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Abstract

Motivation: Antibodies are one of the most important classes of pharmaceuticals, with over 80 approved molecules
currently in use against a wide variety of diseases. The drug discovery process for antibody therapeutic candidates
however is time- and cost-intensive and heavily reliant on in vivo and in vitro high throughput screens. Here, we
introduce a framework for structure-based deep learning for antibodies (DLAB) which can virtually screen putative
binding antibodies against antigen targets of interest. DLAB is built to be able to predict antibody–antigen binding
for antigens with no known antibody binders.

Results: We demonstrate that DLAB can be used both to improve antibody–antigen docking and structure-based vir-
tual screening of antibody drug candidates. DLAB enables improved pose ranking for antibody docking experiments
as well as selection of antibody–antigen pairings for which accurate poses are generated and correctly ranked. We
also show that DLAB can identify binding antibodies against specific antigens in a case study. Our results demon-
strate the promise of deep learning methods for structure-based virtual screening of antibodies.

Availability and implementation: The DLAB source code and pre-trained models are available at https://github.com/
oxpig/dlab-public.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antibodies are the most successful class of biotherapeutics, with 85
monoclonal antibody drugs on the US market at the time of writing.
Global sales in monoclonal antibody therapeutics reached an esti-
mated $98 billion in 2018 (Grilo and Mantalaris, 2019), making
them one of the fastest growing and largest segments of the pharma-
ceutical industry. The potential and use of antibodies as therapeutics
for a wide range of diseases is due to the high specificity and affinity
of their binding, facilitated through the variability in their comple-
mentarity determining regions (CDRs) (Liu, 2014).

The development process for novel antibody therapeutics already
benefits from computational tools predicting properties of the anti-
body and the antibody–antigen complex (Raybould et al., 2019a).
Here, we demonstrate that machine learning approaches using struc-
tural antibody data can enable large-scale computational screening
in the antibody development pipeline.

To develop a successful therapeutic antibody, several features have
to be optimized. Antibodies need to bind with high efficacy, specificity
and affinity to the target of interest, while at the same time avoiding an
immune reaction in the patient (Suscovich and Alter, 2015) as well as
avoiding properties that lead to poor developability, such as self-
association, viscosity or immunogenicity (Raybould et al., 2019b). To
achieve these goals, large-scale experimental screens are usually used in
the pre-clinical stages of antibody–drug development (Almagro et al.,
2017; Suscovich and Alter, 2015).

Typically, initial leads for therapeutic human antibodies are gen-
erated using either in vitro display platforms or in vivo transgenic
animals. Further improvement of these initial hits is then achieved
through affinity maturation, either via generation and screening of
further, hit-based mutagenesis libraries or via rational engineering.
High-affinity antibodies generated in this way can be further engi-
neered to achieve desirable properties for antibody therapeutics, for
example changes to the constant region to modulate the effector
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functions as well as in vivo half-life and the improvement of devel-
opability (Chiu and Gilliland, 2016).

These experimental methods are often effective at generating
high-affinity antibodies for downstream development, but are cost-
and time-intensive. Furthermore, they do not as standard generate
insights into the binding mode of the generated antibodies, or if they
are binding to the target epitope on the antigen.

The development pipeline detailed above can be supplemented
using in silico methods, particularly once initial binding candidates
have been identified. Computational tools have been used to ration-
ally engineer the binding site in several different ways. For a recent
comprehensive review of computational tools used in antibody en-
gineering, see Norman et al. (2020). As antibody binding affinity is
defined by the three-dimensional structure of the antigen-binding re-
gion on the antibody (the paratope, which is mainly composed of
the CDRs), antibody modelling tools can aid the design process by
rapidly generating models of antibodies [e.g. ABodyBuilder (Leem
et al., 2016), Rosetta (Weitzner et al., 2017) and Kotai Antibody
Builder (Yamashita et al., 2014)]. Some methods combine antibody
model generation with docking against target antigens and engineer-
ing of the antibody [e.g. the Rosetta antibody design tool (Adolf-
Bryfogle et al., 2018)].

