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Abstract

In contrast to solid cancers, which often require genetic modifications and complex cellular 

reprogramming for effective metastatic dissemination, leukaemic cells uniquely possess the innate 

ability for migration and invasion. Dedifferentiated, malignant leukocytes retain the benign 

leukocytes’ capacity for cell motility and survival in the circulation, while acquiring the potential 

for rapid and uncontrolled cell division. For these reasons, leukaemias, although not traditionally 

considered as metastatic diseases, are in fact models of highly efficient metastatic spread. 

Accordingly, they are often aggressive and challenging diseases to treat. In this Perspective, we 

discuss the key molecular processes that facilitate metastasis in a variety of leukaemic subtypes, 

the clinical significance of leukaemic invasion into specific tissues and the current pipeline of 

treatments targeting leukaemia metastasis.

Metastasis of solid tumours is defined as the emergence of secondary growth away from a 

primary site. For liquid tumours such as leukaemias that initially present with widespread 

disease, the precise location of origin in the bone marrow (BM), spleen or lymph node 

(LN) is, however, often unknown. This ambiguity, as well as the recognition that leukaemic 

cells ‘inherit’ rather than gradually acquire motility, has resulted in disagreement over 

whether leukaemia should be considered a metastatic disease. Despite this controversy, 

disseminated leukaemia cells share many of the properties of metastasizing solid tumour 

cells. These include derivation from a mutant clone or clones possessing disease-initiating 

potential1–3, spread via a cascade of molecular events entailing intravasation, extravasation 

and tissue colonization4–10, specific and reproducible patterns of organ involvement11,12, 

adaptation to tissue microenvironments that are distinct from that of the cell of origin13,14, 

and widespread disease that is challenging to treat and can fuel future relapse13,14. The 

unique selective pressures applied by different organs often lead to heterogeneous clonal 

evolution, compounding the difficulty in achieving complete treatment response. For these 

reasons, we consider the process of leukaemia cell dissemination to represent metastasis.
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In this Perspective, we argue that leukaemia dissemination is indeed metastatic, and we 

describe the events in this multi-step process. We review the various sites of leukaemia 

metastasis and the molecular mechanisms governing this organotropism. Finally, we provide 

an overview of current and upcoming strategies to target leukaemia metastasis.

Classification and derivation

The term leukaemia is derived from the Greek words ‘leukos’, meaning white, and ‘haima, 

meaning blood. The name, which is used to reference a broad array of haematopoietic 

malignancies currently subcategorized according to their morphology, immunophenotype, 

cytogenetic and molecular abnormalities and clinical features, refers quite literally to the 

excess of white blood cells seen in the bloodstream of patients with these diseases15. 

Clinically, these diseases fall within four broad categories, myeloid or lymphoid lineage and 

acute or chronic, which help to dictate the approach to treatment. The latter categorization 

refers to the rapidity of clinical onset and disease progression. Although there are a 

multitude of specific diagnoses, the most commonly seen and studied leukaemias are 

acute myeloid leukaemia (AML), acute lymphocytic leukaemia/lymphoma (ALL), chronic 

lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) and chronic myeloid 

leukaemia (CML). We therefore focus on these entities in this article.

Although circulating malignant white blood cells are a prominent feature of the leukaemias, 

it should be noted that blood-borne tumour cells can often be detected in epithelial 

malignancies and other haematopoietic disorders, including lymphomas and multiple 

myeloma, often in association with more aggressive disease16,17. Furthermore, leukaemia 

cell involvement is not limited to the bloodstream and haematopoietic organs (BM, 

spleen, LN and tonsils), and some subtypes show a particular predilection for specific 

non-haematopoietic tissues (for example, ALL and the central nervous system (CNS)18,19). 

These observations underscore the premise that wide-ranging, organotropic dissemination is 

a shared trait among the liquid and solid cancers.

Whereas solid tumour metastasis is a largely inefficient process with a high rate of 

attrition20, leukaemia cells are motile and can easily traffic throughout the body without 

the need to acquire a heavy mutational burden and anchorage independence. Leukaemia 

metastasis is therefore an efficient and cyclical process of tissue homing, colonization and 

mobilization back into circulation, making leukaemia a deadly and challenging disease to 

treat, and in the case of the acute leukaemias, an ultimate example of aggressive metastasis.

The haematopoietic stem cell (HSC) is positioned atop the developmental hierarchy of 

all lymphoid, myeloid and erythroid lineage progenitor and mature haematopoietic cells21. 

Although the bulk of the HSC population is quiescent and ensconced within regulatory 

and protective BM niches at any given time, HSCs are in fact motile cells and possess 

the remarkable ability to swiftly enter circulation and traffic to both haematopoietic and 

non-haematopoietic organs in response to a variety of inflammatory cues22. Compelling 

data, recently reviewed3, have shown that AML and CML cells arise from HSCs or myeloid 

progenitors in which key driver mutations have occurred (for example, the BCR–ABL 
translocation in CML). Despite the single cell origin of disease, significant heterogeneity 
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arises as mutations accumulate in daughter cells, resulting in what is referred to as subclonal 

evolution2,23,24. Yet, only a subset of leukaemic cells within a malignant population is 

believed to harbour the stem cell properties of self-renewal and the ability to initiate disease 

when engrafted into an immunocompromised host1,3, and these are referred to as leukaemia 

stem cells (LSCs). LSCs, like other cancer stem cells, are particularly important in the 

context of metastasis as they are often therapy resistant25–27. Fuelled by the acquisition of 

new pro-survival and pro-proliferative mutations, they may emerge as a dominant subclone 

later in the disease course28,29 and serve as a reservoir for disease relapse27. Although the 

precise cells of origin for CLL and ALL and the relevance of LSCs in these leukaemias 

remain unclear, the process of clonal evolution, occurring independently at different sites of 

metastasis, also contributes to the difficulty in curing these diseases30–33.

Reflecting their haematopoietic cells of origin, leukaemia cells co-opt haematopoietic stem 

and progenitor cell (HSPC) and/or mature leukocyte trafficking mechanisms at almost every 

step of the metastatic cascade. For example, leukaemic cells respond to environmental 

cues similar to those that enable HSPCs and leukocytes to exit (‘mobilize’) and enter 

tissues from peripheral circulation9,34. After extravasating into a new tissue, leukaemia 

cells, like HSPCs, encounter a complex microenvironment composed of diverse niches 

capable of fostering either cellular proliferation or dormancy35. Further echoing the cellular 

origin of leukaemias, much of the microenvironmental crosstalk that regulates leukaemia 

metastatic growth recapitulates the niche signalling that regulates HSPC repopulation or 

quiescence22,36.

Patterns of metastasis

One of the hallmarks of metastasis is organ tropism, dictated by the appropriateness of 

a particular organ’s ‘soil’ as host for the metastatic ‘seed’. Different leukaemia subtypes 

exhibit unique patterns of metastasis to various tissues including, but not limited to the 

BM, LN, liver, spleen, CNS, skin and testicles12 (FIG. 1). Although leukaemias are 

primarily understood to be diseases of the haematopoietic tissues and circulatory system, 

their metastatic invasion of extramedullary (non-BM) sites holds significant importance for 

disease progression, severity and outcomes in patients. For example, unique interactions 

between leukaemic cells and the surrounding microenvironment of different organs may 

play a role in the heterogeneous responses to treatment observed in some patients. 

