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Abstract

With advances in single-cell techniques, measuring gene dynamics at cellular resolution has 

become practicable. In contrast, the increased complexity of data has made it more challenging 

computationally to unravel underlying biological mechanisms. Thus, it is critical to develop novel 

computational methods capable of dealing with such complexity and of providing predictive 

deductions from such data. Many methods have been developed to address such challenges, each 

with its own advantages and limitations. We present an iterative regression algorithm for inferring 

a mechanistic gene network from single-cell data, especially suited to overcoming problems posed 

by measurement outliers. Using this regression, we infer a developmental model for the gene 

dynamics in Drosophila melanogaster blastoderm embryo. Our results show that the predictive 

power of the inferred model is higher than that of other models inferred with least squares and 

ridge regressions. As a baseline for how well a mechanistic model should be expected to perform, 

we find that model predictions of the gene dynamics are more accurate than predictions made with 

neural networks of varying architectures and complexity. This holds true even in the limit of small 

sample sizes. We compare predictions for various gene knockouts with published experimental 

results, finding substantial qualitative agreement. We also make predictions for gene dynamics 

under various gene network perturbations, impossible in non-mechanistic models.
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1 Introduction

Gene regulatory networks govern the dynamics of gene expression levels, which, ultimately, 

control cellular function. Deciphering the blueprint of regulatory networks is a long-standing 

challenge in systems biology. On account of advances in single-cell technology, there 

is an increasing interest in reverse engineering or inferring gene regulatory networks 

from single-cell data. Many algorithms have been developed to model gene regulatory 

networks, including regression approaches [22, 25], Bayesian modeling [10, 18], and mutual 

information [7, 26]. Inference methods have different domains of applicability, as suggested 

by many review papers that discuss and compare different inference methods based on their 

underlying biological data and theoretical approaches [2, 5, 11, 12].

Here we present a regression method for the inference of a mechanistic gene network that 

drives the discrete gene dynamics observed in Drosophila melanogaster blastoderm embryo. 

The data, published in Fowlkes et al. [4], were obtained through single-cell fluorescence 

microscopy, and contain gene expression of a set of genes at cellular spatiotemporal 

resolution. Instead of counting the total number of reads as in single-cell RNA-sequencing 

(scRNA-seq), which involves the isolation of individual cells and their RNA, reverse 

transcription, amplification, library generation, and sequencing, fluorescence microscopy 

involves in situ hybridization of probes with a fluorescence tag to target genes and 

quantifying the amount of fluorescence with imaging. Imaging can distinguish only a 

limited number of different fluorophores simultaneously, putting a restriction on obtaining 

comprehensive gene profiles of a given sample [3, 17]. One of the advantages of this 

dataset is that, besides precise times of measurement, it contains cellular resolution spatial 

information of the measured gene expressions, which allows for the analysis of local gene 

expression variation. However, we shall not use the spatial information because we are 

particularly interested in developing a method that potentially may be applicable to more 

general datasets where such precise localization information may not be available. We give 

details about the data we use in Section 2.1.

For network inference, we introduce a stable variant of least absolute deviation (LAD) 

regression that inherits its robustness to outliers, while rectifying its instability in parameter 

optimization. The efficiency of the regression is rated by how well the inferred gene 

network model captures the observed discrete gene dynamics. Our results show that the 

gene expression predictions from our model are more accurate than those from models 

inferred with other regressions and predictions obtained using neural networks. More 

importantly, in the limit of small sample size, the models from our regression method 

with L2 regularization perform better than standard ridge regression or neural networks. 

We then address the universality of the inferred gene network and discuss how cell-to-cell 

variability in gene dynamics affects the model inference. We compare our model predictions 

with published experimental results on the development of the blastoderm under various 

knockout conditions, finding substantial agreement. Finally, we perform a series of model 

predictions by introducing small perturbations to individual edges in the gene network and 

simulating the effects on target genes one time-step later.
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The rationale for even considering neural networks is simple: If a mechanistic model cannot 

compete in accuracy with a black-box neural network then its utility is seriously diminished 

in our view. Therefore, we utilize various architectures of neural networks to provide an 

unbiased baseline determination of how well any mechanistic model should be expected to 

perform.

It needs to be stated front and center that while our variant of LAD does address the 

problem of outliers in stable gene regulatory network inference, we do not, in this work, 

address crucial additional problems that arise in more recent single-cell datasets that are 

not as well-behaved as [4]. Specifically, the issues of determining a time variable in the 

context of cell development entirely from measurements and contending with irregular time 

intervals between cell measurements are intimately related and require conceptually new 

computational approaches and/or additional sources of information about the measurements 

[8, 24, 23].

2 Methods

2.1 Data

Animal transcription networks comprise many regulators and target genes. To obtain a 

comprehensive view of how the dynamics of transcription factors affect their downstream 

targets, it is necessary to concurrently measure as many gene expression levels as 

possible. However, with conventional fluorescence microscopy, we can only record the 

expression of a few gene products at a time. To overcome this experimental limitation, 

Fowlkes et al. [4] used a computational method developed by Rübel el at. [17], which 

uses a registration technique to compile image-based data from hundreds of Drosophila 
melanogaster blastoderm embryos into a common spatiotemporal atlas, so that the average 

expressions of many gene products can be captured.

The method consists of two key steps: spatial and temporal registration of embryo positional 

bins. A total of 1822 embryos were fluorescently stained to label the mRNA expression 

patterns of two genes, one of which was either eve or ftz as a reference gene, and nuclear 

DNA. In total, 95 mRNA and four protein expressions were labeled. We refer to all of 

these 99 molecular types as genes in the following for brevity, but this distinction should be 

kept in mind, especially because the four proteins correspond to genes (bicoid, hunchback, 
giant and Krüppel) that also had mRNA measured. The embryos were grouped into six 

cohorts based on their developmental stages, which spanned 50 minutes prior to the onset of 

gastrulation. Within each temporal cohort, the reference gene profiles, the average nuclear 

distribution, and the mean embryo shape were used to build a morphological template with a 

fixed number of positional bins that represented the average embryo. Then, correspondences 

between positional bins across the cohorts were established. As a result, a total of 6078 

positional bins were registered spatially and temporally between six cohorts. Simply put, 

the results are analogous to having a set of the expression of gene products measured in 

or around 6078 positional bins at six discrete timepoints that are approximately 10 minutes 

apart.
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We shall assume that the fluorescence quantitation represents the dynamics that we are 

trying to infer. We are not assuming any linearity in the mapping between fluorescence 

and actual gene expression values. As such, we write gene expression throughout the paper 

but we are only inferring fluorescence value dynamics associated with the underlying gene 

expression dynamics.