The antibody models generated by those methods, though com-
monly high quality, are often not accurate across the CDRs, particu-
larly the CDR H3 (Almagro et al., 2014; Leem et al., 2016). This
presents a challenge for rigid-body docking methods, which do not
allow flexibility of the binding partners, to be able to recapitulate
the true antibody–antigen interface. More accurate interface models
can be generated using computationally intensive docking
approaches (Weitzner et al., 2017), however, those are too slow to
be used on high-throughput screens, where thousands of interface
models need to be generated (Raybould et al., 2019a).

The caveats described above (CDR model inaccuracy and the
speed/accuracy trade-off for interface prediction) mean that current-
ly, no effective structure-driven computational tools are available
for the early high-throughput screening stages of the antibody devel-
opment pipeline.

Machine learning approaches in the field of antibody therapeu-
tics discovery have so far mainly focused on sequence rather than on
structure as input (Bujotzek et al., 2015; Liberis et al., 2018; Mason
et al., 2021; Olimpieri et al., 2013). These machine learning
approaches have been shown to be highly efficient for prediction
tasks which depend only on the antibody (rather than on the anti-
body–antigen interface) or are specific to one antigen: random for-
ests have been used both for paratope prediction (Olimpieri et al.,
2013) and for the prediction of VH-VL interface angles in antibody
modelling (Bujotzek et al., 2015). A current state-of-the art paratope
prediction tool, Parapred, is based upon a recurrent neural network
approach using the variable region amino acid sequence of the anti-
body as input data (Liberis et al., 2018). Another recent study has
highlighted the potential of large scale, high throughput machine
learning approaches for early stage antibody therapeutics develop-
ment (Mason et al., 2021). A large-scale (50k samples) mutagenesis
study on one antibody target was used to train a recurrent neural
network, which was then used to retrieve new antibody sequences
from a sub-sample of antibody sequence space, all of which showed
binding affinity in vitro. For a review of deep learning approaches in
antibody research see Graves et al. (2020).

Sequence-based machine learning approaches have yet to provide
generalizable predictions across different antigens in one model. An
approach in this direction has recently been explored in a study by
Akbar et al. (2021), in which machine learning accessible descrip-
tions of the binding interface were generated using structure-derived
interaction motifs. Further, graph convolutional neural networks
have recently been used to encode structural information for the pre-
diction of antibody and antigen interface residues (Pittala and
Bailey-Kellogg, 2020), demonstrating the ability of machine learning
approaches to successfully utilize structural information derived
from both the antibody and the antigen.

2 Approach

Here, we describe a structure-based deep learning approach for
early-stage virtual screening of antibody therapeutics, when an epi-
tope target of interest is known but no viable hit antibodies have yet
been identified. Our approach is able to make generalizable predic-
tions across different antigens. Adopting a three-dimensional gridd-
ing method which has been used successfully alongside
convolutional neural network methods to predict small molecule/
protein binding (Imrie et al., 2018; Ragoza et al., 2017), we imple-
ment a similar convolutional neural network trained on rapidly gen-
erated rigid-body docking poses of modelled antibody structures in
complex with antigen epitopes. We use this Deep Learning approach
for AntiBody screening (DLAB) to both improve the ranking of
docks from the ZDock docking algorithm (Pierce et al., 2011) and,
in combination with docking scores generated by ZDock, for the
prediction of antibody–antigen binding.

3 Materials and methods

3.1 Crystal structure dataset
The structural antibody database (SAbDab) (Dunbar et al., 2014)
contains an up-to-date collection of all antibody structures deposited
in the PDB (Berman et al., 2000). We selected a dataset of structures
of VH-VL paired antibodies in complex with protein or peptide anti-
gens with a resolution of less than 3 Å from a snapshot of the
SAbDab, downloaded on December 19, 2018. The dataset consisted
of 1216 pdb files of antibody–antigen complexes, of which 759
were non-redundant. Here, we considered an antibody to be non-
redundant if its CDR sequence (the concatenated sequence across all
CDR regions according to IMGT definition) was only present once
in the dataset. In the following, this dataset of 759 complexes is
called the crystal structure dataset. The PDB accession codes for the
crystal structure dataset can be found in Supplementary File S1.

