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Abstract

Motivation: With a large number of metagenomic datasets becoming available, eukaryotic metagenomics emerged
as a new challenge. The proper classification of eukaryotic nuclear and organellar genomes is an essential step to-
ward a better understanding of eukaryotic diversity.

Results: We developed Tiara, a deep-learning-based approach for the identification of eukaryotic sequences in the
metagenomic datasets. Its two-step classification process enables the classification of nuclear and organellar eukary-
otic fractions and subsequently divides organellar sequences into plastidial and mitochondrial. Using the test data-
set, we have shown that Tiara performed similarly to EukRep for prokaryotes classification and outperformed it for
eukaryotes classification with lower calculation time. In the tests on the real data, Tiara performed better than
EukRep in analyzing the small dataset representing eukaryotic cell microbiome and large dataset from the pelagic
zone of oceans. Tiara is also the only available tool correctly classifying organellar sequences, which was confirmed
by the recovery of nearly complete plastid and mitochondrial genomes from the test data and real metagenomic
data.

Availability and implementation: Tiara is implemented in python 3.8, available at https://github.com/ibe-uw/tiara
and tested on Unix-based systems. It is released under an open-source MIT license and documentation is available
at https://ibe-uw.github.io/tiara. Version 1.0.1 of Tiara has been used for all benchmarks.

Contact: a.karnkowska@uw.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities of unicellular eukaryotes (protists) and pro-
karyotes are an essential part of all ecosystems. Along with prokar-
yotes, protists are significant drivers in diverse nutrient cycling
pathways (Worden et al., 2015). Autotrophic and mixotrophic pro-
tists fix carbon in aquatic environments, whereas heterotrophic pro-
tists catalyze nutrient cycling in aquatic and terrestrial ecosystems as
selective consumers of bacteria and fungi (Caron et al., 2009).

Metagenomic studies changed our understanding of the prokary-
otic communities and allowed us to uncover their taxonomic and
functional diversity in various environments (Almeida et al., 2019;
Sunagawa et al., 2015). However, even though microeukaryotes are
key components of microbial communities, their study lags behind
the study of prokaryotes (Keeling et al., 2017), and that is particular-
ly true for the metagenomic studies. Until now, mainly metabarcod-
ing (e.g. de Vargas et al., 2015), metatranscriptomics (e.g. Salazar
et al., 2019) and single-cell genome sequencing (e.g. Strassert et al.,
2018) were used to explore the diversity of microbial eukaryotes. In

contrast to these methods, the utilization of the metagenomic
approaches was hampered by the complexity and size of eukaryotic
genomes, as well as a limited number of reference databases allow-
ing further taxonomical or functional annotation. With a few excep-
tions, such as phytoplankton (Delmont et al., 2015; Duncan et al.,
2020) or human microbiome (Olm et al., 2019) studies, eukaryotes
have been rarely analyzed in metagenomic studies and neglected in
some environments such as freshwaters or soil. Only recently, the
metagenomic datasets from large sampling projects, such as the Tara
Oceans expedition (Pesant et al., 2015) or Ocean Sampling Day
(Kopf et al., 2015), were exploited to uncover the eukaryotic plank-
ton biogeography (Leconte et al., 2020; Richter et al., 2020), tax-
onomy (Obiol et al., 2020) and functional diversity (Delmont et al.,
2020). Metagenomic data often do not contain a sufficient amount
of data to reconstruct nuclear genomes, but mitochondrial and plas-
tid genomes, owing to their smaller size and a higher number of cop-
ies, maybe potentially reconstructed from those data. Most often the
mitochondrial genomes (Andújar et al., 2015; Crampton-Platt et al.,
2016) or only single genes, such as 16S rDNA (Piganeau et al., 2008;
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Piganeau and Moreau, 2007), are reconstructed from the metage-
nomic data. Organellar genomes have been shown to provide suit-
able data to address questions about microbial eukaryotes’
evolution and ecology (Cuvelier et al., 2010; Kim et al., 2011;
Wideman et al., 2020). However, organellar data are mostly unex-
plored in the metagenomes, since they are often classified as bac-
terial sequences, and are thus removed from the eukaryotic
genome assemblies (Delmont et al., 2020; Duncan et al., 2020).
The main reason for this misclassification is the similarity of
organellar genomes to bacterial genomes. Both mitochondria and
plastids originated via endosymbiosis with bacteria, which results
in overlapping gene content to bacterial genomes (Sibbald and
Archibald, 2020).