Rituximab, an anti-CD20 monoclonal antibody, has been reported to be more effective 

in clearing follicular lymphoma from BM than from LNs37, and similarly, its mechanism 

of cytotoxicity in CLL is believed to vary depending on tumour site38. The metastasis of 

leukaemia to sanctuary sites such as the CNS and testes, where drugs and the immune 

system have more restricted penetration, is another important example of the impact of the 

tissue metastatic profile on disease treatment19,39–41.

Underpinnings of leukaemia metastasis

The concept of leukaemia as a metastatic disease is bolstered by the recognition that 

leukaemic cells engage many of the same cell surface adhesion molecules, chemokines, 

matrix molecules and intracellular motility signalling pathways as solid cancers to invade 

Whiteley et al. Page 3

Nat Rev Cancer. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distant organs. Detailed investigations have revealed considerable molecular conservation 

between solid and liquid tumours in these processes. Some important molecular components 

in the leukaemic metastatic cascade are described below.

Selectins.

Selectins (E-, P- and L-selectins) are a family of cell surface glycoproteins expressed on 

inflamed endothelial cells (E- and P-selectin) and leukocytes (L-selectin), the importance 

of which in cell trafficking was first established in lymphocytes42 (BOX 1). Later, 

recognition of selectin ligand expression by leukaemia43 and solid tumour cells44–46 and 

their association with advanced disease in patients led to investigations defining their 

important role in tumour metastasis47.

Selectin ligands are known to be expressed by all major categories of leukaemia43, and 

high levels of E-selectin ligand expression are associated with poor disease outcomes 

in patients with AML48. Early in vitro studies reported that inhibition of L-selectin and 

E-selectin binding decreased leukaemia cell adhesion to human umbilical vein endothelial 

cells, suggesting a functional role in haematogenous metastasis49. In upcoming sections, we 

highlight examples of selectin-mediated leukaemic metastasis to the BM and LN.

While E- and P-selectin expression is limited to the vasculature, L-selectin can be expressed 

on the surface of leukaemic cells. In ALL and CLL, L-selectin expression and shedding have 

been shown to correlate with more highly metastatic disease7,50,51. In fact, patients with 

CLL who were treated with the PI3Kδ inhibitor idelalisib exhibited decreased L-selectin 

expression, suggesting an additional pharmacological mechanism by which PI3K inhibition 

prevents CLL progression7.

Integrins.

Integrins are a family of cell surface molecules that have been shown to have an important 

role in almost every step of the metastatic cascade from invasion to the activation 

of pro-survival signalling pathways52. In both solid tumours and leukaemias, integrins 

enable malignant cells to sense and respond to a variety of cell, extracellular matrix 

(ECM), cytokine and growth factor binding partners in their tissue microenvironments. 

During leukaemic cell dissemination, integrins play a key adhesive role, anchoring cells 

to the vessel lumen during haematogenous metastasis (FIG. 2) and tethering them to 

the metastatic niche after invasion8,53–55. Integrin activation also stimulates intracellular 

signalling pathways that augment leukaemia cell motility56.

The integrin VLA-4 (also known as α4β1) is a receptor for vascular cell adhesion molecule 

1 (VCAM1) and for ECM fibronectin, and the integrin VLA-5 (also known as α5β1) is 

a receptor for fibronectin and fibrinogen; both have important roles in tissue homing and 

retention for the lymphoid leukaemias8,53–55. Clinical investigations of patients with B cell 

ALL (B-ALL) have also shown a correlation between low-affinity VLA-4 binding and 

elevated peripheral blood blast numbers, further suggesting that VLA-4 has a crucial role in 

the retention of lymphoblasts in the BM microenvironment53.
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Clinical research has also revealed a role for integrins in leukaemic cell tethering within 

LNs. In CLL, VLA-4 clustering, which promotes adhesion to VCAM1 expressed on LN 

endothelium, is induced by B cell receptor activation57. Patients with CLL who were 

treated with ibrutinib, a small-molecule inhibitor of Bruton tyrosine kinase (BTK) that 

antagonizes B cell receptor signalling and is approved for treatment of CLL58, displayed 

LN shrinkage concurrent with transient increases in circulating CLL cells that exhibited 

decreased adhesion to VCAM1 ex vivo57.

Chemokines, cytokines and growth factors.

Soluble factors such as chemokines, cytokines and growth factors have an integral role in the 

establishment of metastatic disease. They form a complex intracellular signalling network 

that guides tumour cell chemotaxis and invasion and colonization in both liquid and solid 

tumours.

The interaction between stromal cell-derived factor 1 (SDF1; also known as CXCL12) and 

its receptor, CXCR4, is one of the most studied interactions in leukaemia, as CXCR4 

is expressed in most haematological malignancies and is often associated with poor 

prognosis59,60. SDF1 is synthesized and secreted by a myriad of stromal cells in tissues 

commonly colonized by leukaemia including the spleen, BM, CNS and skin, where it serves 

as a potent chemoattractant for leukaemia cells9,61,62 and LSCs10. CXCR4 expression can 

also be upregulated in response to niche factors such as stem cell factor (SCF; also known as 

Kit ligand)63 and hypoxia64 and in response to therapy65,66. Other chemokine receptors that 

have been implicated in leukaemia metastasis67 include CCR7 in the CNS68, spleen69 and 

LN70, and CCR4 and CCR2 (REFS71,72) in skin.

As in solid tumours, leukaemia metastasis can be enhanced by changes to the 

microenvironment induced by aberrant cytokine and growth factor secretion. Among the 

best-studied examples in solid malignancies are the vascular endothelial growth factor 

(VEGF) family-dependent processes of neoangiogenesis and vascular remodelling, which 

promote tumour growth and prime pre-metastatic niches73. Although not as intensively 

studied in the leukaemias, evidence of neoangiogenesis in the BM of patients with ALL74 

and AML75 is well documented and will be discussed in upcoming sections.

Extracellular matrix.

Although epithelial cells critically depend on matrix adhesion to prevent anoikis, the 

ECM also has an important role in leukaemia metastasis as a scaffold to direct adhesion 

and migration in the metastatic niche. Fibronectin, a major structural component of the 

basement membrane of BM and LN blood vessels76–78, has been shown to enhance the 

chemotaxis of AML cells towards SDF1 (REF.79). Similarly, laminin expressed in the 

basement membrane of CNS vessels serves as a scaffold for B-ALL cell migration towards 

cerebrospinal fluid (CSL) chemokines in the leptomeninges and also activates leukaemia 

cell actinomysin contractility pathways through its binding to ALL integrin α6 receptors56. 

Matrix binding interactions with osteopontin (OPN) and fibronectin have also been shown to 

anchor leukaemic cells in the nutrient-rich and protective environment of the BM, shielding 

them from therapeutic killing35,80.
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Motility modes.

Similarly to solid tumour cells, leukaemic cells adopt a variety of migratory strategies, 

including amoeboid-, invadopodia- and lamellipodia-driven movement, that each employ 

unique and complex molecular signalling pathways81 (BOX 2).