3.2 Model dataset
All antibody structures in the crystal structure dataset were mod-
elled using ABodyBuilder (Leem et al., 2016). Only non-identical
template structures were used for modelling. All sidechains were
modelled using PEARS (Leem et al., 2018). This set of modelled
antibodies is referred to as the model dataset. Model quality was
assessed by calculating the Ca root mean square deviation (RMSD)
of each modelled antibody to the crystal structure of the antibody,
either across the entire Fv region or across the antibody CDRs by
aligning the modelled and the crystal structure antibody by their
framework regions and calculating RMSD across the CDR Ca
atoms. The antibody models generated using this workflow were of
comparable quality to previously published studies (Leem et al.,
2016) (see Supplementary Figs S1A and S2).

3.3 Binding and non-binding antibody/antigen

examples
We considered every antibody–antigen pair in the crystal structure
dataset as a binding pair. Since antibodies bind with high specificity,
we generated non-binding antibody–antigen pairs by randomly sam-
pling 50 non-cognate antibodies per antigen from the crystal struc-
ture/model antibody dataset. Our definition of non-cognate required
the sampled antibodies to share less than 90% of their CDR se-
quence with the binding antibody.

3.4 Docking pose generation
For both the crystal structure and model dataset, docked antibody–
antigen pairs were generated using ZDOCK (Pierce et al., 2011).
For each pair, 500 poses (distinct structures of the antibody–antigen
complex) were generated. To aid the docking process, the paratope
and epitope were identified and residues not belonging to either the
paratope or the epitope were excluded from the interaction site
using the standard ZDOCK pipeline as described in the ZDOCK
documentation.
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The antigen epitope was defined by separating the antibody and
antigen in the crystal structure and calculating surface exposed resi-
dues for each binding partner separately using the PSA algorithm
(Lee and Richards, 1971). All atoms belonging to surface residues
on the antigen less than 4 Å from a surface exposed residue on the
antibody were considered part of the epitope. Further, all atoms
belonging to a surface exposed residue on the antigen within 4 Å of
the defined epitope were included in the allowed docking interface
to model a realistic level of access to the epitope.

The paratope of crystal structure antibodies was defined in the
same way, using the interacting residues from the crystal structure.

For modelled antibody structures, the paratope was defined
using the IMGT CDR definition, marking the IMGT defined CDRs
and two residues to either side of each CDR as the paratope.

3.5 Clustering for train-test splits
To avoid similarity between binding modes in the train and test sets,
CD-Hit (Li and Godzik, 2006) was used to cluster antibodies by
CDR sequence identity as defined above, using a clustering cutoff of
90% sequence identity. For all learning tasks set out below, train-
test splits were performed using clustered cross-validation, assigning
all members of a cluster to either the train or the test set.

3.6 Data input for convolutional neural networks
Following the method of Ragoza et al. (2017), the docking poses
were prepared for input into convolutional neural networks (CNNs)
by discretising the atom information into four-dimensional grids,
where three dimensions describe the spatial arrangement of the
interaction site and the fourth dimension is used to indicate atom
types (see Supplementary Fig. S3).

The centre of the interaction site of docking poses was calculated
using the PSA algorithm by averaging the coordinates of all surface-
exposed atoms within 4 Å of the interaction partner on both the
antibody and the antigen and taking the mean of the two centre
points. Poses which after docking had no interactions under 4 Å
were discarded.

The grid contained only atoms that were within 24 Å of the
interaction centre. These interaction site specifications were found
to cover on average 96% of all interacting atoms on both antibody
and antigen (see Supplementary Fig. S4). The grid resolution was set
to 0.5 Å, leading to a total grid size of 963 voxels.

3.7 Reranking ZDOCK docking poses with DLAB-Re
To improve ZDOCK docking pose ranking, we created a machine
learning method to identify and correctly rank good docking poses.
This method, termed DLAB-Re(scoring), is a CNN (architecture
shown in Supplementary Fig. S5) which predicts the fnat score The
fnat score is the fraction of contacts between the interaction partners
in the crystal structure that are recapitulated in the docked pose.
The network generates a probability distribution over 11 fnat inter-
vals (10 steps of size 0.1 over [0, 1] and one bin for fnat 0.0 poses),
which are used to generate a fnat prediction via weighted averaging.
For model training and testing, the top 500 poses as ranked by
ZDOCK for each pairing in the binder set were annotated with their
respective fnat score interval. For any given antibody–antigen pair-
ing, there are considerably more poses with low fnat scores in the
top 500 ZDOCK poses than high fnat poses. To avoid biasing the
network towards predicting all poses into low fnat intervals, we
used a stratified sampling scheme, sampling poses from each interval
at the same rate during training (but not during testing).