Only a few approaches dedicated to the processing of the eukary-
otic fraction from the metagenomic data exist. They might be split
into those developed to analyze raw reads (Wood et al., 2019) or sin-
gle genes (Schön et al., 2020), both of which strongly depends on the
reference databases. Alternatively, the eukaryotic nuclear genomes
might be reconstructed from the data using one of the two main
existing pipelines. In the first approach, the assembled contigs are
binned, visualized and manually refined using Anvio’O (Delmont
and Eren, 2016; Eren et al., 2015), whereas the second approach,
used in EukRep, assumes initial separation of contigs into two
domains (Prokarya and Eukarya), and then binning within those
two groups independently (West et al., 2018). Both approaches have
been successfully used for obtaining partial nuclear eukaryotic
genomes but failed to correctly classify the organellar fraction in the
metagenomic data (Delmont et al., 2020; Duncan et al., 2020). Only
one tool, MitoZ, was designed explicitly for the organellar data, but
it is only applicable for the assembly, identification and analysis of
the animals’ mitochondrial genomes (Meng et al., 2019).

The most widely used tools for biological sequence comparison
are alignment-based methods such as Smith–Waterman algorithm
(Smith and Waterman, 1981) and its further developments such as
BLAST (Altschul et al., 1990) or BLAT (Kent, 2002). Several bin-
ning algorithms relying on the alignment-based approach, such as
taxator-tk (Dröge et al., 2015), have been proposed for the taxo-
nomic assignment of DNA sequences in metagenomes. Although the
alignment-based methods are the most accurate for sequence com-
parisons, they fail if sequences are highly divergent or the reference
database is limited (Ren et al., 2018). These methods are also com-
putationally intensive, hence too time-consuming for large NGS gen-
omic and metagenomic datasets (Yang et al., 2020). For those
reasons, the use of alignment-based methods for metagenomic data
is relatively confined. Alignment-free methods, based on k-mers or
DNA substrings, provide promising alternatives to overcome the
weaknesses of alignment-based methods (Ren et al., 2018). The
usage of alignment-free methods is currently rapidly growing, and
especially machine learning approaches have been used extensively
for classification of various types of sequences from metagenomes
(Krawczyk et al., 2018; Liang et al., 2020). The machine learning
methods can leverage vast datasets to detect hidden structures and
make accurate predictions. Their advantage is the ability to make
predictions without strong assumptions about mechanisms underly-
ing the biological data. The most promising approaches are based on
deep learning, a family of machine learning methods exploiting arti-
ficial neural networks. They allow exploring large and multidimen-
sional datasets (such as metagenomic data) by training complex
networks with multiple layers. The learned networks perform better
than traditional models and can discover high-level features
(Angermueller et al., 2016).

The most broadly used tool for the eukaryotic metagenomics is
EukRep, which uses k-mer frequencies and linear SVMs for DNA
sequences classification (West et al., 2018). It was shown to be use-
ful for obtaining high-quality nuclear eukaryotic genomes from com-
plex environmental samples (West et al., 2018), but lacks features
which would enable proper organellar genomes classification. Here,
we introduce Tiara, a deep-learning-based approach for identifica-
tion of eukaryotic sequences in the metagenomic datasets. Its two-
step classification process enables to classify nuclear and organellar
eukaryotic fractions and subsequently divide organellar data into

plastidial and mitochondrial classes. Tiara outperforms EukRep in
terms of prediction accuracy and calculation time.

2 Materials and methods

Tiara is designed to classify assembled DNA sequences (contigs) into
classes representing genomes of different origins (Fig. 1). In the first
step, it classifies sequences into six classes: three representing pro-
karyotes (Archaea, Bacteria and Prokarya—sequences not distin-
guishable between Bacteria and Archaea), two representing
eukaryotes (Eukarya—nuclear genomes and organelle—mitochon-
drial or plastidial genomes) and unknowns for sequences which
could not be precisely classified. In the subsequent step, the organel-
lar sequences are further classified into classes representing plastidial
genomes, mitochondrial genomes and unknowns for unclassified.

2.1 Training and test datasets
We took advantage of taxonomic information to emerge well bal-
anced and not overlapping training and test datasets. We independ-
ently picked genomes for each category to obtain a diverse final
dataset despite differences in genomes’ lengths and their representa-
tion in reference databases. The prepared dataset containing
genomes from three domains of life was subsequently divided into
non-overlapping training and test set. We downloaded data from the
NCBI Genome database (Sayers et al., 2019) and the Joint Genome
Institute (JGI; Grigoriev et al., 2012); the NCBI taxonomy was used
to describe the data (Supplementary Tables S1 and S2). We prepared
the training dataset based on 8220 genomic sequences
(Supplementary Table S1) representing Eukarya (4381) [nuclear
(73), plastid (2260) and mitochondrial genomes (2048)], Bacteria
(1860) and Archaea (1979). Subsequently, for all genome sequences
in the training dataset, 5 kb fragments were generated by splitting.
Furthermore, 10% of fragments per bacterial genome were random-
ly picked to reduce the bacterial dataset size, but not diversity. The
resulting training dataset contained a comparable number of genome
fragments for prokaryotes and eukaryotes. Although we used many
more prokaryotic genomes, their size was much smaller, so the over-
all ratio between prokaryotic and eukaryotic data (number of gen-
omic fragments) in the training set was 3:2 (Supplementary Table
S3). That allowed to achieve a better balance between the total num-
ber of fragments representing prokaryotes and eukaryotes classes.
Fragments containing other letters than fA, T, G, Cg were filtered
out.

