were 
associated with favorable prognosis (hazard ratio < 1 upon 
inactivation), which was in accordance with their own 
properties.

Considering that the loss of a certain gene in itself may 
affect the survival of cancer cells without the involve-
ment of antitumor immune response, we performed an 
additional filtering procedure using gene dependency 
data from the Cancer Dependency Map (DepMap) por-
tal (depmap.​org) to avoid potential bias introduced by 
essential genes [27]. The average CERES scores across 
739 cancer cell lines were calculated, and genes with 
CERES scores ranging from − 0.25 to 0.25 were consid-
ered tumor proliferation-independent genes (n = 14,182) 
(Fig.  4B). By intersecting the above results, a resistor 
named MON2 was identified as the only proliferation-
independent gene, which had significant prognostic asso-
ciations both in the TCGA C2 and combined ICB-treated 
cohorts (Fig. 4C).

Association of MON2 with antitumor immunity
Systematic analyses were conducted to characterize 
the roles of MON2 in antitumor immunity. MON2 was 
identified as a significant resistor gene by two of the 17 

screens (Fig. S6A). Given that one of the screens was car-
ried out in cells derived from mouse breast cancer, we 
validated our finding in two human breast tumor cell 
lines, MDA-MB-231 and MCF7. MON2-deficient tumor 
cells were generated by CRISPR/Cas9. The knockout 
efficiency was determined by the Tracking of Indels by 
Decomposition (TIDE) [28] (Fig. S6B). The resulting cells 
were loaded with a defined antigen and co-cultured with 
TCR-transduced T cells that recognize the antigen-MHC 
class I complex. We observed that both MDA-MB-231 
and MCF7 cells with MON2 deficiency were more sensi-
tive to the killing effect of T cells than MON2-proficient 
cells, consistent with the results from the CRISPR screen 
in mouse cells (Fig. 4D, E).

We further interrogated the relationship between 
MON2 and the three above scores, including immune, 
CYT, and MHC scores. MON2 was most significantly 
associated with MHC scores (Fig. S7A). Since MHC 
scores were used to measure the antigen presentation 
ability of tumor cells, we hypothesized that MON2 might 
be more relevant to tumor cell-intrinsic immune-associ-
ated factors. To validate this hypothesis, the associations 
between MON2 and the other three tumor cell-intrinsic 
factors, including mutational load, single nucleotide 
variant (SNV)-based neoantigen load, and insertion and 
deletion (indel)-based neoantigen load, were tested. As 
expected, a high association was found between MON2 
and all three factors (Fig. S7B). These analyses collec-
tively showed that the loss of MON2 was closely related 
to enhanced tumor immunogenicity.

Based on the response data from ICB-treated data-
sets, we next set out to evaluate whether a direct cor-
relation was present between MON2 and response to 
ICBs. Unsurprisingly, the loss of MON2 was associ-
ated with a more favorable response to ICBs in mul-
tiple datasets, albeit not very remarkable (Fig.  4F). 
As a complementary investigation, the relationship 
between the expression of MON2 and the objective 
response rate (ORR) of anti-PD-1/PD-L1 therapy was 
investigated as well [29]. A marginally significant neg-
ative correlation between MON2 expression and ORR 

(See figure on next page.)
Fig. 4  Determination of MON2 as novel immuno-oncology target. A Presentation of sensitizers and resistors with prognostic significance in TCGA 
(C2 subtype) and ICB-treated cohorts. The hazard ratio (HR) and corresponding 95% confidence interval (CI) were estimated using a Cox regression 
model, adjusting for age and cancer type. B Determination of proliferation-independent genes according to the CERES scores from CRISPR 
knockout screens across hundreds of cancer cell lines. C Intersections between proliferation-independent genes and sensitizer (left) and resistor 
(right) genes with prognostic significance in both TCGA and ICB-treated cohort. D Coculture assay of MDA-MB-231 cells and antigen-specific T 
cells. MDA-MB-231 was loaded with Mart1 epitope by lentiviral transduction and cultured in the absence or presence of Mart-1- specific T cells 
(left panel). MDA-MB-231 cells that express Mart-1-epitope were transduced with Cas9 and then three independent gRNAs targeting MON2. A 
non-targeting gRNA served as a control. The cells were cultured with or without Mart-1-specific T cells for 24 h (right panel). E Coculture assay 
of MCF7 cells and antigen-specific T cells. F Association between the functional status of MON2 and clinical response to immunotherapy (CR, 
complete response; PR, partial response; SD, stable disease; PD, progressive disease) in four ICB-treated datasets. G Pearson correlation between 
MON2 expression and objective response rate (ORR) for ICB. Only non-zero data was included