2.2 Missing value imputation

About 37% of the genes in the dataset were missing data. Out of 99 variables (mRNAs 

and/or proteins), 27 of them had complete temporal profiles, i.e., recorded at all 6 time-

points, while the remaining 72 variables were missing some time-point measurements. From 

here on, we refer to the 27 genes with complete information as the complete genes and the 

other 72 genes as the incomplete genes. To interpolate the missing data, we used neural 

networks. Disregarding the time-point aspect for the time being, we can think of the dataset 

as a set of N = 36468 (6078 positional bins × 6 timepoints) samples with 99 features. To 

impute missing data of an incomplete gene i, we followed the steps below:

1. Identify the samples (positional bins) where the gene i was measured.

2. Using the 27 complete genes in the samples from Step 1 as the predictors and 

the gene i measurements in the corresponding samples as the targets, train and 

validate a neural network. The neural network consists of three layers: an input 

layer with 27 nodes, one hidden layer with 13 nodes, and an output layer with 1 

node.

3. With the trained and validated neural network, make a prediction for the value of 

gene i in the samples where it was not measured, using the 27 complete genes in 

the corresponding samples as the predictors.

Fig. 1 illustrates the schematics of the imputation. We trained and validated 72 independent 

neural networks to interpolate the missing data for 72 incomplete genes.

Can this method of imputation be trusted? We investigated the performance of our 

imputation method as follows: From the 27 complete genes, we randomly selected 3 genes 

and removed some of their time-point measurements and treated those as missing data. 

Using the remaining 24 complete genes, we followed the steps described above to impute 

the removed data. We performed 500 trials of this process. Each of the 27 complete genes 

was selected for 55 trials on average. We then computed the correlation coefficients between 

the observed data that were treated as missing data and their imputed data. Fig. 2 shows 

the mean correlation coefficient and the standard deviation for each of the complete genes. 

Clearly there are a few genes with imputed vs. actual correlation coefficients less than 

approximately 0.5 but for most genes the neural network imputation gives valid imputation 

results.

To find the optimal number of nodes in the hidden layer of the neural network, we tried 

a few different configurations. Initially, we set the default number of nodes on the hidden 

layer to be 13, approximately half of input variables. We then increased the nodes to 

27 and 54 and decreased it to 7 as well. For each configuration of neural networks, we 

followed the method described above and imputed 3 simulated incomplete genes using 
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24 complete genes, over 500 trials. We compared the correlation coefficients between the 

imputed and observed data across all configurations of neural networks, and concluded that 

the performance of the neural networks is approximately independent of their complexity. 

The correlation coefficients are shown in the Supporting Materials A (Fig. S1).

2.3 Model inference

The primary aim is to introduce a regression algorithm for the inference of a gene network 

model in Drosophila melanogaster blastoderm embryo, referred to as W, and gene-specific 

biases, that describe the observed discrete gene dynamics, and hence satisfy the following 

linear system:

gt + 1 − gt = f W , gt + bias, where
gt + 1 − gt = y (observed change in the gene), and

f W , gt + bias = y (predicted change in the gene) .
(1)

f(·) is some function of the gene expressions. y is a 30390-by-99 matrix with five vertically 

stacked sub-matrices of gene expression differences between two consecutive timepoints. 

To solve the system, we developed a robust and stable variation of least absolute deviation 

(LAD) regression that reduces the error in prediction during its iterative process.

The method will be referred to as erf-weighted LAD from here on. The details of the method 

are elaborated in the next subsection, Section 2.3.1.

In order to evaluate the performance of the model inferred with erf-weighted LAD, we 

used two other methods to infer models, least squares regression (with or without the 

L2 regularization, depending on the sample size) and neural networks, and compared the 

predictive power of the models. For least squares and ridge regressions, we implemented 

the linear_model module from Scikit-learn [15]. To build a predictive model using neural 

networks we trained and validated multilayer networks of neurons using a widely used API, 

TensorFlow.Keras [1].

2.3.1 erf-weighted LAD—We want to use LAD because we want to suppress the effects 

of outliers in our analysis. Usual LAD regression suffers from the well-known instability of 

minimizing a cost that is a sum of absolute values. This instability is related, obviously, to 

the susceptibility of the median to noise in the data. It is this instability that we will try to 

eliminate in our modification of LAD.

Recall that one implementation of LAD regression is as an iterative weighted least squares, 

as follows. We want to minimize

Cost(I) = ∑
data

yi − yi . (2)

To make this computation amenable to simple linear algebra, we write this cost function as a 

weighted minimization within an iteration:
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Cost(I) =
∑data μi

(I − 1)|yi
(I) − yi|

2

∑data μi
(I − 1) , (3)

with μi
(I − 1) ≡ yi

(I − 1) − yi
−1

. This defines the cost at iteration I that we minimize using 

weighted least squares. As is evident, the weights μi can become singular if model 

predictions approach observed values, so the susceptibility of LAD to noise is not 

ameliorated by this iterative formulation.

Consider an ensemble of sets of measurements yi. Model predictions will not vary because 

the model is independent of measurement noise. However, the discrepancies between model 

and measurements will be distributed with ensembles of random variables drawn from the 

same distribution. If we try to define more robust weights that apply to all ensembles, we 

end up evaluating an expectation value for the discrepancies over this distribution. This 

suggests that we could factorize and write

μi
(I − 1) ≡

E sgn(yi
(I − 1) − yi)

E(yi
(I − 1) − yi)

. (4)

These expectations are over our imagined ensemble of sets of measurements. Evaluated over 

a normal distribution with mean equal to the actual observed discrepancy, we get a formula 

for the mean weight involving the error function Erf :

μi
(I − 1) ≡ Erf(yi

(I − 1) − yi)
yi

(I − 1) − yi
. (5)

Weights defined thus are positive, non-zero and tend to the constant 2/ π as the model 

prediction approaches the data measurement. Indeed, for small discrepancies, this weighted 

regression behaves exactly as a least squares regression would but at large discrepancies it 

behaves as an LAD regression should.

2.3.2 Regression and 10-fold cross-validation—Following a typical machine 

learning scheme, a portion of samples were set aside as a test set, which was used to evaluate 

the performance of the inferred models. We randomly selected 608 positional bins and set 

aside all of their timepoint measurements as a test set. This amounts to 10% of the total 

dataset. For consistency and fair evaluation, this test set remained fixed and universal across 

all inferences that we have performed throughout the study.

When inferring a model with erf-weighted LAD regression, we performed 10-fold cross-

validation to avoid over-fitting. The training sets were used to train a model, while the 

validation sets played the role of a stopping criterion. For each combination of train/

validation, we used the gene profiles of randomly selected 4923 positional bins (6078 

positional bins × 0.9 × 0.9) as a training set and the rest as a validation set. As a result, 
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we obtained 10 different models, i.e., 10 sets of W’s and biases. We then averaged the W’s 

and biases as the final step of the inference and used them to make gene profile predictions 

on the test set. Fig. 3 illustrates the process. The inference algorithm does not have any 

constraints on the predictions. Hence, it is possible to obtain negative predictions. Since the 

predictions represent gene expressions, we rectified negative predictions to 0’s. As a way of 

quantifying the prediction power of the models inferred with erf-weighted LAD, we defined 

the fractional error of a gene within the test set as follows:

fractional error of genei =
∑test yi − yi

∑test yi
, (6)

where yi and yi represent the predictions and the observations of gene i, respectively.