The test set of 550 genomes (Supplementary Table S2) contained
165 eukaryotic genomes (105 nuclear, 28 plastidial and 32 mito-
chondrial) and 385 prokaryotic genomes (306 Bacteria and 79
Archaea). Genomes selected as test set were not present in the
EukRep training dataset or the Tiara training set and were selected
with maximum overlap with the training genomes set at the genus
level. The genomes with less than 20 contigs were chopped into
100 kb long chunks, and less contiguous assemblies remained un-
changed to reflect the condition of metagenomic assemblies.
Mitochondrial and plastidial genomes were fragmented into pieces
in a range of 1–75 kb (Supplementary Methods).

Eukaryotic nuclear genomes for both datasets were chosen manually
and included genomes from large groups of eukaryotes representing all
supergroups (sensu Burki et al., 2020): TSAR (Stramenopila, Alveolata,
Rhizaria), Archaeplastida (Chloroplastida, Rhodophyta and
Glaucophyta), Amorphea (Amoebozoa, Opisthokonta, Apusomonada),
Haptista, Cryptista, Discoba and Metamonada. Overall, 178 nuclear
genomes were selected (73 for training and 105 for test datasets). The
test dataset (Supplementary Table S2) contained genomes belonging to
groups such as Cryptista, Haptista, Metamonada and Glaucophyta, not
included in the training dataset, to test Tiara’s ability to classify diver-
gent genomic sequences correctly. Mitochondrial genomes marked as:
‘Fungi’, ‘Plants’, ‘Protist’, ‘Other Animals’, ‘Insects’ and ‘Other’ were
downloaded from NCBI. In the case of animal mitochondrial genomes,
we have chosen only two of the categories mentioned above, which rep-
resented this large group of small and homogeneous genomes in the best
possible manner. For plastidial genomes representation in training
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datasets, we downloaded all available plastid genomes annotated as
‘Green algae’, ‘Protist’ and ‘Other’ in NCBI and one representative per
each genus of ‘Land Plants’ to avoid overrepresentation of plants’ plastid
genomes. Additional representatives of land plants genera were included
in the test dataset. In the case of bacterial genomes, we selected one rep-
resentative from each genus present in the NCBI database with the best
assembly quality. Due to the insufficient number of complete archaeal
genomes and a dominant number of low-quality genomes derived from
metagenomic initiatives, we used the best quality genomes for each arch-
aeal species present in the NCBI database. Selected representatives of
large groups of Bacteria such as Candidate Phyla Radiation were placed
solely in the test dataset.

2.2 Sequence representation
The tf-idf (short for term frequency–inverse document frequency)
weighting scheme (Sammut and Webb, 2010) is commonly used in
natural language processing (Yun-tao et al., 2005; Arroyo-
Fernández et al., 2019) and information retrieval (Ramos, 2003).
The tf-idf is a numerical statistic that summarizes two intuitions:
that words common in a document are representative for this par-
ticular document and that words present in many documents are less
informative than those unique for particular documents (Sebastiani,
2002). Here, we used the tf-idf to represent DNA sequences based
on the analogy between our approach and text processing, where we
treat DNA sequences as documents made of words (k-mers).

Each DNA sequence fragment was represented as a real-valued
vector of length 4k, where k was the k-mer length. Let S be a set of
5 kb non-overlapping sequence fragments coming from all DNA
sequences used for training. Given s 2 S, we defined tfs as the oligo-
nucleotide (k-mer) frequency vector for a sequence s and idf S as a
vector describing the inverse document frequency of each k-mer:

idf i
S ¼ log

jSj þ 1

d S; ið Þ þ 1

� �
;

where d S; ið Þ is equal to the number of sequence fragments s 2 S
that contain ith k-mer (in the lexicographic order). Then the repre-
sentation of the sequence s was calculated as

vs ¼ tfs � idf S

where � is the pointwise multiplication of vectors. The vectors are
then normalized to sum to one. The effect of this representation is
that k-mers that occur in many DNA fragments weigh less to the
prediction, compared to k-mers present in only a few DNA
fragments.

We have written our version of oligonucleotide frequency (tfs)
calculation and an idf S vector calculation method that works online
(processing one sequence at a time).