Leukaemic cells, like normal leukocytes, use amoeboid-like migration to efficiently squeeze 

through tissues without having to degrade the ECM. The BCR–ABL fusion protein, present 

in CML cells as well as Philadelphia chromosome-positive ALL, can directly phosphorylate 

and activate cell motility machinery in this pathway. For example, ectopic expression of the 

p210 variant of the BCR–ABL fusion protein in murine Ba/F3 pro-B cells activates RHOA–

ROCK signalling to myosin light chain (MLC) that works in conjunction with the actin-

binding protein destrin (also known as actin depolymerizing factor) to promote spontaneous 

amoeboid motility82,83. The Dbl homology–pleckstrin homology domain in the p210 BCR–

ABL chimera was identified to be the specific activator of RHOA, thus providing a further 

understanding of how BCR–ABL signalling activates cell motility pathways. Amoeboid-like 

migration may not be exclusive to BCR–ABL+ leukaemia, however. Ongoing work in our 

group suggests that only some ECM components can induce amoeboid-like migration in 

BCR–ABL− B-ALL cells, suggesting that the microenvironment also plays an important role 

in migration mode selection (D.A.S., unpublished observations). Finally, the importance of 

actomyosin-driven motility in leukaemia progression has been highlighted in recent years 

by studies showing high expression of the actin-polymerization protein, cortactin, on blasts 

biopsied from the BM and CSF of patients with relapsed B-ALL84.

Like solid tumour cells85,86, leukaemia cells may transition from one migration mode to 

another. For example, by suppressing RHOA activity and activating CDC42, BCR–ABL+ 

leukaemic cells can switch from amoeboid to invadopodia-based migration87. In CML, it has 

been reported that BCR–ABL constitutively activates the SRC family haematopoietic cell 

kinase (HCK), which contributes to invadopodia formation88,89.

The process of invadopodia formation is also associated with the release into the 

extracellular space of matrix-degrading enzymes that facilitate disease spread. For example, 

in vitro confocal microscopy studies revealed that the fibronectin and VCAM1 degrading 

enzyme, matrix metalloproteinase 9 (MMP9), co-localizes with invadopodia in CLL cells90. 

A clinical study found that in patients with CLL, LN infiltrates had high MMP9 content 

and a substantial reduction in ECM. The authors reported that elevated MMP9 expression 

correlated with advanced stage and poor prognosis91, suggesting the role of MMP9 in tissue 

invasion. Additional studies have reported that leukaemic cells can secrete MMP2, which 

degrades other ECM substrates, including collagen and elastin92,93.

Finally, microenvironmental factors may influence the migration mode adopted by 

leukaemia cells. In vitro studies have shown that T cell ALL (T-ALL) cells form 

lamellipodia when plated on a fibroblast monolayer94. Upon contact with fibroblasts, 

the RAC-specific guanine nucleotide exchange factor, TIAM1, is recruited to the plasma 

membrane where it interacts with the adhesion molecule CADM1 and activates RAC-

dependent actin reorganization and lamellipodia formation. However, leukaemia cell 

lamellipodia formation may not always depend on contact with an adhesive substrate. For 
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example, soluble extracellular galectins can drive lamellipodia formation in T-ALL cells by 

binding to integrin β1 and activating downstream PI3K–RAC1–ERK1/2 signalling95.

Navigating bone marrow niches

Most clinicians and scientists are unaccustomed to viewing the BM as a leukaemia 

metastatic site, yet consideration of the anatomy and pathophysiology of the disease 

supports the concept that widespread leukaemia BM dissemination is indeed a metastatic 

process. The collective BM spaces within an individual are largely non-contiguous. For 

example, no anatomical connection exists between contralateral femurs, yet leukaemia 

typically presents with involvement of contralateral and distant BM cavities in the femurs, 

pelvis, sternum, vertebrae and elsewhere96. As leukaemic cells are derived from one mutant 

clone originating in a single BM space, disseminated BM disease must by necessity 

arise from leukaemic cells that have exited the primary BM site, travelled through the 

bloodstream, and recognized and successfully entered a secondary BM location. These 

processes mirror the metastatic cascade of solid tumour cells. In the solid malignancies, 

distant spread through a single organ system, for example, contralateral intrapulmonary 

disease in lung cancer97, is also considered metastasis.

Most patients with leukaemia present at diagnosis with disseminated disease involving the 

BM, obviating the typical metastatic staging assessments used in solid tumours. As the BM 

is an important site of metastasis shared across the acute, chronic, myeloid and lymphoid 

leukaemias, as well as the most readily sampled tissue in patients with leukaemia apart from 

peripheral blood, much research has focused on the molecular mechanisms of disease spread 

to this organ. Despite the pervasiveness of disease spread in the BM, this process has been 

shown to be highly selective, involving specific molecular interactions between leukaemia 

cells and a subgroup of blood vessels9,98–101.

Similar to circulating normal leukocytes that precisely identify and enter haematopoietic 

organs or inflamed tissues through vascular interactions102,103, circulating leukaemic cells 

bind to and exit the vasculature to access new metastatic sites, a process generally known 

as extravasation and often referred to as diapedesis or transmigration in haematological 

malignancies4–10. Much of our early understanding of the molecular mechanisms underlying 

this metastatic process comes from studies of leukocyte trafficking, therefore, it is first 

helpful to understand the cascade of carefully choreographed events that leukocytes execute 

to home to secondary lymphoid organs or invade inflamed tissues102,103 (BOX 1). One 

of the seminal discoveries of leukaemia co-opting normal leukocyte homing mechanisms 

used intravital microscopy to view the BM microenvironment in mice, in real time9. The 

authors showed that both circulating pre-B-ALL cells and normal HSPCs home to sinusoidal 

vessels in the BM that uniquely express SDF1 and E-selectin, molecules with expression 

typically limited to inflamed vasculature. Mirroring HSC and T lymphocyte interactions 

with the vessel wall, blood-borne leukaemic cells were observed rolling along, arresting and 

diapedesing through these BM vascular domains in a manner predominantly dependent on 

SDF1 and, to a lesser degree, E-selectin9.
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Subsequent studies in murine models have demonstrated that diverse leukaemias hijack 

E-selectin trafficking interactions to disseminate to the BM. Work in a murine CML-

like neoplasia model has shown that loss or blockade of selectin–ligand interactions 

prevents leukaemia cell BM homing5,104. In a positive feedback loop, leukaemic cells 

that have colonized the BM may encourage additional homing events through secretion of 

inflammatory cytokines that upregulate endothelial E- and P-selectin expression49. CD44, 

a cell adhesion molecule and known E-selectin ligand expressed by HSPCs105 and mature 

white blood cells106, has been shown to play a part in CLL107 and myeloid LSC BM 

dissemination4,6. Its function as a tissue homing receptor for cancer cells has also been 

widely documented in solid tumours108,109.

A mounting body of literature has continued to unveil other BM homing mechanisms shared 

between leukaemia cells and normal leukocytes98–101. The expression of the integrin VLA-4 

on leukaemia cells has been correlated with the increased capacity of patient-derived B-ALL 

cells to home to the BM in mice8. CD98 is another adhesion molecule expressed by HSPCs 

and leukocytes as well as leukaemic cells, the deletion of which preferentially decreases 

AML BM repopulation in vivo110.

After diapedesis and entry into a tissue, leukaemic cells must navigate a new 

microenvironment, a process that involves continued co-option of HSC signalling pathways. 