http://depmap.org
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was obtained (P = 0.093), which could corroborate the 
above conclusion to some extent (Fig. 4G). Given that 
MON2 expression could be a potential factor affecting 

immunotherapy response, we delineated the distribu-
tion of MON2 expression across different cancer types 
(Fig. S7C) and immune subtypes (Fig. S7D). Notably, 

Fig. 4  (See legend on previous page.)
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it could be observed that MON2 exhibited the highest 
expression level in the C5 subtype (immunologically 
quiet). Furthermore, the crucial role of microsatellite 
instability (MSI) status in the field of cancer immu-
notherapy prompted us to examine the association 
between MON2 expression and MSI status [30]. Three 
cancer types in TCGA, including COAD, STAD, and 
UCEC, were selected for conducting this analysis with 
a large sample size of MSI-high (MSI-H) tumors [31]. 
MSI-low (MSI-L)/microsatellite-stable (MSS) tumors 
showed a significantly higher expression of MON2 in 
COAD, STAD, and the combined cohorts (Fig. S8A, B, 
D), except for UCEC (Fig. S8C). Correlation analysis 
between MSI events and MON2 expression was also 
conducted, and a significant negative correlation was 
obtained, as expected (P = 0.004) (Fig. S8E). Of note, 
MSI-L/MSS tumors as well as tumors in C5 subtypes 
were considered to be resistant to currently approved 
ICBs [25, 32, 33]. Collectively, inhibition of MON2 
might lead to the augmentation of anti-tumor immu-
nity, which might open new possibilities for treating 
tumors with high MON2 activity.

Construction of CTIS for predicting immunotherapy 
response
Despite recent advances, predicting response to immu-
notherapy remains challenging and requires further 
investigations. As our findings suggested important roles 
of sensitizer and resistor genes in immune cell-mediated 
tumor killing, we postulated that it might be clinically 
meaningful to construct a predictive signature based on 
these genes.

The detailed process of signature construction was 
displayed in Fig.  5A. Only pretreatment samples were 
included in this step. A preliminary filtering was first per-
formed to exclude genes with less than 100 S−/R-related 
features (across all the cancer types). As a result, 39 sen-
sitizers and 37 resistors were retained after the filtration. 
Then, based on Liu et  al.’s dataset which has the largest 
pretreatment sample size, minimal depth (MD)-based 
random survival forest (RSF) analysis was conducted to 
further narrow down the gene list [34]. The RSF analy-
sis was repeated 1000 times and six genes that led to a 
largest concordance index (C-index) value was consid-
ered as the final candidates. These genes consisted of 

Fig. 5  Construction of CTIS for predicting immunotherapeutic response. A Workflow of the construction and evaluation of CTIS. B Survival 
significance of CTIS in discovery dataset. C Survival of CTIS in two validation datasets. D Similarity comparison between the CTIS signature and other 
14 published signatures. E Comparison of mean AUC values across all the pretreatment datasets between CTIS and other published signatures
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four sensitizers (JAK1, NFKB2, PPP6C and TNFRSF1B) 
and two resistors (PIGM and TPR). A CRISPR screening-
based tumor-intrinsic immune score (CTIS) was then 
defined as the difference between the mean expression 
of four sensitizers and two resistors and a higher CTIS 
indicated a stronger anti-tumor immune response. In the 
discovery dataset (Liu et  al.’s dataset), CTIS exhibited a 
significant prognostic value (P  < 0.0001); higher CTIS 
was related to a better survival outcome (Fig.  5B). We 
also investigated its performance in several validation 
datasets. Among them, we found CTIS was significantly 
associated with prognosis in two datasets and patients 
with higher CTIS consistently had an improved overall 
survival (Fig. 5C).