2.3 Classification system
We used a two-stage classification method. In the first stage, the in-
put sequences are classified into six classes: bacteria, archaea, pro-
karyote, eukaryote, organelle or unknown. The second stage
differentiates between organelle subclasses: mitochondria, plastids
and unknown (Fig. 1). This two-stage process relies on the two dis-
tinct two-layer feed-forward neural network architectures.
Hyperparameter selection and training procedure are described in
subsection 2.4.

During the classification process, we split the sequences into
smaller fragments (5 kb). We then classify each fragment separately
and take the mean probability for each class, resulting in five (in the
first step of classification) or three (in the second step) values. We
use notation to describe the mean output of the neural network at
stage for a specific class. The classification is performed based on the
probability thresholds, one for each classification stage. The thresh-
old of probability, is set by the user in the range between 0.2 and
0.99. In the first stage, if the probability of a given class is higher
than pt1, the sequence is assigned to this class (bacteria, archaea,
eukarya or organelle). If it is lower, then the sequence is assigned as
unknown, unless the sum of probabilities of bacteria and archaea is

higher than, then the sequence is assigned to a more general class
prokarya. In the second stage, if the probability of a given class of
organellar sequences is higher than a, the sequence is assigned to this
class (mitochondria or plastid), and if it is lower, the sequence is
classified as unknown (Fig. 1).

2.4 Neural network architectures
2.4.1 Training

We implemented and trained our models using PyTorch (Paszke
et al., 2019) and skorch (Tietz et al., 2017) packages using negative
log-likelihood loss and an Adam optimizer (Kingma and Ba, 2015).
We split the data into training (90%) and validation (10%) sets
using a stratified splitting strategy: in each set, the proportion of
sequences from each class was the same. The batch size was set to
128. A validation dataset was used to determine the best model.

2.4.2 Choosing the best models

To choose the best architectures, we performed a search over several
hyperparameters: lengths of k-mers, number of nodes in the first and
second neural network layer, dropout probability, learning rate and
the number of epochs. We used several metrics to compare the mod-
els: accuracy, mean precision, mean recall and mean F1 score
(Supplementary Methods). The means were taken across all classes.
We evaluated the models on a validation set with a probability
threshold of 0.5. For consistency, we picked the architecture with
the highest average mean F1 score across all learning epochs. The
results of the search are in Supplementary Tables S4 and S5. To
choose the architectures for the first stage, 15 900 hyperparameter
combinations were tested, whereas for the second stage 17 600 com-
binations were tested.

2.5 Implementation and availability
We developed our tool in Python 3.8, with use of the libraries skorch
(Tietz et al., 2017), PyTorch (Paszke et al., 2019), biopython (Cock
et al., 2009), numba (Lam et al., 2015), joblib (Varoquaux and
Grisel, 2009) and tqdm. Tiara code is freely available under MIT li-
cense, and the code is stored on GitHub (https://github.com/ibe-uw/
tiara). The models used in the program by default are the best mod-
els for each class (marked in bold in Supplementary Table S6), but
the user can choose other optimal models for each k-mer length. By

Fig. 1. Scheme of the main steps of the dataflow implemented in Tiara
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default, Tiara returns tabular output with a class assigned to each
contig name but optionally allowing the user to output classified
sequences to separate files in fasta format.

3 Results

We implemented in Tiara, a two-stage approach for classification of
eukaryotic sequences from assembled metagenomic data. In the first
stage, Tiara classifies sequences into six categories (Archaea,
Bacteria, Prokarya, Eukaryota, organelles or unknown). In the se-
cond stage, putative organellar sequences are classified into plastids
and mitochondria or unknown. Each stage of classification encapsu-
lates trained neural network model. Next, we evaluated its perform-
ance and compared with EukRep using independent test dataset and
showed usability using real metagenomic data.

3.1 Performance comparison of different k-mer sizes
We searched hyperparameter space to obtain the best neural net-
work models (nearly 35 000 models) using a validation dataset. The
best hyperparameters for each k-mer length and classification stage
(k ¼ f4, 5, 6g for the first stage and k ¼ f5, 6, 7g for the second
stage) for an optimal number of epochs are shown in Supplementary
Table S6. The best first stage neural network was trained with k-mer
6, and had two layers with 2048 and 1024 nodes, respectively. The
best neural network in the second stage of classification used a k-
mer 7 and had two layers with 128 and 64 nodes. For both stages,
we used the dropout probability of 0.2. The first best model was
trained for 41 epochs using a learning rate equal to 0.001, and the
second for 47 epochs with a learning rate of 0.01. The comparison
of the best models for each k-mer length (in bold) with a sub-
optimal architecture (both layer sizes equal to 32, learning rate of
0.01 and 0.5 dropout probability—in italics) shows that larger neur-
al networks are necessary to identify the biological signal present in
the DNA sequences (Supplementary Table S6).