It has long been recognized that HSCs occupy unique stem cell regulatory niches in 

the BM22,36; however, over the past decade it has become increasingly apparent that 

leukaemic cells also require specialized niches to thrive and that these often overlap with 

stem cell niches111 (FIG. 2). As described above, the sinusoidal vascular niche serves 

as the main access point of leukaemic cells and HSPCs migrating in and out of the 

BM microenvironment9. Once inside the BM, leukaemic cells and stem cells surrounding 

these large, fenestrated sinusoidal vessels are thought to inhabit a pro-proliferative state 

supported by key microenvironmental interactions including SDF1–CXCR4 (REF.101) and 

VLA-4–VCAM1 (REFS80,112), as well as growth factors such as VEGF113–116, and colony 

stimulating factor 1 receptor-positive (CSF1R+) myeloid cells117.

Leukaemic cells that have entered the BM at the sinusoidal vascular niche also migrate to 

alternative HSC BM niches, including peri-endosteal, or bony, niches. While the sinusoidal 

niche tends to be conducive to leukaemia proliferation, long-term, quiescent AML stem 

cells118 and dormant ALL cells119 encounter pro-dormancy signals in the endosteal niche. In 

a xenograft mouse model, B-ALL cells were shown to migrate to and persist in the endosteal 

niche through OPN engagement via the integrin VLA-4 (REF.35); leukaemic cell interaction 

with the endosteal niche promoted dormancy, resistance to chemotherapy and the persistence 

of minimal residual disease (MRD) in this model35. This mechanism is conserved from 

HSCs, which also exhibit OPN-dependent dormancy120. Beyond the endosteal niche, other 

safe-haven niches have been identified. For example, it was reported that human T-ALL 

cells transplanted into mice home to adipocyte-rich BM niches where they display decreased 

metabolic activity and cell-cycle progression, suggesting a dormant phenotype that is also 

observed in HSPCs occupying ‘fatty’ niches121,122.
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Insidiously, leukaemic cell occupation and accumulation in BM niches can induce molecular 

changes in the host microenvironment that support disease progression by providing a 

competitive growth advantage over HSPC populations. Our group documented that B-ALL 

cells disrupt the behaviour of haematopoietic progenitor cells (HPCs) in the BM by secreting 

SCF, which displaces HPCs from their normal regulatory niches, triggering their loss123. 

In this way, ALL cells obtain a survival advantage over naive HPCs, co-opting their 

niches to fuel tumour growth. High levels of leukaemia-derived IL-6 and IL-1 in the BM 

have also been shown to promote leukaemia cell proliferation while negatively impacting 

normal haematopoeisis124–126. Leukaemic cells can also disrupt sympathetic nervous system 

regulation of the HSC niche wherein AML-induced neuropathy impairs the differentiation 

status of mesenchymal stem/progenitor cells, promoting a pro-leukaemic, as opposed to 

HSC, niche127.

Niche occupation can also result in vascular remodelling that favours metastatic growth. 

For example, studies in mouse syngeneic and patient-derived xenograft (PDX) models 

have demonstrated that AML expansion can cause degradation and remodelling of the 

BM vascular architecture through pro-inflammatory cytokine release128 or the induction 

of hypoxia129. This leads to increased vascular permeability, altering levels of supportive 

growth factors in a manner that favours leukaemic cells over HSCs130. The VEGF 

family members VEGFA and VEGFC have also been reported to be overexpressed in 

the BM of patients with AML and to contribute to increased microvessel density116,131. 

These and other studies suggest that liquid tumours, like solid tumours, can use VEGF 

paracrine signalling to induce angiogenesis and stimulate endothelial cells to release growth 

factors that support leukaemia proliferation132. Leukaemic cells may further capitalize on 

elevated VEGF levels in hypoxic BM metastatic niche conditions through autocrine VEGF 

signalling133–138.

Dynamic changes in the ECM during disease progression can also promote leukaemia cell 

invasion. For example, AML cells in the BM can remodel collagen IV, increasing its affinity 

for the collagen-activated receptor tyrosine kinase, DDR1, on AML cells and promoting 

their AKT-dependent migration139. B-ALL cells have also been reported to remodel the BM 

niche by releasing TNF, which stimulates mesenchymal stem cells (MSCs) to produce the 

ECM-degrading protease MMP9 and thereby enhances leukaemia cell infiltration140.

After taking up residence in the BM, leukaemic cells can later re-enter the bloodstream 

and populate additional metastatic sites. This process, known generally as intravasation and 

often referred to as mobilization in haematological malignancies, is essential for disease 

progression. Disease colonization can promote leukaemia cell mobilization in syngeneic 

and PDX mouse models by altering the expression of niche molecules such as SDF1 that 

normally anchor leukaemic cells to the BM9,34. The selectin and integrin interactions that 

foster leukaemia BM homing have also been shown to have roles in tethering leukaemic 

cells to the BM niche. E-selectin blockade with the small-molecule inhibitor GMI-1271 was 

shown to rapidly mobilize leukaemic cells into peripheral circulation in preclinical mouse 

models of AML141. Similarly, VLA-4 deletion in B-ALL cells impairs both BM homing and 

retention54. In CML, recent work has shown that conditional deletion of the gene encoding 
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the integrin-binding adaptor protein, kindlin 3 (also known as FERMT3), mobilizes LSCs 

from the BM in mice142.

Lastly, to promote their own metastatic spread, leukaemic cells can secrete proteases and 

matrix-degrading enzymes that allow for more efficient mobilization. For example, AML 

cells can express cell surface elastase that degrades vascular adhesion molecules such as 

VCAM1 and intercellular adhesion molecule 1 (ICAM1) (REF.143). MMP2 secretion by 

ALL cells has also been shown to degrade the vascular basement membrane, facilitating 

intravasation93.

Extramedullary metastasis

All leukaemias possess the ability to metastasize to the BM to varying extents, although 

some subtypes exhibit a predilection for the extramedullary haematopoietic tissue of the 

spleen and lymph nodes12 (FIG. 1). As these organs have important roles in haematopoiesis, 

leukaemia cell infiltration likely reflects the reactivation of haematopoietic programmes, as 

evidenced by the shared homing mechanisms of normal and malignant leukocytes. However, 

there are also unique patterns of metastasis to non-haematopoietic organs such as the skin 

and CNS that do not clearly recapitulate the behaviour of the leukaemia haematopoietic 

cell of origin. Interesting similarities and differences in the patterns of leukaemic and solid 

tumour metastasis to these organs exist, and some are highlighted below.

Spleen.

The spleen is an unusual organ for solid tumour metastasis but a frequent site of leukaemia 

metastasis (FIG. 3). It is unclear why circulating epithelial tumour cells lack the ability to 

navigate the splenic vasculature or to survive in its microenvironment, although theories 

based on the spleen’s unique blood flow dynamics and immune composition have been 

posited144. Multiple studies in the leukaemias, however, have produced insights into specific 

molecular mechanisms used by leukaemic cells to invade the spleen.

As in the BM, leukaemic cells have been found to co-opt SDF1 and other haematopoietic 

niche chemotactic or adhesive factors to migrate to the spleen. SDF1–CXCR4 interactions 

have been revealed as key mediators of B-ALL splenic homing, and treatment with 

CXCR4 antagonist AMD3100 was shown to reduce splenic disease in mouse xenograft 

models61,145. Molecular mechanisms that specifically regulate spleen metastasis have also 

been elucidated. For example, a recent study using a syngeneic T-ALL mouse model 

demonstrated that Ly6C+ leukaemia-associated macrophages that secrete CCL8 and CCL9 

chemokines promote leukaemia cell invasion and survival in the spleen146. Inhibiting the 

respective chemokine receptors, CCR1 and CCR2, decreased splenomegaly but had no effect 

on BM disease burden146. The chemokine receptor CCR7 and its ligand CCL19 may also 

have a specific role in T-ALL splenic metastasis. Using a NOTCH1-driven mouse model 

of T-ALL in which leukaemia cells have a high propensity to metastasize to the spleen 

compared with BM, investigators showed that leukaemia cells migrate more avidly towards 

splenocytes than BM cells in vitro, and that migration towards splenocytes, but not BM 

cells, could be inhibited by CCR7 or CCL19 blockade69. Lastly, in mouse studies using a 
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syngeneic CLL-like cell line, hyaluronan-CD44 variant 6 (REF.147) interactions were shown 

to regulate splenic but not BM leukaemia homing147.