During training, the input data were augmented by random rota-
tion around the interaction centre, followed by random translations
along the x, y and z axis between –2 and 2 Å. Models were trained
for 200 000 parameter update steps using categorical cross-entropy
and the rectified Adam optimizer. Since we wanted to use the
improved ranking performance of DLAB-Re on the downstream vir-
tual screening task, it was used to rerank the top 500 poses for all
antibody–antigen pairings used during training and evaluation of
DLAB-VS. For this experiment, we used the model weights derived
during cross-validated training. In the case of cognate and non-

cognate antibody–antigen pairings, the DLAB-Re model used was
not trained on either the pairings or on the antigen.

To identify antibody–antigen pairings with low-quality docking
poses, we determined the highest DLAB-Re score given to any of the
top 500 poses generated by ZDOCK for each antibody–antigen pair-
ing. This score (DLAB-Re-max) was used to discard particular pair-
ings by ranking all pairings by their DLAB-Re-max score and
discarding the bottom 40%, 60% or 80%. To contrast the perform-
ance of ZDOCK on the same task, this score thresholding was also
applied to the ZDOCK output score of the top pose as ranked by
ZDOCK.

3.8 Virtual screening with DLAB-VS and ZDOCK
The goal of virtual antibody screening is to discern binding antibod-
ies against a given epitope from a pool of candidate antibodies. To
generate a classification model able to accomplish this task, we
trained an ensemble of CNN models (architectures depicted in
Supplementary Fig. S5), which we termed DLAB-VS (virtual screen-
ing), a binder/non-binder classifier for individual docking poses of
antibody–antigen complexes.

The input poses for training were selected as follows. For non-
binding pairs, the highest ranked pose after DLAB-Re rescoring was
selected as a non-binding pose. For binding pairs, we selected up to
50 poses with fnat > 0.7 where those were available. Further, fol-
lowing the approach taken by Scantlebury et al. (2020), five poses of
the same binding pair with fnat < 0.1 were selected as non-binding
poses to force the networks to learn from the interaction between
antibody and antigen by providing for the same antibody–antigen
pairing both good and bad binding poses.

Data augmentation was performed in the same manner as for
DLAB-Re. Models were trained for 50 000 parameter update steps
using the rectified Adam optimizer (as the smaller input dataset
resulted in earlier convergence). A validation set comprising 10% of
the total dataset was created using the same CD-Hit clustering as for
the training set creation. The validation set was used to select a
snapshot of the model during training by choosing the model snap-
shot with the highest average precision on the validation set. To
counteract class imbalance, binder and non-binder poses were
sampled so that each batch contained equal numbers of both classes.

For each train/test split and network architecture, two different
validation sets were used to train an ensemble of four models per
fold.

At test time, the DLAB-VS scores of the top 10 poses were aver-
aged. As described above, we used DLAB-Re reranked poses for this
purpose. Where an ensemble of models was used, the output scores
by the ensemble members were averaged to arrive at the DLAB-VS
score. For each antigen target, the antibodies docked against that
target (correct and decoys) were ranked by their respective DLAB-
VS score.

For the ZDOCK-based classifier, the ZDOCK score of the top-
ranked binding pose was used to rank the antibodies docked against
a particular target.

For the DLAB-VSþZDOCK model, the DLAB-VS output scores
and the ZDOCK output score were normalized per antigen target
via minmax scaling and averaged to arrive at the final scores for
each target antigen.

The DLAB-Re-max score, output from the reranking method, of
each antibody–antigen pairing was used to discard antigens for
which the binding antibody was not predicted to have produced any
satisfactory docking poses.