3.2 Probability threshold impact on the classification

results
Probability thresholds pti is a parameter that can be set by the user,
and its value might impact the classification accuracy to specific
classes. We tested five pt1 and pt2 values ranging from 0.35 up to
0.95 to evaluate the accuracy of the Tiara classification (see
Supplementary Methods) and choose the parameter for further anal-
yses. The results (Supplementary Fig. S1; Supplementary Table S7)
indicate that the higher the pt1, the more accurate is the classifica-
tion to the eukaryote class because more sequences with low proba-
bilities of classification to other classes end up in the class unknown.
On the other hand, while increasing the probability threshold, classi-
fication to archaea and bacteria is achieved with lower accuracy.
The pt2 value used in the second step of classification had no strong
effect on the organellar classification. Based on those results, we set
the default value of pti to 0.65. Moreover, Tiara allows to output
probabilities for each DNA fragment, which could be parsed to an-
swer specific questions.

3.3 Performance of trained models
3.3.1 Classification of eukaryotic and prokaryotic sequences

Depending on the k-mer length, Tiara achieved mean prediction ac-
curacy between 98.65% and 98.93% for prokaryotic genomes and
between 95.94% and 98.83% for nuclear genomes on the test data-
set (Table 1).

The best ratio between prediction accuracies for each class was
noted for k-mer 6. Using this model, 96% of nuclear eukaryotic and
98% of prokaryotic genomes were classified with higher or equal
prediction accuracy to 90%. Only three prokaryotic genomes have
been classified with accuracy lower than 50%. However, most of
the contigs derived from these genomes were assigned as ‘unknown’,
and only two were classified as a eukaryote. All of these genomes
were small and highly reduced, and they belonged to symbionts or
parasites. This bias had also been previously observed for EukRep

(West et al., 2018). We checked probability outputs for them and

observed strong organellar signal for two endosymbionts, which

might reflect the reductive evolution of their genomes. Importantly,

Tiara achieved high accuracies (above 90%) for genomes from
groups of taxa that were absent in the training dataset, like hapto-

phytes and cryptophytes or prokaryotic CPR, which indicates that

our models are not overfitting despite employing complex neural
networks. Hence, Tiara will be able to classify contigs of novel evo-

lutionary lineages correctly.

3.3.2 Classification of organellar sequences

Tiara achieved high prediction accuracy for a test set of organellar
genomes (28 plastidial and 32 mitochondrial) with an average accur-

acy above 95% (Table 1). The best average accuracies were observed

for k-mer 6 (pt: 99.60%; mt: 98.86%). Similar to the nuclear

genomes’ classification, the accuracy of organellar genomes’ classifica-
tion increased with k-mer length. (Supplementary Table S8).

3.3.3 DNA sequence length and the robustness of classification

Analysis of selected fragmented (1–75 kb) archaeal, bacterial and eu-

karyotic genomes showed a clear improvement of classification ac-
curacy with increasing sequence length as it was previously reported

for EukRep (West et al., 2018). Moreover, the increase of accuracy

related to the length of the sequence seems more stable for Tiara

than for EukRep (Supplementary Figs S2–S4 and, Supplementary
Table S9). Since organellar genomes have not been classified and

tested before, we checked a complete set of genomes and spectra of

k-mers (Supplementary Methods). Analysis of fragmented organellar

genomes (mitochondria: 1–5 kb, and plastids: 1–75 kb) for k-mers k
¼ f4, 5, 6g showed that prediction accuracy increased with the frag-

ment length (Supplementary Fig. S5). For organellar sequences lon-

ger than 3 kb, accuracy was higher than 90% and for sequences
longer or equal to 5 kb—close to 100%. In the second stage, most of

the sequences were assigned correctly to a given class (with accuracy

higher than 90%) if the sequence was longer than 3 kb.

3.3.4 Impact of NUMTs and NUPTs on Tiara classification

We analyzed the classification of NUMTs and NUPTs (mitochon-

drial and plastidial fragments integrated into nuclear genomes)

derived from nuclear genomes of Arabidopsis thaliana, Oryza sativa
and Vitis vinifera and compared with the classification of randomly
sampled sequences from corresponding genomes. Tiara classified

NUPTs and NUMTs fractions as ‘organelle’ fraction more often

than random genome fragments (minimum 1.6 times more often and

maximum around 50 times). Finally, all differences in the probabil-
ity of assignment to class ‘organelle’ between NUMTs or NUPTs

sets and random fragments were statistically significant according to

performed t-tests (see Supplementary Methods, Supplementary
Tables S10 and S11).