We took the same 10-fold cross-validation approach when inferring a model with least 

squares regression. However, since least squares regression minimizes a different cost 

function than erf-weighted LAD, we rescaled the fractional errors of the gene profiles 

predicted with the models inferred with least squares to be:

fractional error of genei =
∑test yi − yi

2

∑test yi
2

1/2
. (7)

Moreover, least squares regression is not an iterative algorithm, and uses an analytic 

solution. Thus, it was not necessary to have a validation set when inferring a model 

with least squares regression. However, in order to conduct a fair comparison between the 

methods, the training sets that were used to infer models with erf-weighted LAD were also 

used for least squares regression.

When training neural networks, they were optimized to minimize the mean absolute 

error, using the MeanAbsoluteError class. The training also maintained the 10-fold cross-

validation technique. This yielded 10 trained neural networks. However, there is no 

established way to obtain an average representation from a set of trained neural networks.

Instead, for each round of train/validation, we saved the best performing model by 

utilizing the EarlyStopping and the ModelCheckpoint callback features in Keras, then made 

predictions on the test set with the best model. As the final step, we averaged the set of 10 

predictions to obtain a mean predicted y.

2.4 Repository

Complete source code with documentation is available at https://github.com/nihcompmed/

erf-LAD.

3 Results

The primary aim of this study is to infer a mechanistic model that can describe the observed 

discrete gene dynamics in Drosophila melanogaster blastoderm embryos and, ultimately, 
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make predictions on the effects of perturbed gene regulatory networks. In this section, we 

compared the accuracy of the predictions made from the model inferred with erf-weighted 

LAD and those of the predictions from other algorithms. To be expansive and stringent on 

the model evaluation, we varied the size of training samples from 10% to 80% of the total 

sample size, and analyzed the subsequent predictions. As for the other algorithms, we used 

least squares regression, with and without regularization, depending on the training sample 

size, and neural networks. Finally, we made model predictions that are experimentally 

verifiable.

3.1 Inference: Linear predictors vs. linear and quadratic predictors

Using erf-weighted LAD, we inferred gene networks in Drosophila melanogaster blastoderm 

embryo that would predict gene profiles at one time step ahead, given two different tiers 

of the current time step’s gene profiles as predictors. Firstly, the linear profiles of 99 

genes were used as predictors. Then, we added 4851 quadratic products of all 99 genes as 

predictors, totaling 4950 predictors. An advantage of using the quadratic profiles is that they 

provide some information about collective effects of two genes on a third gene.

With each inferred gene network model, we predicted gene profiles at t = 1, 2, 3, 4, and 5 in 

the test set, given the corresponding set of predictors. The negative predictions were rectified 

to 0’s. When we compared the negative predictions from both models, the model inferred 

with linear and quadratic predictors had a smaller median in magnitude. The difference in 

the medians of the negative predictions was statistically significant. The figures showing the 

distributions of the negative predictions are included in the Supporting Materials A (Fig. 

S2).

We evaluated the performance of the inferred models by computing and comparing 

fractional errors of the predicted gene profiles, Eq. 6. Fig. 4 shows the fractional errors 

of the predictions from the gene network models. The fractional errors computed from the 

model inferred with the linear and quadratic gene profiles are sorted from the largest to the 

smallest. The resulting gene index was applied to plot the errors from the model inferred 

with linear gene profiles. As shown in the figure, the model inferred from the linear profiles 

and the quadratic products from all 99 genes perform better, yielding smaller fractional 

errors than the other model that was inferred with the linear gene profiles as predictors 

alone. Therefore, all the simulations and predictions presented in this paper are based on the 

combination of linear and quadratic gene profiles as predictors.

3.2 erf-weighted LAD vs. ridge regression vs. neural networks in the limit of small sample 
size

A common problem in the field of single-cell analyses is small sample sizes. Thus, it 

is critical to develop theoretical methods that can extract interpretable information from 

limited data. With this motivation, we reduced the size of training samples to further test the 

performance of our inference method in the limit of small sample sizes. The training and 

validation set of samples was titrated to 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% of 

the total sample size. As we decreased the number of training samples, we noticed that the 

maximum coefficient of W became larger and larger. This was due to a well-known problem 
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where a regression with a smaller sample size is more likely to have a degenerate covariance 

matrix. In order to avoid this problem, we imposed L2 regularization on the regression. By 

adding a small parameter to the diagonals, this regularization allows a singular covariance 

matrix to be inverted. The regularization rate was fixed at 0.0001 for all titration levels. With 

the small regularization parameter, we were able to maintain the efficiency of erf-weighted 

LAD, while constraining the W coefficients from uncontrollably becoming large.

For each titration level, 11 different sets of samples were used to infer a set of 11 gene 

network models. As a metric of the performance, we computed the medians of the L1 norms 

of the errors and the total fractional errors in the test set, across the 11 models. Using 

the same sets of training/validation samples, we inferred another set of models using ridge 

regression and trained neural networks with one hidden layer and 10000 nodes.

The medians of the ‖Error‖1 and the total fractional errors computed under these methods 

were compared to those of our inference method. As shown in Fig. 5(A) and 5(C) in the 

limit of small sample size, erf-weighted LAD performs better than ridge regression and 

neural networks, and yields gene network models that better predict the gene dynamics, 

indicated by the smaller medians in both metrics.

As the titration level decreases, the medians increase for all three methods. This is 

not surprising as the models were trained with smaller sample sizes. Interestingly, the 

medians from ridge regression increase at a faster rate than those from erf-weighted 

LAD. Furthermore, at all titration level, erf-weighted LAD performs better than the neural 

networks, indicated by the smaller medians shown in Fig. 5(A) – (D). It is important to 

note that the medians from neural networks are not strictly decreasing as the titration level 

increases whereas the medians from erf-weighted LAD decrease steadily.

We then compared the distributions of prediction errors in the test set, in the limit of small 

sample sizes. Fig. 6 shows the distributions from erf-weighted LAD and ridge regression 

under two different metrics. The distributions are plotted on a logarithmic scale for better 

visualization. Firstly, the L1 norm of the errors were compared, shown in Fig. 6(A). 

Comparing two methods under this metric is advantageous for erf-weighted LAD, since 

it is exactly what the method is trying to minimize. The distributions clearly show a big 

difference. For more scrutiny, we performed the Mann-Whitney U test. With a p-value of 0, 

the test rejects the null hypothesis H0: the distributions of L1 norm of the errors are equal. 

The median L1 norm of the errors from erf-weighted LAD is 3.55, while that from the ridge 

regression is 6.78.