After that, we comprehensively compared the CTIS 
signature with other 14 published signatures (details in 
Supplemental Materials and Methods). The association 
between these signatures was first investigated using 
the expression data of ICB-treated datasets. It could be 
observed that many signatures, such as CD8, CYT, IFNG, 
PD-L1, and inflamed signatures, were highly correlated 
with each other (Fig. 5D). In contrast, the CTIS signature 
presented relatively moderate associations with other sig-
natures, suggesting it has a complementary rather than 
an alternative role. Then, comparison of the performance 
for predicting response to ICB treatment between CTIS 
and other signatures was performed (Fig. S9). Although 
CTIS was not the best biomarker across all the datasets, 
it outperformed other signatures in the condition of 
comparing the overall performance, with a mean AUC 
value of 0.620 (Fig. 5E).

We further calculated the CTIS of treatment-naïve 
tumors from TCGA Pan-Cancer cohort to characterize 
the distribution of CTIS across different cancer types 
(Fig. S10A) and immune subtypes (Fig. S10B). Among 
the six immune subtypes, C5 had the lowest CTIS scores, 
consistent with its property. Although higher CTIS 
indicated a better prognosis in ICB-treated datasets, in 
treatment-naïve TCGA tumors, CTIS conferred a dual 
prognostic impact depending on the cancer type (Fig. 
S10C). In addition, relationships among mutation and 
neoantigen load and CTIS were also assessed. However, 
no remarkable results were observed (Fig. S10D).

Determination of potential OGs/TSGs regulatory network
It has been widely reported that some oncogenes (OGs) 
or tumor suppressor genes (TSGs) may be involved in the 
regulation of tumor immunity [35]. For example, activa-
tion of MYC can induce the transcription of both CD47 
and PD-L1 and thereby suppress the anti-tumor immune 
response [36]. Accordingly, we considered that it was rea-
sonable to build an OGs/TSGs regulatory network for 
sensitizers and resistors, which could uncover potential 

mechanisms underlying the dysregulation of sensitizers 
and resistors. The list of OGs and TSGs was obtained 
from OncoKB (oncokb.​org) [37]. For OGs, functionally 
relevant events were considered as activation (0 = non-
activation; 1 = activation). As for TSGs, functionally 
relevant events were considered as inactivation (0 = non-
inactivation; 1 = inactivation). We hypothesized that 
associations existed between sensitizers and OGs/TSGs 
when the expression of sensitizers was significantly 
down-regulated upon OG activation/TSG inactivation 
(adj. P < 0.05 and log-fold change < − 0.25). Correspond-
ingly, an association between resistors and OGs/TSGs 
was found when resistors’ expression was significantly 
up-regulated upon OG activation/TSG inactivation (adj. 
P < 0.05 and log-fold change > 0.25). We identified a total 
of 159 significant associations between sensitizers/resis-
tors and OGs/TSGs (Fig.  6A). Interestingly, we found 
that sensitizer genes tended to have more associations 
with TSGs (66.7%), while resistor genes exhibited con-
siderably more associations with OGs (86.4%) (Fig.  6B). 
OGs/TSGs with significant associations were defined as 
tumor immunity-related OGs/TSGs (Table S7).

Prediction of repurposing candidates synergistic 
with immunotherapies
One major challenge in cancer immunotherapy is to 
increase tumor response to ICB treatment. Previous 
experimental and clinical studies have demonstrated that 
combinatorial therapeutic strategies could substantially 
increase the percentage of responder cases and contrib-
ute to significant survival benefits [38, 39]. A signature 
matching approach for drug prediction was adopted to 
discern more potential combination partners synergistic 
with immunotherapies (Fig.  6C). Since query signature 
was the basis of this approach, we first sought to col-
lect potential immunotherapy-relevant genes for drug 
retrieval. Data from additional five ICB-treated screens 
were obtained. The experimental design used in these 
screens differed from ICB-naïve screens, which also 
introduced immunotherapeutic intervention into the 
experiments (Fig. S11A). Therefore, these screens could 
identify potential regulators mediating resistance (ICB 
enhancer genes) or sensitivity (ICB suppressor genes) to 
ICBs upon loss (Table S8). These screens studied four 
cancers (Fig. S11B) and common hits of enhancers and 
suppressors were also displayed, respectively (Fig. S11C). 
Since similar properties existed between sensitizers and 
enhancers as well as between resistors and suppressors, 
these genes with intersected (Fig. S11D, E). There were 
multiple common genes between the lists of sensitiz-
ers and enhancers (Fig. S11D). Subsequently, sensitizer 
genes, tumor immunity-related TSGs, and ICB enhancer 
genes were integrated into a meta-gene list, and genes in 

http://oncokb.org
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this list were termed positive regulators. Theoretically, 
potentiating the function of these genes might be related 
to an enhanced anti-tumor immune response. The list 
of negative regulators was obtained in the same way. 
Positive and negative regulators together constituted the 
query signature (Fig. 6c, Table S9).