3.9 DOVE rescoring
We compared the DLAB-Re results to the DOVE method for CNN-
based docking pose ranking (Wang et al., 2020). Input file prepar-
ation and score generation were performed according to the tutori-
als on the author’s github page. As detailed on the author’s github
page, only the GOAP and ATOM20/ATOM40 scores were used, as
the IT-scores were unavailable.
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3.10 Additional test sets
To create an unseen test set, which was not used at any point during
model choice and hyperparameter optimization, we used SAbDab
entries deposited after the snapshot used for the training dataset cre-
ation to create an unseen test set. This dataset, referred to in the fol-
lowing as the post-snapshot model dataset, contained 222 antibody/
protein antigen complexes, which formed 173 CDR clusters after
clustering the CDR-sequences using CD-Hit at 90% identity. On
this test set, we performed modelling, docking, rescoring and binder
classification as described above, using the models trained on the
model dataset, with the exception of the ensemble DLAB-VS score
calculation, for which we combined all 40 previously trained models
into one ensemble from which the DLAB-VS score for each pairing
was averaged. The PDB accession codes for this dataset can be
found in Supplementary File S2.

We created a SARS-CoV2 dataset (the SARS-CoV2 variant data-
set) by extracting all antibodies from the Coronavirus Antibody
Database (CoVAbDab) (Raybould et al., 2020) which were con-
firmed to bind to the SARS-CoV2 wild-type RBD while also being
confirmed not to bind to at least one SARS-CoV2 variant and for
which an experimentally determined complex structure was avail-
able from which the epitope could be determined as described
above. We used ABodyBuilder to model the antibodies as described
above. We created structural models of the variant antigens using
Foldx5 (Schymkowitz et al., 2005), using the PDB files listed in
Supplementary Table S1 as templates and copied the epitope defin-
ition for docking purposes from the templates onto the variant mod-
els. We then docked each antibody model, defining the paratope as
described above, against its epitope on both the wild-type RBD and
the confirmed non-cognate variant RBDs and performed rescoring
and binder classification as described above, using the 40-model en-
semble. As for most of the epitopes in this set, only one antibody
was docked, score normalization was performed over the entire
dataset instead of on a per-epitope basis.

3.11 Statistical testing
For statistical significance testing of the difference between means of
the best fnat in top 10 ranked poses, we used the two-tailed t-test
implementation in the scipy python package (Virtanen et al., 2020).
For statistical significance testing of the ranking performance of
DLAB-Re, we considered the ratio of antibody–antigen pairs for
which a pose with a specific fnat is found in the top 10 poses a
Poisson rate and calculated P-values using the implementation of
the test described in Gu et al. (2008) in the statsmodels python pack-
age (Seabold and Perktold, 2010). Correspondingly, we approxi-
mated the standard deviation of the ratio as

ffiffi

c
p

n , where c is the count
of antibody–antigen pairings for which a pose with a specific fnat is
found in the top X poses and n is the total number of pairings
assessed.

4 Results

4.1 Crystal structure docking yields high-quality poses
In order to establish a baseline for ZDOCK performance on anti-
body and antigen crystal structures, we re-docked the complexes in
the crystal structure dataset and quantified the docking performance
through the fnat score of the docking poses (Supplementary Figs
S1B, C and S6). ZDOCK yielded high-quality docking poses, rank-
ing at least one pose with fnat > 0.5 in the top ten poses for 93% of
the pairings.

4.2 Model docking yields low-quality poses
Docking the model dataset antibodies against their cognate antigens
on the other hand yields lower-quality docking poses. Here,
ZDOCK created a pose with fnat > 0.5 in the top ten poses for only
44% of antibody–antigen pairings but 70% of pairings had a pose
with fnat > 0.5 in their 500 highest ranked poses (Supplementary
Figs S1C and S6).

4.3 DLAB-Re can improve ZDOCK docking pose ranking
Given these results, the first stage was to create a method that is able
to identify good docking poses and rank these correctly. DLAB-Re is
a CNN trained to predict the fnat of docking poses of antibody–

antigen pairings. To determine the ability of our method, DLAB-Re,
to improve docking pose ranking, we ranked the top 500 docking

poses generated by ZDOCK for each binder pair by the predicted
fnat value, using the clustered, cross-validated train-test procedure
set out in Section 3 (compare Supplementary Fig. S1E).