Since comparing the L1 norm of the prediction errors favors erf-weighted LAD, we then 

compared the L2
2 norm of the errors. This metric is more suited to ridge regression. Again, 

the distributions show a significant difference; see Fig. 6(B). When we performed the 

Mann-Whitney U test, it rejected the null hypothesis H0: the distributions of L2
2 norm of the 

errors are equal, with a p-value of 0. The median L2
2 norm of the errors from erf-weighted 

LAD is 0.23, while that from ridge regression is 0.62.
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From Fig. 5(A) and 5(C), it is clear that the gene network model inferred with erf-weight 

LAD has better predictive power than the trained neural networks, in the limit of small 

sample sizes. To further examine the differences, we compared the error distributions of the 

models that were trained with only 10% of the full dataset. Fig. 7 shows the L1 norm of the 

prediction errors, on a logarithm scale. Based on the figure, it is clear that the median of 

the erf-weighted LAD’s error distribution is smaller than that of the neural networks’ error 

distribution. This is confirmed through the Mann-Whitney U test that gave a 0 p-value. The 

median of the neural networks’ error distribution is 4.43.

Overall, we conclude that, in the limit of small samples sizes, the gene network model 

inferred with erf-weighted LAD and L2 regularization gives better predictions for the gene 

dynamics in the majority of positional bins.

3.3 erf-weighted LAD vs. neural networks in the limit of full sample size

To further attest to the practicality of erf-weighted LAD, we compared the prediction errors 

of the model trained with erf-weighted LAD with those of a neural network in the limit 

of full sample size. We did not impose the L2 regularization this time, as the prediction 

power between the model inferred with the regularization and the one inferred without the 

regularization did not show a significant difference. Fig. 8(A) – (D) show the distributions 

of the L1 norms of prediction errors from the trained neural networks with one hidden 

layer and 50, 100, 1000, and 10000 nodes, respectively, plotted with the error distributions 

from erf-weighted LAD. From the figures, it is clear that the center of the distribution from 

erf-weighted LAD is to the left of that of the distribution from the neural networks, in all 

four cases. This is statistically confirmed through the Mann-Whitney U tests with a p-value 

of 0 in all four comparisons.

We then trained neural networks with five hidden layers. The purpose of this training was to 

investigate whether increasing the complexity of neural networks affects prediction power. 

Using the full sample size, we trained four neural networks with five hidden layers. The 

number of nodes on the layers of each neural network were 50, 100, 1000, and 10000. We 

compared the distributions of L1 norm of prediction errors from the neural networks and that 

from erf-weighted LAD. The distributions are shown in Fig. 9(A) – (D). We performed the 

Mann-Whitney U test on each pair of distributions and obtained p-values of 0 for all pairs. 

From these results, we concluded that the neural networks, even with added complexity, do 

not give as accurate predictions as the inferred mechanistic model.

3.4 Universality of the gene network model

We next addressed whether the locations of the train/validation samples affect the model 

inference. In other words, if we were to infer a model using a subset of positional bins 

that are located on the anterior of the embryo, would it have comparable prediction power 

to a model inferred with the same number of positional bins that are dispersed across the 

embryo?

Positional bins in close proximity on the embryo exhibit similar gene dynamics [20]. 

Accordingly, we studied the variation of the gene dynamics across the whole embryo. 

Using t-distributed stochastic neighbor embedding (TSNE), a statistical dimension reduction 

Han et al. Page 10

Math Biosci. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



technique for visualizing high-dimensional data [21], we obtained a two-dimensional 

representation of the gene expressions in 6078 positional bins. Fig. 10 shows the TSNE 

plot of 6078 positional bins with a color scheme based on their positions on the anterior-

posterior axis. The plot suggests that positional bins in close proximity share similar gene 

expression patterns, and hence, show a limited variation in gene dynamics. Considering 

this, we postulated that a gene network inferred from closely positioned positional bins 

is less accurate across the entire test set than one inferred from scattered positional bins. 

The rationale is simply that by inferring gene network parameters from more variable data, 

parameters are better tuned to predict in a wider range of initial conditions whereas a 

network obtained from a less varied set of initial conditions will struggle with predictions for 

more varied data.

The same set of positional bins that was previously used as a test set was set aside for 

later use. Starting from the anterior, the embryo was incrementally partitioned so that 

each partition contains approximately 30% of the total number of positional bins, see 

Fig. 11. Using erf-weighed LAD and 10-fold cross-validation, we inferred three different 

gene network models from three patches on the embryo. As we did in the titration study, 

we introduced the L2 regularization to the regression to constraint the magnitudes of W. 

Interestingly, when we used 0.0001 as a regularization parameter, the inferred model had 

much lower prediction power than the one inferred with randomly selected positional bins. 

We had to impose a stronger regularization with 1 as the regularization parameter, in order 

to improve the prediction power. This is because the covariation between positional bins in a 

specific section of the embryo is much less than the covariation over the whole embryo for 

the same number of training positional bins.

The inferred gene network models were used to predict the gene dynamics in the test set, 

and the accuracies of the models were evaluated with the fractional errors defined in Eq. 

6 and the L1 norm of the errors. Fig. 12 shows the fractional errors, and Fig. 13 shows 

the error distributions. As a reference point, the figures also include the errors from 11 

different models inferred at 30% titration level, where the training/validation samples were 

randomly selected, previously presented in Section 3.2. The gene indexes were rearranged 

so that the errors from the models inferred with random selections of positional bins were 

sorted by their magnitude. This sorting system is used throughout the section. The models 

inferred with positional bins in patches of the embryo did not fare as well on predicting 

gene dynamics compared to the ones inferred with randomly scattered positional bins. This 

implies that a model that governs the gene dynamics in a cluster of positional bins is only 

partially shared between different locations in the embryo, at least when only this small 

subset of 99 gene products is used, and may not be as accurate in predicting gene dynamics 

in positional bins located in other parts of the embryo.

The sections were expanded so that each section contains approximately 45% of the total 

number of positional bins. The gene network models inferred from the other two sections 

of the embryo resulted in a similar magnitude of fractional errors, as shown in Fig. 14. We 

performed Mann-Whitney U to check whether there is any statistically significant difference 

between two sets of the fractional errors. With a p-value of 0.13, there was no significant 

difference between the two section specific sets, and neither set had fractional errors as small 
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as the fractional errors from the model inferred with randomly selected positional bins. Fig. 

15 shows the distributions of the L1 norm of the errors. From the figure, it is clear that the 

distribution from the model inferred with random positional bins has a smaller median than 

those from the model inferred with either section of the embryo. When the distributions 

from the sections of embryo were compared, the median of the anterior’s error distribution 

was smaller than that of the posterior’s error distribution. The Mann Whitney U test gave a 

p-value of 0.016.