The other necessary component of the signature 
matching-based approach was the drug signatures, also 
known as drug-induced profiles of expression changes. 
These drug signatures were downloaded from the Con-
nectivity Map (CMap) datasets (CMap Build 2: 1288 
compounds) [40]. To ensure easy clinical translation 

Fig. 6  Identification of potential immunomodulatory agents for potentiating the efficacy of immunotherapies. A Bipartite network showing the 
interactions between sensitizer/resistor genes and OGs/TSGs. Node size is proportional to the interaction degree; a node with larger size represents 
that it has more interactions with other nodes. B The proportion of interactions with OGs and TSGs in sensitizers and resistors. Statistical significance 
was determined using Fisher’s exact tests. C Computational workflow of the inference of potential immunomodulatory agents using the signature 
matching approach. D Result of drug prediction. The top 10 drugs were labeled in the plot
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of our findings, we only selected drugs that have been 
approved or have already passed phase I and II clinical 
trials for subsequent analysis, leveraging the annotations 
from the Drug Repurposing Hub [41]. To match query 
signature with drug signatures, we applied three meth-
ods, including eXtreme Sum (XSum) [42], Kolmogorov-
Smirnov (KS) [40], and the Reverse Gene Expression 
Score (RGES) [43]. Due to the varying measurement 
scales of the resultant scores from the three methods, 
an order statistics-based method developed by Stuart 
et  al. was utilized to integrate these results and yielded 
a robust drug prediction result (Fig. 6C) [44]. The results 
of drug prediction are presented in Fig.  6D and Table 
S10. Notably, among the top 10 drugs, four candidates, 
including irinotecan, quercetin, trifluridine, and resvera-
trol, were previously reported by experimental or clinical 
studies, demonstrating the reliability of our prediction.

Discussion
Compared to conventional anti-tumor strategies, 
immune-based therapeutics offer unique advantages and 
hold great promise for future cancer treatment. Despite 
the encouraging prospects, many problems have been 
encountered during the process of their clinical applica-
tions. Foremost among them is the de novo or acquired 
resistance to immunotherapeutic agents. Only a propor-
tion of patients respond to immunotherapies and benefit 
from them. Even in such a small population of initial ben-
eficiaries, some will ultimately develop immunotherapy 
resistance. To circumvent this complex issue, we consid-
ered the following three strategies: 1) developing more 
immuno-oncology targets; 2) constructing predictive sig-
natures for patient selection; 3) designing combinatorial 
strategies to achieve synergistic antitumor activity. In this 
study, through integrative analyses of data from multiple 
screening experiments and large-scale clinical cohorts, 
we conducted preliminary explorations based on the 
above three strategies and obtained some promising find-
ings, including a novel therapeutic target MON2, a pre-
dictive gene signature named CTIS, and some potential 
immunotherapeutic combinations.
MON2 is a protein-coding gene that has been demon-

strated to be involved in regulating endosome-to-Golgi 
trafficking [45]. To date, the relationship between MON2 
and the immune ecosystem remains largely unexplored. 
Our results suggested that the loss-of-function of MON2 
was associated with an enhanced response rate to ICBs, 
uncovering a new role of this gene associated with tumor 
immunity. Based on our findings, MON2 inhibition could 
be a potential therapeutic strategy with the ability to aug-
ment immune-induced tumor killing. Notably, the targets 
of most of the current immuno-oncology agents, such as 
PD-L1, CTLA-4, LAG-3 and TIM-3, express on the cell 