This rescoring procedure improves upon the performance of
ZDOCK ranking. On the crystal structure dataset, DLAB-Re reca-

pitulates the ranking performance of native ZDOCK. On the model
dataset, DLAB-Re significantly increased the number of antibody–

antigen pairings for which a pose with fnat > 0.5 is ranked in the
top ten poses by 16% (P¼0.047) (see Fig. 1C), significantly increas-
ing both the mean best fnat in the top 10 poses from 0.46 to 0.50

(P¼0.002). In Supplementary Figure S7, we show two antibody–
antigen pairings for which DLAB-Re strongly increases the fnat of

the best pose in the top 10 ranked poses.

4.4 DLAB-Re enables identification of successfully

docked antibody–antigen pairings
Using the maximum predicted fnat score generated by DLAB-Re, we
can discard poorly docked antibody–antigen pairings (see Section 3

and Fig. 1B and D). Choosing thresholds so that 40%, 60% or 80%
of pairings, respectively, are discarded, the remaining pairings are

increasingly enriched both in pairings for which the docking poses
are ranked well by DLAB-Re as well as in pairings which have at
least one pose with a high fnat score in the top 500 poses.

Discarding 80% of the pairings in the model dataset raises the pro-
portion of pairings for which a pose with at least 0.5 fnat was

ranked by DLAB-Re in the top ten poses from 51% to 84%, mean-
ing that using this thresholding approach eliminated 93.4% of the
antibody–antigen pairings for which DLAB-Re did not manage to

rank a pose with at least 0.5 fnat in the top ten poses while retaining
33% of the pairings for which it did.

Using this approach with the ZDOCK output scores does not
yield the same improvement, only raising the proportion of pairings
for which a pose with at least 0.5 fnat was ranked by ZDOCK in the

top ten poses from 44% to 57% (see Supplementary Fig. S8).

4.5 A CNN docking rescoring tool trained on crystal

structure data does not replicate the DLAB-Re

performance
We compared the performance of DLAB-Re with the DOVE tool
developed by Wang et al. (2020). DOVE is a CNN-based docking

pose evaluation tool, which is designed to predict docking pose qual-
ity according to CAPRI criteria on crystal structure-based general
protein–protein docking poses. We used the publicly available

ATOM40þGOAP model to test whether this training generalizes to
the antigen—model antibody docking case. Using the DOVE

ATOM40þGOAP score to rerank antibody–antigen docking poses,
DOVE performs considerably worse than both ZDOCK and DLAB-
Re. This holds for both the crystal structure and the model dataset

(see Supplementary Figs S1D, S9A and B).
DOVE is trained to classify docking poses into one of two

classes: CAPRI acceptable and not CAPRI acceptable (Wodak and
Méndez, 2004; Wong et al., 2019), where CAPRI acceptable poses

have fnat > 0.1 and interface RMSD < 4A or ligand RMSD < 10A.
Using this classification to evaluate both DOVE and DLAB-Re
results, DOVE still performed worse than ZDOCK and DLAB-Re

(see Supplementary Fig. S9C). These results highlight the added
value from training DLAB-Re both on a domain specific (antibody–

antigen) as well as task specific (modelled antibodies) dataset.
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4.6 ZDock easily retrieves binders from the crystal

structure dataset but not from the model dataset
Virtual screening for antibody discovery aims to find binding anti-
bodies for a given epitope from a large set of potential binders. We
attempted to retrieve correct binders from the crystal structure data-
set by docking both the cognate antibody crystal structure as well as
50 non-cognate antibody crystal structures against each antigen
crystal structure in the dataset. Using ZDock, the cognate binder is
found in the top 2% (i.e. top ranked) of antibodies for 49.7% of
antigen targets, and in the top 10% in 65.6% of antigen targets, out-
performing the random baseline. On the model dataset, using the
same procedure, ZDock ranks the binder in the top 2% of antibod-
ies for only 5.5% of antigen targets, and in the top 10% for only
18.8% of antigen targets (see Supplementary Fig. S10).