Table 1. Comparison of accuracy for Tiara and EukRep tools

Software k-mer Average accuracy

Eukarya

(n¼105)

Prokarya

(n¼ 385)

organelles

(n¼ 60)

Tiara 4 0.9593 0.9871 0.9411mt/0.9708pt

Tiara 5 0.9641 0.9865 0.9841mt/0.9981pt

Tiara 6 0.9883 0.9893 0.9886mt/0.996pt

EukRep 5 0.963 0.9849 0.4738mt/0.2979pt

Note: In the case of EukRep, we calculated the ratio of organellar frag-

ments classified as Eukaryote. All Tiara tests have been done with 0.65 prob-

ability cutoffs. EukRep was tested with default settings. The best model for a

given class is shown in bold.

Classification of eukaryotic sequences 347

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab672#supplementary-data


3.4 Performance comparison between Tiara and

EukRep
We compared Tiara with EukRep—a tool designed for the classifica-
tion of eukaryotic and prokaryotic sequences from metagenomic
data (West et al., 2018). EukRep was previously shown to outper-
form alignment-based methods. Thus, we compared Tiara only with
EukRep, which is currently the state-of-the-art method. Finally, it
enabled the fast identification of eukaryotic contigs and further
forming eukaryotic MAGs (Metagenome Assembled Genomes).
EukRep, similarly to Tiara, transforms DNA sequences into k-mer
frequencies, but then uses linear-SVM (implemented in scikit-learn)
for predictions, whereas Tiara uses sequential feed-forward neural
networks. EukRep, as a binary classifier, separates data only into
two classes (domains): eukaryotes and prokaryotes. Therefore,
EukRep has not been trained on organellar DNA, so it was unclear
how it classifies those sequences.

Tiara scored slightly better than EukRep, with the prediction ac-
curacy of eukaryotic genomes 2.53% higher and prokaryotic
genomes—0.44% higher (Supplementary Table S2). We also calcu-
lated the difference in prediction accuracy between Tiara and
EukRep for each genomes pair (Fig. 2) to examine prediction accur-
acy in details. For eukaryotic genomes (105), Tiara got better accu-
racies in 63 cases and only for 25 genomes, the results were worse.
Whereas prokaryotes were classified more evenly and for 275
genomes, both tools have the same results; in 89 cases, Tiara was
better than EukRep, and in 21 cases, it was worse.

To test the organellar genomes classification by EukRep, we used
a set of fragmented plastid (10 kb) and mitochondrial (5 kb)
genomes. EukRep assigned only 47% of mitochondrial and 30% of
plastid contigs as eukaryotic sequences (Supplementary Table S2).

In addition, we checked the speed performance of both approaches
(Supplementary Methods). Tiara supports parallel execution, whereas
EukRep uses all cores available. However, for one core, Tiara was
two times faster than EukRep. Finally, Tiara using 12 cores classified
the test genome roughly five times faster than EukRep and reached a
speed of 6.8 Mbp per second. (Supplementary Table S12).

3.5 Classification of sequences from the real data
3.5.1 Metagenome of Pseudoblepharisma tenue

To compare Tiara and EukRep performance, we used a well-described
metagenomic dataset of microbiome of ciliate Pseudoblepharisma tenue
(Supplementary Methods). Metagenomic and microscopic analysis of
P.tenue proved the presence of two endosymbionts: purple bacteria Ca.
Thiodictyon intracellulare (Chromatiales, Gammaproteobacteria) and
eukaryotic alga Chlorella sp. (Chlorophyta; Munoz-Gomez et al.,
2021). This low-complexity and highly controlled metagenome is a suit-
able and realistic model for testing the classification of DNA fragments
of diverse origin (Bacteria, Eukaryota and organelles). The classification
of contigs originated from assembled MAGs showed that Tiara was

10% more accurate than EukRep in classifying the nuclear genome of P.
tenue and comparably accurate for endosymbionts’ genomes.
Moreover, Tiara correctly predicted the origin of sequences in the mito-
chondrial fraction (Supplementary Table S13). Classification of total
metagenomic data by Tiara revealed sequences previously identified in
the mitochondrial fraction (three contigs) and additional five fragments
of the plastid genome of Chlorella (around 110 kb in total) not men-
tioned in the original work (Supplementary Table S14).

3.5.2 Tara Oceans dataset

To test our approach on larger and more complex metagenomic
data, we used datasets from the Tara Oceans—a large-scale initia-
tive for studying marine plankton using meta-omics techniques
(Pesant et al., 2015). We selected three samples from the same site
(station) from the Mediterranean Sea (SRA: ERR1726574,
ERR1726673, ERR868402), representing three different size frac-
tions associated with protists (Supplementary Methods,
Supplementary Table S15). Data were assembled (Supplementary
Methods, Supplementary Table S8) and used for further analyses.
We tested Tiara with three k-mer k ¼ f4, 5, 6g and three minimum
sequence lengths (1000, 3000, 5000 bp) for the first stage of classi-
fication (Supplementary Methods).