surface and can directly mediate tumor-immune interac-
tions [46]. However, conceptually, MON2 is not directly 
associated with immune-related functions, making it dif-
ficult to interpret its role as an immuno-oncology target. 
Similar to MON2, indoleamine-2,3-dioxygenase 1 (IDO1) 
is also a conceptually non-immune related gene, encod-
ing heme enzyme for catalyzing the limiting step in tryp-
tophan catabolism to N-formyl-kynurenine, which can 
exert immunosuppressive function via multiple mecha-
nisms [47]. The inhibitors targeting IDO1 have yielded 
some promising preclinical results, and many clinical 
trials on IDO1 inhibitors are currently being conducted, 
which can give a rationale for taking MON2 inhibition 
as a novel immunotherapeutic modality [47]. Currently, 
the MON2 protein remains undruggable and cannot be 
targeted by conventional small-molecule inhibitors. For-
tunately, the emergence of novel therapeutic approaches, 
such as antisense oligonucleotide (ASO) technologies 
and proteolysis-targeting chimeras (PROTACs), have 
enabled the pharmaceutical inhibition of MON2 [48, 49].

The development of predictive biomarkers for patient 
selection for ICB treatment has been the focus of the pre-
sent investigation. During the last few years, researchers 
have determined multiple biomarkers with predictive 
potential, including tumor mutation burden (TMB), MSI 
status, PD-1/PD-L1 gene expression, CD8+ T-cell abun-
dance and et al. [29, 50]. Among these, TMB is the most 
studied biomarker; TMB-high has been considered as 
a universal indicator of high response rate of ICB treat-
ment across cancers [51]. However, a very recent study 
found that TMB should only be considered an effective 
biomarker for ICB treatment in cancer types that exhibit 
positive correlation between CD8 cell abundance and 
neoantigens [52]. Accordingly, there exists an urgent 
need to develop more predictive biomarkers. Accumulat-
ing evidence indicates that transcriptome-based predic-
tive signatures also perform well in predicting response 
to ICB treatment [20, 21, 53–56]. As an attempt, an 
expression-based signature was also developed in this 
study for predicting immunotherapeutic response. 
Although the overall performance of the CTIS signature 
was only slightly better than other established signatures, 
the relatively moderate correlation with other signatures 
suggested that CTIS was irreplaceable and might provide 
some additional prediction information.

Combined immunotherapy with other therapies, such 
as chemotherapy and targeted therapy, may enhance the 
tumor-killing effect compared to mono-administration. 
Since only some specific combinations exhibit synergistic 
effects, a key step in designing co-administration regimen 
is to identify the appropriate candidates for combina-
tion. Through in silico approaches, several efforts have 
been made to discern potential immunotherapeutic 
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combinations [57, 58]. In the present study, we proposed 
an improved signature matching-based computational 
approach, which was the ensemble of multiple estab-
lished approaches. This approach determined scores 
representing the possibility of synergizing cancer immu-
notherapy drugs. Remarkably, four of the top 10 drugs, 
including irinotecan, quercetin, trifluridine, and resvera-
trol, have been documented to have immunomodulatory 
functions. Irinotecan is a widely-used chemotherapeutic 
agent for treating multiple cancers. It has been reported 
that irinotecan could activate antitumor immunity via 
modulating the tumor microenvironment and enhance 
tumor immunogenicity by upregulating the expression of 
MHC class I genes, thereby synergizing with anti-PD-L1 
therapies [59]. Quercetin is widely acknowledged to be 
an antioxidant flavonoid compound. In a recent study, 
the combination of quercetin with alantolactone was 
found to be capable of inducing synergistic immunogenic 
cell death (ICD), resulting in reactivation of antitumor 
immunity [60]. For trifluridine, as evidenced by a preclin-
ical study, trifluridine/tipiracil (FTD/TPI) combined with 
anti-PD-1 monoclonal antibody exhibited greater anti-
tumor activity against CMT-93 cells [61]. Among these 
four drugs, resveratrol has been most extensively studied 
for its immunomodulatory role. Briefly, resveratrol can 
enhance the antitumor immune response by inducing 
changes in the immune cell population [62, 63], regulat-
ing the secretion of inflammatory cytokines [64], and 
modulating the expression of immune checkpoint genes 
in tumor cells [65]. In general, the above evidence for 
these four drugs indirectly proved the rationality of our 
computational approach and the reliability of the predic-
tion results.

Conclusions
In conclusion, by leveraging extensive screening data as 
well as molecular and clinical data from TCGA and ICB-
treated cohorts, this study determined a novel immu-
notherapeutic target, a predictive signature, and several 
candidate agents for immunotherapeutic combinations. 
Importantly, this study deepened our understanding of 
tumor immunity and provided the basis for future studies 
on cancer immunotherapies.
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