Further investigations in CLL using murine genetic models have shown that contact with the 

splenic microenvironment promotes disease growth and survival, perhaps contributing to the 

preponderance of splenic disease in these patients147–150 (FIG. 3). Interestingly, interactions 

between CLL cells and splenic stromal cells mediated by the CLL surface receptor, SLAM5 

(also known as CD84), can increase the survival of both leukaemic cells and the involved 

stromal cells, indicating mutually beneficial crosstalk149. CLL cells can also secrete IL-10 

and transforming growth factor-β (TGFβ), which promote the differentiation of splenic 

neutrophils into a helper B cell phenotype148,150. These ‘bystander’ leukocytes then support 

disease progression by providing pro-growth and anti-apoptotic stimuli148,150.

Lymph nodes.

In dramatic contrast to the spleen, LNs are frequent hosts to solid tumour metastases. 

Although both are lymphoid tissues, their immune cell, stromal and vascular architecture 

differ considerably, which may lead to a more permissive immunological environment for 

solid tumour growth in LNs than in the spleen151. Moreover, solid tumour metastases 

generally occur in regional LNs draining the primary tumour site, while leukaemic LN 

metastases are typically widespread throughout the body152,153. This clinical observation 

suggests that solid tumours depend on lymphatic routes for metastasis, while leukaemias 

appear capable of distant, haematogenous LN metastasis.

Lessons learnt from the study of leukocyte migration have informed our understanding of 

the molecular mechanisms of leukaemic LN metastasis. The haematogenous trafficking 

of normal immune cells in and out of LNs is regulated by specialized post-capillary 

venules termed high endothelial venules (HEVs)154. HEVs express a myriad of chemokines, 

adhesion molecules and matrix components that are co-opted by leukaemic cells during the 

multi-step process of invasion155. As in the BM, intravital imaging of the mouse inguinal 

LNs has demonstrated that CLL cells roll and crawl on the HEV wall7 prior to extravasation. 

L-selectin expression by CLL cells has been shown to crucially mediate these adhesive 

interactions in the HEV lumen7. Furthermore, the chemokines SDF1, CCL19 and CCL21, 

localized at HEVs, serve as potent chemoattractants for CLL cells entering the LNs70,156,157. 

CCR7, the receptor for CCL19 and CCL21, is highly expressed by CLL cells and is required 

for their migration towards these cytokines in vitro158. In mice, CCR7 antibody blockade 

decreased CLL LN invasion, supporting the importance of the CCR7–ligands axis in CLL 

LN metastasis159.

Once in the LN tissue, CLL cell surface VLA-4 and CD44 may form a docking complex 

for MMP9 (REF.160), which may facilitate CLL invasion by degrading the HEV basement 

membrane and/or LN ECM. Just as leukaemias corrupt BM HSPC niches to promote 

metastasis, CLL cells have been shown to usurp the germinal centre microenvironment 

to form a malignant ‘proliferation centre’ where they co-opt stromal cells, chemokines, 

cytokines and other niche factors to multiply161. CLL cells in the LNs also secrete CCL3 

and CCL4, directing the recruitment of T cells and other leukocytes that alter the immune 

repertoire in this microenvironment to support CLL survival162,163. Uniquely, CLL cells can 
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induce the differentiation of monocytes into large, adherent nurse-like cells that reside in the 

LNs and support CLL cell growth through the secretion of soluble factors such as SDF1, B 

cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL)164–167.

Although LN invasion is also common in ALL, there has not been intensive in vivo 

investigation into the molecular mechanism involved. However, as ALL cells express many 

of the molecular components observed in CLL such as VLA-4 (REFS53,54) and CCR7 

(REF.69), it is likely that there are similar, shared mechanisms of LN metastasis between 

these diseases.

The central nervous system.

Although CNS metastasis is rare for most leukaemia subtypes, ALL is a highly neurotropic 

leukaemia that frequently involves the leptomeninges and CSF surrounding the brain and 

spinal cord, although rarely the brain parenchyma168. Metastasis to the CNS is found in 

approximately 5% of patients with ALL at diagnosis and occurs in 30–50% of patients 

over time, in the absence of prophylactic treatment18,19. Despite routine CNS-directed 

prophylactic chemotherapy, 5–15% of patients will develop CNS disease, and the prognosis 

for these patients is poor169,170. Although benign lymphocytes are known to ‘patrol’ the 

CNS, they are rarely present in the CSF of healthy individuals171,172. By contrast, the 

pronounced ability of ALL to invade and proliferate within the leptomeninges was shown 

to be an inherent property of ALL cells173. More recent work using high-throughput 

sequencing to analyse paired BM and CSF samples from patients with ALL at diagnosis 

and relapse supports the hypothesis that therapy can induce additional selective pressures 

that generate CNS-metastatic subclones174.

Three primary mechanisms of CNS invasion have been identified (FIG. 4). First, several 

studies suggest that leukaemia cells cross the blood–brain barrier to enter the CNS by 

promoting their own extravasation through VEGF signalling175,176. Various chemokines 

and chemokine receptors have also been implicated in this process177. In mouse models 

of oncogenic NOTCH1-driven T-ALL, the CCR7 receptor was shown to play an important 

role in CNS metastasis by attracting leukaemia cells to CCL19 or CCL21 chemokines 

expressed by the brain vascular endothelium68. More recent work has demonstrated that 

the T cell-specific kinase ZAP70 enhances CCR7-dependent migration to the CNS and that 

ZAP70 expression correlates with CNS metastasis in patients with T-ALL178.

Other work has highlighted the choroid plexus as a specific site of entry for leukaemic 

cells into the CNS from the peripheral circulation179,180. The choroid plexus is a secretory 

tissue that produces CSF within the ventricular space in the brain. Recent work using an in 

vitro model of the blood–CSF barrier demonstrated that paediatric ALL cells are capable 

of transmigrating across a layer of choroid plexus epithelial cells179, suggesting the choroid 

plexus as a potential avenue for ALL CNS invasion. However, mouse xenograft studies 

have failed to find evidence of ALL cell diapedesis through the choroid plexus in vivo, 

suggesting that the role of the choroid plexus as an access point to the CNS requires further 

investigation56.

Whiteley et al. Page 12

Nat Rev Cancer. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lastly, our group has reported on a novel avenue for leukaemia cell entry in the CNS 

that allows ALL to bypass the blood–brain barrier56. We showed that B-ALL cells bind 

to extracellular matrix laminin surrounding specialized emissary blood vessels in mice. 

These emissary vessels passage from the skull and vertebral BM through cortical bone 

fenestrations, emerging as leptomeningeal vasculature in the adjacent CNS, and serve as a 

direct scaffold for leukaemic cells to migrate from BM to leptomeninges along their surface. 