In the metagenome of the smallest size fraction (0.8–20 mm),
prokaryotes seemed to prevail, as the majority of contigs were clas-
sified as Bacteria, Archaea or Prokarya (up to 97% for k¼ 5); how-
ever, datasets from larger size fractions (20–180 and 180–2000 mm)
were dominated by eukaryotes (up to 96% for k¼6)
(Supplementary Fig. S6 and Table S16). Contribution of contigs
assigned to eukaryotes was the highest using model with the k-mer
6, which is in line with the results obtained from the test datasets.
The organellar fraction’s overall contribution was low in assembled
data and ranged between 0.26% and 4.2% across datasets and ana-
lysis variants. Nevertheless, organellar contigs were among the lon-
gest ones and exceeded 50 kb for sample ERR1726673
(Supplementary Table S10).

We annotated 21 contigs assigned as organellar and longer than
10 kb (Supplementary Methods). Among those 21 contigs, 13 were
annotated as mitochondrial and seven as plastidial, and for one,
blastN reported no significant hits (Supplementary Table S17). For
the smallest size fraction (0.5-20mm), all five analyzed contigs were
derived from two plastid genomes, belonging to the dictyochophy-
cean Florenciella parvula and the green alga Pycnococcus provasoli.
Three fragments of the Pycnococcus plastid genome together
accounted for the 58.2% of its estimated size and carried 38 genes.
The largest taxonomic diversity of contigs was detected in the size
fraction 20–180mm; organellar genomes of nine protists (diatoms,
ciliates) and animals (crustaceans, insects and molluscs) were identi-
fied. For the largest size fraction (180–2000mm), we identified three
partial mitochondrial genomes that belonged to animals (crustaceans
and hydrozoans).

4 Discussion

We developed Tiara, a machine learning-based tool, which can effi-
ciently and accurately separate eukaryotic sequences from the pro-
karyotic ones to overcome difficulties with eukaryotic data
classification in the metagenomic data. Tiara does not rely on large
reference databases and can be efficiently utilized in pipelines for
identifying eukaryotic scaffolds and binning into MAGs. Tiara is
also the first tool designed to consider organellar sequences as a sep-
arate class, allowing their further analyses.

Trained models encapsulated within Tiara scored high accuracy
for validation and test dataset, suggesting that models are not over-
fitting. Moreover, longer k-mers coupled with large networks
resulted in the best performance in both classification stages, con-
firming that complex neural networks can better identify inform-
ative signal within DNA sequences. By manipulation of the
probability thresholds (pt1 and pt2), it is possible to customize Tiara
for different tasks and maximize detection of eukaryotes (by increas-
ing the pt1) or prokaryotes (by decreasing the pt1). The length of

Fig. 2. Efficiency of Tiara classification and comparison to EukRep using a set of test

genomes. Test genomes were divided into three groups: eukaryotic nuclear genomes

(eukaryota), plastid and mitochondrial genomes (organelles) and archaeal and bac-

terial genomes (prokaryota). (A) Accuracy of Tiara for each genome in three groups

(B) Histogram of the density of accuracy for EukRep and Tiara for three groups of

genomes. All tests have been performed using the model with k-mer 6 and 0.65

probability cutoff
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sequences is another critical factor affecting the accuracy of classifi-
cation. For all tested types of genomes, accuracy increased exponen-
tially with the length of fragments in the range between 1 and 10 kb.
Thus, we proposed to use a minimum sequence length of 3 kb as de-
fault. Lowering this value can increase the number of false positives
but might allow detection of rare organisms. On the other hand,
increasing this value can speed up the process and minimize the risk
of misclassification while losing the information about less-abundant
taxa.

Using a test dataset, we have shown that Tiara performs similarly
to EukRep (representing the current state-of-the-art) in terms of pro-
karyotes classification, and outperformed it in terms of classification
of eukaryotes with considerably lower calculation time. Tiara was
trained on a much larger dataset than EukRep and employed neural
networks, which allowed longer k-mer (k¼6) usage and performed
better with more complex data. EukRep uses linear-SVMs, which
are less effective when dealing with multidimensional data.
Crucially, Tiara correctly classifies sequences from organellar
genomes (up to nearly 100% of plastid sequences and 99% of mito-
chondrial sequences). In contrast, EukRep recovered only small por-
tion of organellar fragments (approximately 33%), classifying them
as eukaryotic ones (Table 1).