Lastly, the embryo was sectioned along the dorsal-ventral axis, shown in the right panels of 

Fig. 16. Following the same schemes as before, the embryo was sectioned into three, then 

into two sections, so that the sections would include 30% and 45% of the total positional 

bins, respectively. The panels in Fig. 16 indicate that the gene network models inferred with 

the sections of the embryo do not have as good predictive power as the models inferred with 

the same number of randomly selected positional bins. The same conclusion can be drawn 

from the panels of Fig. 17. When we compared the error distributions of the ventral and the 

dorsal section, there was no significant difference between the medians.

To give more insight into the obtained results, we compared prediction errors of the test 

positional bins that are located within individual sections of the embryo and those of all 

the test positional bins scattered across the entire embryo. Fig. 18 shows the corresponding 

comparison. A gene network inferred from a section of embryo predicts the gene dynamics 

of the test positional bins in that particular section better than it predicts those of all the test 

positional bins that are scattered across the embryo. The results suggest that, to predict gene 

dynamics in a group of positional bins that are concentrated on a part of the embryo, it is 

more efficient to infer a gene network from neighboring positional bins.

3.5 Mutant Predictions and Validation

Schroeder et al. [19] studied the regulatory network of Drosophila segmentation genes. The 

study was particularly focused on the pair-rule genes, hairy (h), even skipped (eve), runt 
(run), fushi tarazu (ftz), odd skipped (odd), paired (prd), and sloppy paired (slp). These 

genes are expressed in seven evenly spaced stripes across the embryo and play a pivotal role 

in the segment formation and development of the larva [13]. As part of the study, the effects 

of pair-rule gene mutants on pair-rule expression were examined. The effects were evaluated 

at a time when the stripe patterns are clearly visible in the wild type. For the mutants, null 

conditions were assayed for all genes of interest. As a model validation, we compared their 

empirical observations to our model predictions on the effects of pair-rule gene mutants. We 

omitted simulations of run mutants, as the dataset does not include its expression.

To simulate the mutants, we computed the gene expression time series with the inferred gene 

network, W, and mutant conditions. In order to determine the appropriate time steps for the 

mutant simulations, we examined the pair-rule gene expression patterns in our dataset and 

concluded that, at t = 2, the strip patterns are comparable to those reported in Schroeder et 

al. [19]. It should be noted that the stripe patterns of prd and slp1 are not as prominent as 

the others. We tried to accommodate this by simulating the gene expressions by another time 

step forward. As a result, the stripe patterns in the observed and the simulated wild types 
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were comparable to that of Schroeder et al. [19]. However, the mutant simulations were 

somewhat erratic and, therefore, inadequate to draw consistent comparisons.

A genetic null allele can be an RNA null, one that produces no RNA transcript and/or a 

protein null, which produces no protein. For our mutant simulations, we assume that a null 

allele is both an RNA null and a protein null. The simulations were started from modified 

initial conditions where the mutated gene expressions were set to 0. Then, we modified the 

inferred gene regulatory network, W, in such a way where the weights of the edges directed 

towards the mutated gene and the edges branching out from the mutated gene, are set to 0. It 

is important to note that the edge weights from the quadratic terms that involve the mutated 

gene are also set to 0. These conditions ensure that, at every forward time simulation, the 

mutated gene measurements stay at 0. Fig. 19 shows the mutant simulations along with 

observed stripe patterns (first row) and wild type simulations (second row) for comparison. 

The list below gives a point-by-point comparison between the results of Schroeder et al., in 

italic, and our model prediction. For a clear interpretation, the stripes are numbered 1 to 7, 

counting from anterior to posterior.

• The mutants exhibit irregularities in the intensity, width, and spacing of pair-rule 

gene stripes.

→ Partial agreement. Generally, the simulated mutants showed changes in stripe 

intensity, but not in the width or spacing.

• In h mutants, stripe intensity and width were primarily affected.

→ Partial agreement. In simulated h mutant (third row), the stripe intensity of all 

the other pair-rule genes was affected. The intensity of eve and prd stripes was 

weakened, while ftz and odd showed an increase in their stripe intensity.

• In eve mutants, all genes showed impaired stripe spacing and intensity.

→ Agreement. In simulated eve mutant, the stripe spacing and intensity seem to be 

impaired in all the other pair-rule genes, when compared with the simulated wild 

type.

• In eve mutants, stripe 1 and 2 of slp1 are fused. As a result, stripe 1 of ftz and 
odd, and stripe 2 of h were repressed.

→ Partial agreement. In simulated eve mutant, stripe 1 expanded towards stripe 2. 

Stripe 1 of ftz was impaired, but the stripes of odd and h were unaffected. We 

suspect that this is because, in our data, the position of slp1 stripe 1 does not 

overlap with the positions of odd stripe 1 and h stripe 2.

• In ftz mutants, odd stripes showed a weakening and loss of regularity.

→ Agreement. In simulated ftz mutant, odd stripes were severely impaired.

• In odd mutants, the width of eve stripes was increased.

→ Partial agreement. In simulated odd mutant (sixth row), the stripe intensity of 

eve was decreased, and the stripe boundaries became slightly fuzzy, which could 

possibly be interpreted as broadening.
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• In prd mutants, the intensity of stripe 1 and 2 of h was weakened.

→ Agreement. When compared with the simulated wild type, stripes 1 and 2 of h 
were noticeably weakened.

• In slp mutants, strip 1 of other pair-rule genes were shifted anteriorly.

→ Disagreement. The simulated slp mutant did not display any visible changes in 

the stripe positions.

Overall, we found that the association between the null condition of pair-rule genes and the 

stripe intensities and regularities was reproduced in our mutant simulations. However, the 

changes in stripe location and/or stripe width observed in the mutants were not captured 

in the simulations. We suspect that this is because we do not have information on the true 

initial conditions of the mutants. This is discussed more in detail in Section 4.

Additionally, we made pair-rule gene mutant predictions from the trained neural networks 

with 1000 nodes on one hidden layer. The initial expressions of a mutated gene were set 

to 0. Unlike our effective gene network model, where we can suppress pertinent effects 

by setting corresponding edge weights to 0’s, we cannot emulate this in neural networks. 

Thus, when simulating mutants with the trained neural networks, the predicted expressions 

of mutated genes were manually rectified to 0’s, after each time step forward. The results 

are included in the Supporting Materials A (Fig. S3), which show the averaged expressions 

predicted from 10 neural networks that we obtained through 10-fold cross-validation.

We then expanded the scope of mutant simulations to the maternal-effect genes, bicoid 
(bcd) and caudal (cad), and the gap genes, hunchback (hb), giant (gt), Krüppel (Kr), 
knirps (kni), tailless(tll), and huckebein (hkb). The maternal-effect genes are critical for 

anterior-posterior pattern formation, while the gap genes are involved in the development 

of the segmented embryo [16]. These segmentation genes are closely related and form a 

hierarchical regulatory network. The maternal-effect genes control the expressions of the 

gap genes, which in turn regulate the pair-rule gene expressions. The mutant simulations are 

shown in Figure 20. There are some genes whose proteins were also measured, bcd, hb, gt, 
and Kr. For their mutant simulations, we set the initial expressions of the proteins and the 

weights of all the edges going in and out of the corresponding linear and quadratic terms to 

0’s. Here are some prominent results of the mutant simulations:

• bcd mutant: The expression of other genes was disrupted in the anterior region of 

the embryo.