Leukaemia cells do not extravasate through these vessels but migrate along their abluminal 

(outer) surface using integrin α6 to bind to the laminin-positive basement membrane. In 

a small patient series, leukaemia integrin α6 expression at diagnosis was associated with 

subsequent CNS relapse56. Although not specifically examining patients with CNS relapse, 

a study of clinical samples found elevated integrin α5 expression on ALL cells from 

the CSF at the time of diagnosis compared with BM blasts181, suggesting that additional 

integrins may have roles in ALL CNS metastasis.

Independently of their route of access, leukaemia cells that enter the CNS reside in 

a ‘sanctuary site’ of restricted immune cell and chemotherapy access, and we are 

only beginning to understand the mechanisms that govern this protective environment. 

In one study it was reported that activated IL-15-producing natural killer (NK) cells 

controlled peripheral disease in mice but were unable to penetrate the CNS, suggesting 

a model wherein leukaemic cells enter the CNS to evade NK-mediated cell death182. In 

another study, ALL cells in the meningeal microenvironment acquired chemoresistance 

through direct contact with meningeal cells183 and by upregulation of PBX1 (REF.184), a 

transcription factor known to regulate HSC quiescence.

Skin.

Although there are many forms of cancer that originate in the skin, leukaemias and 

lymphomas are among the handful of malignancies that infiltrate the skin as a metastatic 

site. In contrast to solid tumours, which typically demonstrate locoregional skin involvement 

suggesting local invasion and/or lymphatic spread, leukaemic skin metastases are usually 

widespread, consistent with blood-borne dissemination185–187. Leukaemic skin metastasis, 

referred to as leukaemia cutis, is hypothesized to share the mechanisms of benign leukocyte 

skin infiltration, which is mediated by P-selectin glycoprotein ligand 1 (PSGL1; also known 

as cutaneous lymphocyte antigen) adhesion to the E-selectin receptor on endothelial cells188. 

Recently, the molecular pathways responsible for leukaemic cell skin infiltration have been 

the subject of more intense scrutiny. Foundational work in benign lymphocytes showed 

that CCR4 deletion impaired CD4+ T cell homing to inflamed skin but not to inflamed 

peritoneum in a murine transgenic adoptive transfer model, implicating its specific role 

in cutaneous lymphocyte trafficking189. Although in vivo mechanistic work has not yet 

been conducted in leukaemia, the observation that CCR4 expression significantly correlates 

with skin metastasis in patients with T cell leukaemia/lymphoma suggests a skin homing 

mechanism shared with lymphocytes72.

Data have also shown a role for the chemokine receptor CXCR4 in myelomonocytic AML 

and lymphoblastic leukaemia invasion into SDF1+ skin niches61,190. Other chemokine 

receptors have also been identified as important mediators of AML skin infiltration, 

Whiteley et al. Page 13

Nat Rev Cancer. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including CCR5, CXCR7 and CX3CR1 (REF.71). AML blasts isolated from the skin of 

patients with leukaemia cutis had higher expression of these chemokine receptors than blasts 

isolated from the BM and peripheral blood, suggesting that local expression of ligands 

CCL3, SDF1 and CX3CL1 in the skin mediates blast homing and retention.

Targeting metastasis vulnerabilities

The majority of adult leukaemias are not cured by standard therapies. Novel approaches to 

control disease metastasis could conceivably convert fatal diagnoses into chronic illnesses. 

In addition, strategies to physically and/or molecularly uncouple leukaemia cells from their 

protective tissue niches could improve responses to current regimens35,80,112,119,121,191. 

Below are some examples of the more advanced translational efforts to apply the emerging 

knowledge of leukaemia metastatic mechanisms to the clinic (TABLE 1).

Targeting chemokine receptors.

Molecular interventions to detach leukaemia cells from anti-apoptotic tissue niches, and 

in the most extreme sense, mobilize them into circulation, could render the disease 

more susceptible to systemic therapy. The SDF1–CXCR4 axis is the most studied in 

terms of leukaemia cell mobilization and chemosensitization. In AML in particular, high 

surface expression of CXCR4 correlates with poor prognosis59. AMD3100 is a specific 

CXCR4 antagonist that was first approved to mobilize HSPCs into the peripheral blood 

prior to collection for autologous BM transplant in non-Hodgkin lymphoma and multiple 

myeloma192,193. Years of work in mouse xenograft models of ALL and AML have 

demonstrated that blocking the SDF1–CXCR4 axis with AMD3100 mobilizes leukaemic 

cells into circulation, where they enter active phases of the cell cycle and are susceptible 

to chemotherapy9,34,194,195. Even in the absence of overt mobilization, inhibiting leukaemia 

cell interactions with SDF1 has been reported to be pro-apoptotic, further emphasizing the 

potential of CXCR4 blockade to treat leukaemias196,197.

Following an initial encouraging phase I/II clinical trial of AMD3100 combined with 

chemotherapy in patients with relapsed or refractory AML198, a phase I/II clinical 

trial investigated AMD3100 combined with an additional mobilizing agent, granulocyte 

colony-stimulating factor (G-CSF) in this population199. Although the precise molecular 

mechanisms regulating G-CSF-mediated mobilization remain unclear, stromal cell 

production of G-CSF has been shown to decrease SDF1 levels in the BM niche and induce 

proteases that cleave VCAM1 (REFS200,201). Some studies have reported a desirable effect 

of G-CSF priming to enhance chemotherapy in standard-risk patients with AML202,203, 

while other trials have failed to show a clinical benefit204,205. The dual use of G-CSF 

and AMD3100 to mobilize leukaemic cells during salvage chemotherapy of patients with 

relapsed or refractory AML did not, however, improve treatment efficacy, potentially due 

to the induction of counteractive pro-survival signalling effects by G-CSF199. Despite this 

initial discouragement, more potent approaches to inhibit leukaemia interactions with SDF1 

and thus promote leukaemia cell apoptosis remain in development, including monoclonal 

antibodies, SDF1 protein mimetics, peptide inhibitors and new small-molecule inhibitors 

of CXCR4 (REFS10,196,206–208). For example, in a recent phase II clinical trial, the 
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small-molecule CXCR4 inhibitor, dociparstat, was shown to increase event-free survival 

in combination with chemotherapy in elderly patients with AML208, paving the way for a 

phase III clinical trial (NCT04571645)209.

In addition to targeting of CXCR4, therapeutic CCR7 and CCR4 chemokine receptor 

antagonists have advanced to the clinic. Anti-CCR7 monoclonal antibodies were reported to 

decrease LN invasion in mouse models of CLL as well as inducing CLL antibody-dependent 

cytotoxicity with minimal effects on normal haematopoietic cells158. This led to the clinical 

development of the anti-CCR7 monoclonal antibody, CAP-100, which is currently being 

tested in phase I trials in patients with relapsed or refractory CLL (NCT04704323)210. An 

antibody–drug conjugate combining anti-CCR7 with the microtubule inhibitor JBH492 is 

also being tested in patients with CLL in a phase I trial (NCT04240704)211.

As discussed above, CCR4 is often highly expressed by T cell leukaemias and lymphomas 

and is thought to have a role in skin metastasis72,212. As such, a CCR4 monoclonal antibody 

is currently being tested in a phase I study in adult T cell leukaemia/lymphoma (ATLL) and 

cutaneous T cell lymphomas (NCT04185220)213.