4.7 DLAB-VS and ZDock can be combined to improve

performance on the model dataset
To improve our ability to perform virtual screening on modelled
antibodies, we trained a new model, termed DLAB-VS (virtual
screening) to classify antibody–antigen pairings as binders or non-
binders, as detailed in Section 3. For a large proportion of model
antibody structures, the docking pipeline does not yield high-quality
complex structures (see Fig. 1). Therefore, at train time, only dock-
ing poses with fnat > 0.7 were shown to the network as positive
binders and poses with fnat < 0.1 were shown to the network as
non-binders. Furthermore, at test time, we averaged the network
output over the ten highest-ranked poses for each antibody–antigen
pairing. Finally, rather than training a single model for each train/
test fold, we trained four models using two different architectures
for each of ten clustered cross-validation folds as detailed in Section
3 and used the averaged output as the DLAB-VS score. Using this
training approach, the DLAB-VS model achieved classification per-
formance comparable to ZDock: on the model dataset, the cognate
antibody was ranked in the top 2% of antibodies for 4.7% of anti-
gens and in the top 10% for 16.4% of antigens (see Supplementary
Fig. S10).

However, the two approaches, ZDock and DLAB-VS, did not
perform equally across antigen targets. It was possible to improve
classification performance using the mean of the two scores to rank
putative binders (see Section 3 and Supplementary Fig. S1E and F).
Using this approach, termed DLAB-VSþZDock, the binder was
ranked in the top 2% of antibodies for 6.4% of antigen targets, and
in the top 10% in 19.7% of antigen targets (see Fig. 2). In the fol-
lowing, we use this DLAB-VSþZDock approach.

4.8 Using DLAB-Re to discard antigen targets enables

selection of well-performing models
The performance of the DLAB-VSþZDock model is highly depend-
ent on the quality of the docking poses from which the score is
derived as well as the quality of the antibody model (see
Supplementary Figs S1G and S11). As described above, DLAB-Re
enables the selection of well-docked antibody–antigen pairings,
therefore, to further improve the performance of the DLAB-
VSþZDock classifier, we used the output from DLAB-Re to identify
antibody models with high likelihood of being well docked from the
model dataset. To test if this would improve results, for each of the
training cross-validation folds, we only considered antigen targets
for which the DLAB-Re-max score of the cognate antibody was
within the top 20% of DLAB-Re-max scores of antibody–antigen
pairings within that fold. On these targets, where the cognate anti-
body was predicted to be well docked by DLAB-Re, the cognate
antibody was ranked in the top 2% for 17.6% of antigens and in the
top 10% for 40.8% of antigens (see Fig. 2A). This improvement was
reliant on using the combined DLAB-VSþZDock model, using the
same approach while ranking by the ZDock output scores alone
only increased the classification performance marginally (see
Supplementary Fig. S10).

4.9 DLAB-VS1ZDock performs well on the post-

snapshot model dataset
To test the performance of the DLAB pipeline on a completely un-
seen test set (see Supplementary Fig. S1H), we ran the pipeline on
the post-snapshot model dataset (see Section 3). On this set, an en-
semble of all 40 DLAB-Vs models trained during the clustered cross-
validation training on the model dataset and the ZDock output
scores were used to rank the cognate antibody model as well as 50
non-cognate antibody models. The ensemble achieved higher per-
formance on this test set than on the previous test cases (both with
and without the DLAB-Re selection criterion).

To calculate how different the post-snapshot model dataset was
from the training set and the potential for this to influence model
performance, we clustered the antibody CDR sequences in both the
model dataset and the post-snaphot model dataset at 90% identity.
Of the new CDR sequences, 17.3% clustered with at least one CDR
sequence in the snapshot. On the cognate antigen targets for those
antibodies, the large ensemble performs exceptionally well both be-
fore and after DLAB-Re thresholding (binder in top 2% for 18%
and 57% of antigen targets respectively, see Supplementary Fig.
S12). On the subset of new additions to SAbDab without overlap to
the snapshot, the performance using the 40-model DLAB-

Fig. 1. DLAB-Re improves docking performance on the crystal structure dataset (A, B) and the model dataset (C, D). On crystal structure data, ZDOCK ranking and DLAB-

Re ranking perform similarly and well. On models, the ZDOCK baseline performance is considerably worse and DLAB-Re significantly improves ranking performance. (A, C)