• cad mutant: The stripe intensities of h, ftz and odd were weakened.

• hb mutant: All maternal-effect, gap, and pair-rule genes showed significantly 

disrupted gene expression patterns.

• gt mutant: There was an up-regulation of hb in the anterior region of the embryo. 

The regularity of stripe intensity was significantly impaired in all pair-rule genes.

• Kr mutant: All maternal-effect, gap, and pair-rule genes showed disrupted 

expression patterns in the central region where a Kr band is exhibited in the 

observed and simulated wild type.
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• kni mutant: cad, eve, ftz, and odd were notably up-regulated in the anterior.

• tll mutant: The posterior of the embryo showed perturbed gene expressions of 

cad, hb, gt, kni, h, eve, ftz and slp1.

• hkb mutant: All maternal-effect, gap, and pair-rule genes showed up-regulation 

or down-regulation in the most anterior and posterior regions of the embryo.

• slp1 mutant: cad, gt, kni, and till showed changes in the gene expression patterns, 

mainly in the anterior region.

Interestingly, in most of the simulated pair-rule gene mutants, there was no major change 

in the maternal-effect and the gap gene expression patterns. This observation supports 

the hierarchical regulatory relationship between the maternal-effect genes and the pair-rule 

genes. The effects of each genetic null allele on the measured protein (bcd, hb, gt, and Kr) 
are included in the Supporting Materials A (Fig. S4). For completeness, we also simulated 

the effects of nullifying individual genes and proteins. The results are included as a separate 

supporting document, Supporting Materials B.

3.6 Visualizing the gene network model and making predictions for the effects of network 
perturbations

As the mutant predictions showed, the major advantage of mechanistic modeling, here 

performed with erf-weighted LAD, is that we can access the inferred gene network model, 

W, which is not possible by training black-box neural networks. Fig. 21 shows a partial 

network representing the interactions between any two genes. The quadratic effects are not 

shown in the figure. With the network in hand, we can answer the following question: 

What are the effects of introducing a small perturbation to the network? Some of these 

predictions are wishful thinking from an experimental point of view as an understanding of 

transcriptional regulation at the required fine level of control is lacking. Nevertheless, we 

present them as aspirational.

Perturbing the effect of Dorsocross2 (Doc2) on tartan (trn)—Doc2 encodes one of 

the three tissue-specific T-box transcription factors and is crucial for numerous cell activities 

including completion of differentiation and proliferation arrest [9]. trn is another protein 

coding gene that encodes a transmembrane leucine-rich repeat protein [9]. Doc2, located 

at the center of the gene network in Fig. 21, has a positive effect on trn, located at the 

center of the lower left quadrant of the gene network. We enhanced this effect by 15% and 

simulated the changes induced in trn at t = 1, given the measured gene expressions at t 
= 0. Needless to say, in some positional bins where Doc2 expression level is zero at t = 

0, the perturbation would not cause any changes in the expression level of trn at the next 

time-point. On the same note, it is expected that the perturbation would induced a relatively 

bigger change in trn in positional bins with a high expression of Doc2 at t = 0, compared 

to those with a low expression of Doc2. Since Doc2 expression level is not homogeneous 

across the entire embryo, as shown in Fig. 22(A), we partitioned the embryo into four groups 

of positional bins: (1) positional bins with a high expression level of Doc2, denoted as 

cellhigh, (2) positional bins with a mid expression level of Doc2, cellmid, (3) positional bins 
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with a low expression, celllow, and (4) positional bins with zero expression level, cellzero; see 

Fig. 22(B).

From the initial conditions of the genes and the perturbed gene network, we simulated the 

gene profiles after one time step. The resulting profiles of trn, trnW P , were then compared to 

those simulated without the perturbation, trnW. The differences were rescaled by the mean of 

the differences in cellhigh:

trndiff =
trnW − trnW P

mean trnW − trnW P cell high
, (8)

so that we can compare the normalized differences in all positional bins. Fig. 23(A) shows 

the distributions of the 440 normalized differences in the three groups of positional bins, 

grouped based on the expression level of Doc2 at t = 0.

As we expected, the changes in trn expression level induced from the perturbation were 

predominantly larger in cellhigh, compared to the changes in cellmid and celllow.

We then suppressed the effect of Doc2 on trn by 10% and evaluated the effects of the 

perturbation. Fig. 23(B) shows the distributions of rescaled differences between trn profiles 

simulated with and without the perturbation in the network. As expected, the simulation 

showed that the perturbation would induce larger changes in trn at t = 1 in cellhigh, compared 

to the changes in other positional bins.

Perturbing the effect of Centaurin gamma 1A (cenG1A) on sister of odd and 
bowl (sob)—Here is another example of simulating a perturbation in the network. cenG1A 
and sob are protein encoding genes. While cenG1A encodes a GTPase and is involved in 

positive regulation of GTPase activity, there are only speculations about the role of sob [9]. 

cenG1A has a positive effect on sob. We perturbed this effect by increasing it by 15% and 

simulated the gene trajectories for one time step. Following the same steps as before, the 

positional bins were partitioned into three groups based on their cenG1A expressions at t 
= 0, cellhigh, cellmid, and celllow. The color-coded sections are shown in Fig. 24. We then 

calculated sob’s rescaled differences induced from the perturbation:

sobdiff =
sobW − sobW P

mean sobW − sobW P cellhigh
, (9)

where sobW and sobW P  are simulated profiles of sob at t = 1, with and without the 

perturbation in the network. The distributions of normalized differences are shown in Fig. 

25. Again, we compared the distributions in three groups of positional bins, which showed 

that the majority of cellhigh group, the ones with high expressions of cenG1A at t = 0, has the 

largest changes in sob at t = 1. We conducted a series of perturbations for both positive and 

negative effects, and they are included in the Supporting Materials A (Fig. S5 – S14).
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4 Discussion

In this paper, we introduced a stable variation of LAD regression that sidesteps the 

singularity problem of LAD regression when the prediction errors are small while 

maintaining its robustness to the effects of outliers. We used this regression to infer a 

mechanistic gene network model that governs the discrete gene dynamics observed in 

Drosophila melanogaster blastoderm embryo. The model not only takes the linear gene 

profiles into account but also incorporates the quadratic products of gene pairs. It is 

important to emphasize that the mechanistic model inferred is an effective model that 

incorporates multiple pathways into combined effects on observable quantities. So, for 

example, the appearance of the GTPase Centaurin gamma 1A (cenG1A) as a molecule that 

affects gene expression must be understood in this effective sense. Data-driven effective 

models alone cannot reveal any mechanistic insight except at the effective level of measured 

quantities and their effects on other measured quantities.