Targeting adhesion molecules.

Other promising approaches to target the metastatic niche involve disrupting alternative 

adhesion molecules, including the selectins and integrins, that contribute to leukaemia blast 

migration to and retention at metastatic sites.

Two specific E-selectin small-molecule inhibitors that have been studied in leukaemia 

are GMI-1271 (REFS141,214) and GMI-1359 (REF.215) (a dual E-selectin and CXCR4 

inhibitor). In syngeneic murine models, treatment with GMI-1271 mobilized leukaemia 

cells into circulation and suppressed pro-survival signalling pathways, sensitizing AML 

blasts to chemotherapy141. The results from a phase I/II clinical trial testing GMI-1271 

in combination wth standard chemotherapy in patients with relapsed or refractory AML 

were recently presented at a conference and reported promising survival outcomes214. This 

prompted the initiation of an ongoing phase III trial testing GMI-1271 in combination 

with chemotherapy to evaluate overall survival as a primary end point (NCT03616470)216. 

In CML, a preclinical study has demonstrated that GMI-1271 administration decreases 

CML cell contact with the protective BM endothelium and prolongs survival in mice when 

combined with imatinib, suggesting that investigation of this compound in patients with 

CML is warranted217.

The dual E-selectin and CXCR4 inhibitor GMI-1359 has also been shown to have potent 

anti-leukaemia activity in mouse xenograft models of AML215. The ability of GMI-1359 

to mobilize cancer cells from the BM and sensitize them to therapy may also be shared 

across solid tumours, as suggested by preclinical studies in breast cancer218. A phase Ib 

proof-of-concept clinical trial to test the safety and pharmacodynamics of GMI-1359 in 

patients with bone-metastatic breast cancer is ongoing219.

Another category of adhesion molecule that has been targeted in leukaemia is the integrin 

family. In mouse xenograft models of acute leukaemia, administration of the VLA-4 
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monoclonal antibody natalizumab has been shown to mobilize leukaemic cells from 

the BM and sensitize them to chemotherapy220. Despite encouraging preclinical studies, 

clinical trials targeting integrin–ligand interactions have not been as successful221. A more 

promising approach, however, may be to target integrin receptor expression or downstream 

effectors indirectly. Ex vivo analysis of peripheral blood samples from patients with CLL 

showed that treatment with BTK inhibitor ibrutinib abrogates VLA-4-dependent adhesion of 

CLL cells to fibronectin, suggesting an ability to modulate crosstalk between BTK–integrin 

signalling pathways222.

A promising target for direct or indirect therapeutic intervention is integrin α6. Integrin 

α6 is highly expressed in ALL and is associated with CNS metastatic relapse and MRD 

within the BM56,223. Our lab reported that targeting integrin α6 directly using monoclonal 

antibodies, or indirectly by decreasing its expression through PI3K inhibition, reduced 

CNS metastasis and prolonged survival in mouse ALL xenograft models56. Moreover, 

a recent ALL xenograft study showed that integrin α6 blockade sensitized cells to 

chemotherapy by blocking SRC family kinase activation of anti-apoptotic signalling224. A 

window-of-opportunity clinical trial to assess the effect of PI3K inhibition with copanlisib 

on pharmacodynamic markers of CNS metastasis is currently in development225.

Conclusions

The data reviewed here illustrate the manifold mechanisms of tissue migration employed 

by leukaemia cells. Careful examination of the anatomy and pathophysiology of leukaemias 

and of the molecular pathways involved in their spread supports the concept that leukaemia 

dissemination, as in the solid tumours, is a metastatic process. Indeed, many discoveries 

of the mechanisms by which tumour cells breach the basement membrane using integrins, 

selectins and MMPs, then extravasate into the stroma and navigate tissues with amoeboid-

like actin dynamics, were first extensively described in normal and malignant leukocytes. 

Although the multiple basic science discoveries in this space over the past decade have not 

yet translated to novel, targeted therapies for leukaemias, we are optimistic that, similar 

to the work culminating in successful cancer immunotherapies, perseverance in this area 

will reap clinical rewards226. Finally, it is likely that the solid and liquid tumour fields will 

continue to benefit each other as continued research unveils new mechanisms of metastasis 

that may be shared between these two disease entities.
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Glossary

Choroid plexus
A secretory tissue in the brain that produces cerebrospinal fluid.
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Diapedesis
The process of extravasating out of a vessel into the surrounding stroma.

Endosteal niche
The niche in the bone marrow adjacent to the bone lining (endosteum).

Germinal centre
Site within the spleen and lymph node where B cells proliferate and differentiate.

High endothelial venules (HEVs)
Specialized post-capillary venules in the lymph node that allow for the trafficking of 

immune cells in and out of this lymphoid organ.

Intravital microscopy
High-resolution imaging of a living organism to study biological events at the cellular level.

Leptomeninges
The inner two meningeal layers that surround the brain and spinal cord and contain 

cerebrospinal fluid.

Minimal residual disease (MRD)
A subclinical amount of disease remaining after therapy that can fuel relapse.

Nurse-like cells
Monocyte-derived cells that support the survival and growth of chronic lymphocytic 

leukaemia.

Sinusoidal vessels
Large vessels found in the bone marrow, spleen, lymph node and liver that contain 

fenestrations allowing the trafficking of cells across the vascular endothelium.
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Box 1 |

Leukocyte migration mechanisms

Tethering and rolling

Leukocyte extravasation begins with tethering (also known as ‘capture’; see figure), the 

process through which leukocytes first establish contact with the endothelial cells that 

make up the surface of blood vessels. Leukocytes engage endothelial E- and P-selectin 

via cell surface carbohydrate ligands such as sialyl Lewis x (SLeX) and P-selectin 

glycoprotein ligand 1 (PSGL1)244. These adhesions are further promoted by VLA-4, 

engaging intercellular adhesion molecule 1 (ICAM1) on vascular endothelial cells245.

Slow rolling

As adhesions become stronger, rolling slows down in a phase identified as ‘slow 

rolling’ wherein leukocyte adhesion to endothelial P- and E-selectin induces an affinity 

conformation of integrin αLβ2 (also known as lymphocyte function-associated antigen 

1 (LFA1)). This allows for the transient binding of ICAM1 on the vascular endothelium 

and ligand-induced adhesion strengthening246–248.

Firm adhesion

Slow rolling eventually results in leukocytes stopping and firmly adhering to the surface 

of endothelial cells, a process widely known as ‘arrest’. Arrest is triggered through a 

chemokine-driven process known as activation, in which endothelial cells are stimulated 

to express higher levels of adhesive molecules such as ICAM1 and vascular cell adhesion 

molecule 1 (VCAM1) (REF.249). Thereafter, adhesion molecules are reorganized and 

clustered to reinforce adhesion250. Before diapedesis, leukocytes crawl along the blood 

vessel wall via the integrins αMβ2 (also known as MAC-1) and αLβ2 to probe the 

endothelium and identify sites permissive for crossing251,252.