The tests also confirmed the performance of Tiara on the real
metagenomic data from Pseudoblepharisma tenue microbiome.
Tiara classification accuracy was 10% higher than EukRep for the
eukaryotic genome (Supplementary Table S13), and it also success-
fully identified the organellar fraction present in the data
(Supplementary Table S14), which allowed to find a nearly complete
plastid genome of Chlorella. Analysis of the metagenomic data from
the Mediterranean Sea allowed the classification and reconstruction
of the organellar genomes. Tiara classified most of the contigs as nu-
clear genomes for the fraction larger than 20 lm, and the smallest
fraction was dominated by prokaryotes, as already reported in previ-
ous studies (Tully et al., 2018). Analysis of a range of k-mers and a
sequence length cut-off confirmed that the lowest false-positive rate
is achieved for k-mer 6 with a minimum sequence length of 3 kb.
Even though organellar fragments constituted less than 10% of con-
tigs, they were among the longest ones. Thanks to Tiara, we recon-
structed three partial plastid genomes and twelve almost complete
mitochondrial genomes from the Mediterranean Sea dataset. Only
one plastid genome was classified to the species level (99% of iden-
tity); however, it most likely represents a different strain than those
deposited as reference data in databases. For all mitochondrial
genomes, the classification was restricted by the NCBI database’s
lack of close reference. Six of the identified genomes had only a mod-
erate similarity to crustacean genomes of Undinula vulgaris (�72%)
and Paracyclopina nana (�76%). This result suggests that we recov-
ered mitochondrial genomes of crustacean species currently not rep-
resented in the NCBI database.

Still, some challenges remain. The classification of shorter
sequences might be wrong because those sequences are less inform-
ative. Thus, we recommend analyzing sequences that are longer than
3 kb to reduce the false-positive rate. The classification of eukaryotic
sequences can also be disturbed by the existence of NUMTs and
NUPTs—fragments of mitochondrial or plastid genomes localized in
nuclear genomes (Kim and Lee, 2018). Those fragments might be
misassigned as organellar sequences, which we confirmed by tests on
genomes of model species of plants (Supplementary Tables S10 and
S11). Another problem constitutes introns and other extremely di-
vergent non-coding regions, which might significantly disturb k-mer
frequencies locally, resulting in the wrong prediction if a given se-
quence is too short to retain distinctive signal. Finally, the relatively
high similarity of rDNA operons between groups can result in mis-
classification of those regions. Thus, we suggest using additional
tools like Phyloflash, which is designed to reconstruct and explore
the phylogenetic composition of rDNA sequences, to analyze those
regions (Gruber-Vodicka et al., 2020).

In the current analysis, the class ‘unknown’ from the first stage
of classification has been added to the class ‘eukaryotic’ to maximize
eukaryotic sequences’ recovery. This decision was based on the as-
sumption that ambiguous predictions will less likely fall into the

class prokaryote since the set of prokaryotic genomes used for train-

ing was extensive, diverse and evenly sampled. Consequently, there

is a high chance that those fragments belong to eukaryotic genomes.

The prokaryotic and viral sequences that might end up in the class
‘unknown’ can also be easily removed during the preprocessing step

like binning and bin refinement. However, our assumption might

slightly increase the number of false positives in the first stage of
classification.

Currently, sequences shorter than the given threshold remain un-

classified and should be treated separately using gene-centric

approaches. Those sequences are less informative and might signifi-

cantly increase the number of false positives. However, it is still
worth analyzing them to detect mitochondrial and plastid genomes

of rare protists.
Despite its advantages, organellar genomes so far have not been

widely used compared to metabarcoding or single-cell approaches.
We hope that Tiara will enable researchers to make more use of

metagenomic data. Organellar data can be employed for phyloge-

nomic reconstruction and uncover new eukaryotic lineages, as al-

ready have been shown for mitochondrial genomes of marine
heterotrophic protists (Wideman et al., 2020). Organellar sequences,

similarly to barcodes, are also applicable for diversity assessment

and biogeographic studies. Even partial organellar genomes might

be successfully used to study organellar genomes’ structure and con-
tent (Cuvelier et al., 2010; Hovde et al., 2014). Ultimately, all these

approaches enable a deeper understanding of diversity and evolution

of eukaryotes.
The reconstructed underrepresented genomes can be used to sup-

plement existing databases that would further reduce the false posi-

tives and allow for more precise classification. Tiara could also be

broadly used for metagenomic data preprocessing to remove eukary-

otic contamination, including more difficult to distinguish from pro-
karyotic data organellar sequences.

Our analyses have shown that despite the low proportion of

organellar DNA fragments in publicly available metagenomic data-

sets, Tiara allows us to identify and correctly classify plastidial and
mitochondrial sequences and use them for further analyses like phy-

logenomics, comparative genomics and population genomics.

Among analyzed datasets, we were able to identify organellar

sequences of previously unreported plastid and mitochondrial
genomes. Our results also suggest that even a limited amount of

data, insufficient for nuclear genome assembly, could be used to re-

construct almost complete organellar genomes.
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