The performance of erf-weighted LAD regression was evaluated by comparing the 

predictive power of the inferred model with those of models inferred with least squares and 

ridge regressions and trained neural networks. To be comprehensive, we inferred models at 

various sample sizes. As we decreased the sample size, we implemented ridge regularization 

in our regression to remediate having a degenerate covariance matrix. Our results show that 

at various sample sizes, the models inferred with our methods predict more accurately than 

neural networks. Our method significantly outperforms ridge regression, especially in the 

limit of small sample size.

The comparison to black-box neural networks is simply to provide a baseline for how well 

a mechanistic model should perform as a predictive tool because the neural networks, of 

course, provide no mechanistic insight into the data, but are presumed to infer functions 

correctly according to the universal approximation theorem. It should also be noted that, 

while we did vary neural network complexity in both number of nodes and number of 

hidden layers, we did not consider many other possible variants of neural networks nor 

did we attempt to tweak various parameters that govern neural network optimization. The 

mechanistic models we considered are also, similarly, rather simple with only rectified linear 

and quadratic terms, and of course these could also be tweaked in a modeling arms race. 

At the end of the day, however, neural networks still remain black boxes affording little 

mechanistic insight.

By inferring gene network models from different sections of the embryo, we addressed the 

global applicability of the models across the entire embryo. The results suggest that due 

to the limited cell-to-cell variability in gene dynamics, the models inferred with subsets of 

positional bins in close proximity are not as apt to predict the gene dynamics in positional 

bins on other parts of the embryo.

With the inferred mechanistic gene network, we made predictions on the effects of gene 

knockouts and introducing a small perturbation to a gene-to-gene interaction. Obtaining an 

effective gene network and making such predictions is not feasible with a neural network.
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The mechanistic gene network presented in this paper is inferred from spatiotemporal gene 

expression data. Despite the comprehensiveness of the dataset, it was incomplete. The 

dataset had some missing time-points for some genes. We trained neural networks to impute 

the missing data. While we cannot be certain that our imputation method is optimal for the 

given data, we thoroughly examined the neural network imputation with randomized trials of 

imputing when simulating missing gene expressions.

When comparing model simulations of pair-rule gene mutants to the empirical studies 

in Schroeder et al. [19], we noticed a common phenomenon. The stripe intensities and 

regularities affected by the pair-rule gene mutations were well captured in the model 

simulations. On the other hand, if the mutations led to a change in the stripe position, 

i.e., shifting anteriorly, this change was not reproduced in the model simulations. We believe 

this is due to the lack of information on the true initial gene expressions of the mutants. 

In our mutant simulations, the initial conditions are the same as the wild type, except for 

the mutated gene expression, which was set to 0. However, it is not unfounded to expect 

significantly different initial conditions in mutants, and those may involve a shift in the 

stripe positions.

We emphasize that the inferred gene network is a universal and comprehensive model 

of gene dynamics in the positional bins that cover the entire embryo. This is a different 

modeling approach from the one presented by Fowlkes et al. [4], where, for a given target 

gene, a small set of regulators that best describes that gene’s spatiotemporal dynamics 

was selected and separate domains of target pattern (i.e., individual stripes) were regressed 

independently. Similarly, one could infer multiple gene networks for different clusters of 

positional bins to better understand the local gene dynamics. Then, the challenge would be 

how to stitch the networks together to obtain a comprehensive common network. However, 

we do not know how to do this in a principled way, and we suspect that a more useful 

approach would be to work with larger sets of gene measurements instead.

As mentioned in the Introduction, we are working on overcoming the limitations of our 

algorithm when faced with newer single-cell datasets, both in terms of computational 

mechanism-guided deduction of trajectories and in terms of using additional information 

that is becoming available [8, 24, 23]. Extensive datasets in Drosophila melanogaster 
embryo have been published by Karaiskos et a. [6] and Nitzan et al. [14], and we hope 

to use these to constrain and inform our modeling efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• We inferred dynamical gene regulatory networks from single-cell data.

• We modified least absolute deviation to alleviate its sensitivity to outliers.

• The model has a higher predictive power than trained neural networks.

• The mutant simulations show qualitative agreement with experimental 

findings.
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Figure 1: A schematic diagram of the imputation method.
The missing expression levels for each incomplete gene were imputed with a neural 

network that was trained with the complete gene expression levels in the samples where the 

incomplete gene was measured as predictors and the measured incomplete gene as targets.
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Figure 2: Validation of our imputation method.
The plot shows the mean correlation coefficient and the standard deviation between the true 

and the imputed values for each of the complete genes over approximately 55 independent 

trials each.
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Figure 3: 10-fold cross-validation for erf-weighted LAD and least squares regressions.
For every inference instance, we held out the same set of positional bins, which was later 

used to evaluate the model accuracy. The remaining positional bins were shuffled and split 

into 10 groups. At each cross-validation iteration, a model was trained on 9 groups, while 

the remaining group was a validation set. Each group took turns as a validation set. 10 

iterations of cross-validation resulted in 10 W’s and bias’, which were averaged into Wavg 

and biasavg.
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Figure 4: Fractional errors of the predicted gene fluorescence intensity.
Using different tiers of the gene profiles specified in the legend at t = 0, 1, 2, 3, and 4 as 

predictors and the linear gene profiles at t = 1, 2, 3, 4, and 5 as targets, we inferred the gene 

network model W and bias using erf-weighted LAD. The models were used to predict the 

linear gene profiles at t = 1, 2, 3, 4, and 5 in the test set. The markers show the fractional 

error of the predictions for each gene, as defined in Eq. (6).
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Figure 5: Comparing the predictive power of the neural networks and the gene network models 
inferred with erf-weighted LAD and ridge regression.
The number of the training samples were decreased to 10%, 20%, 30%, 40%, 50%, 60%, 

70%, and 80% of the total samples. The panels on the first column are showing all the 

proportion levels, while the panels on the second column focus on the larger levels with a 

smaller y-axis window to clearly show the differences. The panels on the top and the bottom 

rows show the median L1 norms of the errors and the median fractional errors in the test set, 

respectively.
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Figure 6: Comparison between the prediction errors of the gene network models: erf-weightes 
LAD vs. ridge regression.
The models inferred from erf-weighted LAD and ridge regression with 10% of the total 

samples were used to forecast the gene profiles in the test set. The errors between the 

predictions and the observed gene profiles were measured. Panel (A) shows the distributions 

of the L1 norms of the errors, while panel (B) shows the distributions of L2
2 norms. In 

both panels, the blue and orange distributions are from the erf-weighted LAD and ridge 

regression predictions, respectively.
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Figure 7: Comparison between the prediction errors of the gene network models: erf-weighted 
LAD vs. NN.
The models inferred from erf-weighted LAD and the neural networks trained with 10% of 

the total samples were used to forecast the gene profiles in the test set. The errors between 

the predictions and the observed gene profiles were measured. The distributions of the L1 

norms of the errors are shown in a logarithm scale. The blue and orange distributions are 

from the erf-weighted LAD and the neural networks predictions, respectively.
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Figure 8: Comparison between the prediction errors of the models inferred from erf-weighted 
LAD and neural networks (NN) with one hidden layer.
The trained neural networks with one hidden layer of varying numbers of nodes were used 

to predict the gene profiles in the test set. The blue distributions in all panels show the 