Transmigration

In most cases, leukocytes extravasate through the endothelial monolayer via a 

paracellular (diapedesis) route by using membrane protrusions to probe the endothelial 

surface and identify endothelial cell–cell junctions. This process is mediated by a 

complex array of integrins, proteases and signalling pathways to ‘squeeze’ through the 

endothelium253. On rare occasions, leukocytes can extravasate transcellularly (going 

through endothelial cells) by forming small pockets in the plasma membrane (caveolae) 

that eventually fuse to form an intracellular channel254.
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Box 2 |

Leukaemia cell migration modes

Amoeboid

Leukocytes and leukaemic cells have been shown to migrate using what is known as 

amoeboid motility. This mode of migration is a highly efficient method employed by 

leukocytes and cancer cells to squeeze through tissues without having to degrade the 

extracellular matrix (ECM). Amoeboid migration relies on membrane blebs that are 

formed when the plasma membrane detaches from the underlying actin cortex allowing 

cytoplasm to form herniations in the membrane and generate a motile force255. This 

high contractile force generated through myosin II contractility followed by hydrostatic 

pressure in the cytoplasm enables the cell to push its way forwards through connective 

tissues and the ECM256.

Invadopodia

Invadopodia and their close relatives podosomes are F-actin-rich membrane protrusions 

that play an essential part in degrading the ECM to drive invasion257,258. Invadopodia 

formation relies on the coordination of CDC42 and tyrosine kinases to form actin bundles 

that extend into the plasma membrane, aiding cellular invasion. Vesicles carrying matrix-

degrading molecules such as matrix metalloproteinases (MMPs) are delivered specifically 

to invadopodia259, where they can be released into the ECM and break it down260.

Lamellipodia

Lamellipodia are leading edge membrane protrusions that drive directional cell migration 

in most motile cell types and are occasionally found in migrating leukaemic cells. 

Lamellipodia consist of thin, flat protrusions that drive the cell forwards by generating 

a branched actin filament network81. As they migrate, leukocytes activate the RAC–

WAVE–ARP2/3 signalling axis that drives actin polymerization, forming a retrograde 

flow of actin branches that pushes the cell forwards261.
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Fig. 1 |. Primary metastatic profiles of leukaemia metastasis.
Acute lymphoblastic leukaemia (ALL) cells are typically initially found in the peripheral 

vascular system and the haematopoietic organs, including the bone marrow (BM)15, 

lymphatic system and spleen; however, central nervous system (CNS) involvement occurs 

in 5–10% of adult patients at diagnosis230 and can occur in up to 30–50% of patients in 

the absence of CNS-directed therapy. WHO classifies ALL and lymphoblastic lymphoma 

as a spectrum disorder and distinguishes these diseases according to clinical presentation 

favouring BM (involvement of >20% of blasts) or lymphatic tissue involvement, 
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respectively15. Acute myeloid leukaemia (AML) primarily develops and spreads within 

the BM and less frequently involves other haematopoietic organs. It may invade non-

haematopoietic organs including the gingiva, skin, muscle and CNS, although uncommonly. 

Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) is notable for its 

highly stereotyped clinical evolution: at the earliest stages, bloodstream lymphocytosis is the 

sole clinical finding, followed over time by the development of lymph node enlargement, 

then splenomegaly and in advanced stages, progressive BM involvement231. CLL and SLL 

are considered the same entity, but with differing disease presentation of bloodstream (CLL) 

or nodal involvement (SLL)232,233. Chronic myeloid leukaemia (CML) primarily involves 

the BM, peripheral circulation and spleen234. In rare cases including during evolution to 

blast crisis, CML expansion can result in infiltration into other less common sites, including 

the lymph nodes, liver, skin or CNS235–237. T-ALL, T cell ALL.
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Fig. 2 |. The leukaemia bone marrow microenvironment.
Leukaemia cell homing is mediated by the chemokine stromal cell-derived factor 1 

(SDF1)9,99–101 and adhesion molecules such as the integrin VLA-48,53–55 and E-selectin9 

expressed by the vascular endothelium of fenestrated, sinusoidal bone marrow153 vessels. 

In this niche, growth factors, cytokines, extracellular matrix (ECM) components as well 

as stromal cells such as NG2+ cells, pericytes and colony stimulating factor 1 receptor-

positive (CSF1R+) monocytes117 all serve to promote leukaemia cell growth and survival. 

As leukaemia cells colonize the bone marrow (BM), they deplete resident haematopoietic 

stem and progenitor cells (HSPCs) through the secretion of stem cell factor (SCF), creating 

a malignant niche that disrupts normal haematopoiesis123. Leukaemia cells may also migrate 

to pro-dormancy endosteal niches where osteopontin (OPN)35, transforming growth factor-β 
(TGFβ)238 and hypoxic conditions support a quiescent state, thus protecting them from 

chemotherapy. Niche factors such as granulocyte colony-stimulating factor (G-CSF) can 

mobilize leukaemia cells from the metastatic niche into circulation where they can seed 

distant sites201–203. Matrix-degrading enzymes such as elastase143, matrix metalloproteinase 

2 (MMP2)92 and MMP9 (REFS90,239) can facilitate the extravasation process. Finally, 

immune cells such as natural killer (NK) cells may limit the survival of leukaemia cells in 

the BM240,241. PSGL1, P-selectin glycoprotein ligand 1; VCAM1, vascular cell adhesion 

molecule 1; VEGF, vascular endothelial growth factor.
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Fig. 3 |. The leukaemia splenic microenvironment.
The spleen is a site of leukaemic progression primarily in chronic leukaemias and contains 

specific microenvironmental niches that can actively promote leukaemia cell homing and 

support disease expansion. a | As disease progresses, the white pulp expands, leading to a 

hypertrophic phenotype seen in many patients242,243. b | Leukaemia cells enter the spleen 

through large, fenestrated sinusoidal vessels in the red pulp. This is mediated by stromal 

cell-derived factor 1 (SDF1)–CXCR4 (REFS61,145) and CCL19–CCR7 (REF.69) expression 

in the splenic sinusoidal niche. Ly6C+ leukaemia-associated macrophages (LAMs) may also 
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promote leukaemia cell migration to the spleen through the secretion of the CCL8 and 

CCL9 chemokines146. Leukaemia proliferation and survival in the spleen is supported by 

various stromal components such as hyaluronan147, monocyte-derived nurse-like cells167 

and helper B cells148. For example, the reciprocal interaction between CD84 expressed 

by both leukaemia cells and stromal cells can promote the survival of either149. TGFβ; 

transforming growth factor-β.
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Fig. 4 |. Routes of leukaemia central nervous system invasion.
Leukaemia cell invasion of the central nervous system (CNS) mostly relates to acute 

leukaemias. Leukaemia cells have been shown to invade the CNS by breaching the blood–

brain barrier of parenchymal or leptomeningeal vessels68 (part a), crossing the blood–

cerebrospinal fluid (CSF) barrier of the choroid plexus179 (part b) or travelling along the 

abluminal surface of emissary blood vessels that exit the bone marrow through fenestrations 

in the bone and transition into leptomeningeal vessels (part c)56. The choroid plexus is a 

secretory tissue in the brain that is responsible for producing CSF. It contains fenestrated 

vessels and a monolayer of ependymal cells with tight junctions, ion pumps and transporters 

that filter out many cells, ions and proteins to produce CSF. The meninges comprise three 

membranous layers–the dura, the arachnoid and the pia mater–that form a continuous 

physical barrier surrounding the brain parenchyma and spinal cord. The dura mater is the 

outermost layer that is adjacent to the calvarium (skull) or vertebral bone. The subsequent 

arachnoid and pia mater are connected and form the leptomeninges. Between these two 

layers that form the leptomeninges is the subarachnoid space, which is filled with an 

acellular CSF that physically cushions the brain and spinal cord.
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