L1 norms of the prediction errors from the gene network model inferred with erf-weighted 

LAD. The other distributions in Panels (A) – (D) show the distributions of L1 norms of the 

prediction errors from the neural networks with 50, 100, 1000, and 10000 hidden nodes, 

respectively.
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Figure 9: Comparison between the prediction errors of the models inferred from erf-weighted 
LAD and neural networks with five hidden layers.
The trained neural networks with five hidden layers with varying numbers of nodes were 

used to predict the gene profiles in the test set. The blue distributions in all panels show the 

L1 norms of the prediction errors from the gene network model inferred with erf-weighted 

LAD. The other distributions in Panels (A) – (D) show the distributions of L1 norms of the 

prediction errors from the neural networks with 50, 100, 1000, and 10000 hidden nodes, 

respectively.
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Figure 10: A TSNE plot of the data.
The scatter plot shows a two-dimensional representation of the gene expressions in 6078 

positional bins.
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Figure 11: Sectioned embryo.
The number of positional bins on each section is approximately 30% of the total number of 

positional bins. The test set of positional bins are marked in black.

Han et al. Page 32

Math Biosci. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12: Fractional errors of the gene predictions from the gene network models inferred with 
different sections of the embryo (1/3 of train/validation positional bins).
Each line represents the fractional errors of the predictions from each inferred gene network 

model. The line colors are matched to the color scheme of the embryo shown on the right. 

The blue line shows the fractional errors from the gene network models inferred with 

randomly selected positional bins that amounts to 30% of the total positional bins.
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Figure 13: L1 norm distributions of the errors of the gene predictions from the models inferred 
with different sections of the embryo (1/3 of train/validation positional bins).
The distributions in blue show the L1 norm of the predictions errors from the model inferred 

with random 30% of the total positional bins. The other distribution on each panel shows the 

L1 norm of the prediction errors from a model inferred with each partition of the embryo 

shown on the upper left.
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Figure 14: Fractional errors of the gene predictions from the gene network models inferred with 
different sections of the embryo (1/2 of train/validation positional bins).
Each line shows the fractional errors of the gene expression predictions from each inferred 

gene network model. The line colors are matched to the color scheme of the embryo on the 

right. The blue line shows the fractional errors of the predictions from the gene network 

models inferred with random 45% of the total positional bins.
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Figure 15: L1 norm distributions of the errors of the gene predictions from the models inferred 
with different sections of the embryo (1/2 of train/validation positional bins).
The distributions in blue show the L1 norm of the predictions errors from the model inferred 

with random 45% of the total positional bins. The other distribution on each panel shows the 

L1 norm of the prediction errors from a model inferred with each partition of the embryo 

shown on the left.
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Figure 16: Fractional errors of the gene predictions from the models inferred with different 
sections of the embryo, sectioned along the dorsal-ventral axis.
The panels show the fractional errors of the gene expression predictions from the inferred 

gene network model that were trained with (A) 30% and (B) 45% of the total positional 

bins. The line colors are matched to the color scheme of the embryo on the right. The blue 

line shows the fractional errors of the predictions from the gene network models inferred 

with random selections of the total positional bins that amounts to the equal portion of the 

positional bins for a fair comparison.
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Figure 17: L1 norm distributions of the errors of the gene predictions from the models inferred 
with different sections of the embryo, sectioned along the dorsal-ventral axis.
The distributions in blue show the L1 norm of the predictions errors from the model inferred 

with random (A) 30% and (B) 45% of the total positional bins. The other distribution on 

each panel shows the L1 norm of the prediction errors from a model inferred with each 

partition of the embryo shown on the left.
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Figure 18: 
On each panel, orange, green, or red distribution shows L1 norm of the prediction errors of 

all the test positional bins scattered across the entire embryo. The predictions are made with 

models inferred from different sections of embryo. The blue distributions show L1 norms of 

the predictions errors of the test positional bins located in that particular section.

(A) and (C): 30% and 45%, sectioned along the anterior-posterior axis, (B) and (D): 30% 

and 45%, sectioned along the dorsal-ventral axis.
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Figure 19: Mutant simulations: pair-rule genes.
The model was used to simulate the effects of nullifying each pair-rule gene on transcript 

patterns of other pair-rule genes at t = 2. Genotypes are arranged by row, transcript patterns 

by column. The first and second rows show the observed and simulated wild type transcript 

patterns at t = 2, respectively. The gene expressions are normalized with respect to the 

corresponding wild type expressions.
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Figure 20: Mutant simulations: maternal genes, gap genes, and pair-rule genes.
The model was used to simulate the effects of nullifying the segmentation genes (maternal-

effect, gap, and pair-rule) on transcription patterns of the maternal-effect genes and the 

gap genes. Genotypes are arranged by row, transcript patterns by column. The first and 

second rows show the observed and simulated wild type transcription patterns at t = 2, 

respectively. The gene expressions are normalized with respect to the corresponding wild 

type expressions.
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Figure 21: A network graph showing the linear effects between the genes.
The genes in the yellow circles are transcription factors and the genes in the blue circles are 

non-transcription factors. The size of the each circle is proportional to the total effect of the 

corresponding gene to all the other genes. The pink and green edges represent the positive 

and negative effects, respectively, while the edge transparency and thickness are proportional 

to the magnitude of the effect. The directionality of the edges is clockwise.
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Figure 22: Expressions of Doc2 at t = 0.
(A) The expressions of Doc2 in the positional bins are displayed on a continuous color 

spectrum. (B) The positional bins are color-coded based on their Doc2 expression levels.
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Figure 23: Violin plots showing the distributions of rescaled differences between trn simulated 
with a perturbed gene network and those simulated with the un-perturbed gene network.
The effect of Doc2 on trn was (A) increased by 15% and (B) decreased by 10%. We used 

Eq. 8 to compute and compare the rescaled differences. The color-coding is the same as in 

Fig. 22(B). The normalized differences in cellzero are not shown, as they are all 0’s.
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Figure 24: Expressions of cenG1A at t = 0.
(A) The expressions of cenG1A in the positional bins are displayed on a continuous color 

spectrum. (B) The positional bins are partitioned and color-coded based on their cenG1A 
expression levels.
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Figure 25: Violin plots showing the distributions of rescaled differences between sob simulated 
with a perturbed gene network and those simulated with the un-perturbed gene network.
The effect of cenG1A on sob was increased by 15%. We used Eq. 9 to compute and compare 

the rescaled differences. The color-coding is the same as in Fig. 24(B)
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