DLAB-Re ranks the top 500 poses generated by ZDOCK better than ZDOCK, enriching the ratio of pairings with fnat > 0.5 poses ranked highly. The dashed line indicates

the fraction of docking runs in which a pose with fnat > 0.5 is present in the 500 assessed poses.(B, D) Using the DLAB-Re-max score to remove 40%, 60% or 80% of the anti-

body–antigen pairings, respectively, can remove antibody–antigen pairings which did not yield high-fnat poses. This selects for pairings for which fnat > 0.5 poses exist in the

top 500 poses generated by ZDOCK (dashed line) and for which DLAB-Re ranks the top 500 poses well (solid line). Error bars are 6one standard deviation, approximated, as

described in Section 3
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VSþZDock ensemble is similar to the performance on the snapshot
using 10 folds of 4-model ensembles (see Fig. 2B). The generaliza-
tion performance of DLAB-VS is therefore not based on overlap be-
tween the training set and the post-snapshot test set. We further
demonstrated this by assessing the performance of the DLAB pipe-
line on the set of post-snapshot targets with cognate antibodies with
at most 85%, 80%, 75% or 70% CDR sequence identity to any
antibody in the training set. We observed no significant change in
performance between the different thresholds, demonstrating that
the predictive performance of DLAB is generalizable (see
Supplementary Fig. S13).

4.10 DLAB-VS can distinguish binding and non-binding

antigen variants
A use case of interest is determining whether mutations in the anti-
gen can disrupt antibody binding (see Supplementary Fig. S1I). To
test whether this task is accessible to structure-based deep learning
tools, we created a dataset of antibodies confirmed to bind against
the SARS-CoV2 wild-type receptor binding domain (RBD) while
also being confirmed not to bind against at least one SARS-CoV2
RBD variant. We ran the dataset through the DLAB pipeline as
described in Section 3.10 and assessed whether the DLAB-
VSþZDOCK output score consistently scored the antibody–wild-
type pair higher than the antibody variant pair. For the 14 antibody-
variant pairs in the dataset, the DLAB-VSþZDOCK score of the
antibody–wild-type pair was higher than the score of the antibody-
variant pair in 13/14 cases. This result indicates that the variant clas-
sification problem is accessible to structure-based deep learning
tools.

5 Discussion

One of the major shortcomings of current computational antibody
drug discovery is the lack of structure-based, early-pipeline screen-
ing tools to identify promising candidate antibodies.

Here, we have shown how DLAB, our structure-based deep
learning approach, can be used to improve pose selection in

antibody–antigen docking experiments and can enable the identifi-
cation of antibody–antigen pairings for which accurate poses have
been generated and selected. DLAB-Re is able to identify pairings
for which a pose with fnat > 0.5 is in the top ten poses for 84% of
the pairings, which can be used to improve binder classification per-
formance downstream.

We have furthermore demonstrated that our DLAB tool can
identify putative binders to a given epitope in several different set-
tings. The complete DLAB pipeline of docking followed by DLAB-
Re and DLAB-VS enriched binders both against the background of
non-binding SAbDab-deposited sequences as well as in a more real-
istic usage scenario against H3 length-matched antibody sequences
drawn from antibody repertoire data.

On the crystal dataset with highly accurate antibody structures
and docking poses, both DLAB-VS and ZDOCK are able to strongly
enrich binders. In the case of model antibodies docked to antigens,
where both model and docking quality have to be considered,
ZDOCK and DLAB-VS approaches fail to achieve strong discrimin-
ation between binders and non-binders. However combining the
two scores improved performance. These results are in line with pre-
viously published work on the ability to classify cognate antibodies
through cross-docking analysis (Kilambi and Gray, 2017).

On a realistic use case, using the SARS-CoV2 receptor binding
domain as the target antigen, we have demonstrated the utility of
the DLAB pipeline, correctly scoring antibody escape variants lower
than the cognate epitopes for 13 of 14 antibody-variant pairs.

The DLAB pipeline has been trained specifically on a combin-
ation of ABodyBuilder and ZDOCK. The use of a different input
pipeline would likely require additional finetuning of the weights of
both DLAB-Re and DLAB-VS. One natural extension would be the
use of flexible docking approaches, which could improve the input
docking poses but would be computationally expensive given the
scale of experiments needed in a high-throughput setting.

We have demonstrated the applicability of structure-based deep
learning approaches both to antibody research in general and to the
virtual screening task specifically. Methods such as DLAB will im-
prove with increasing availability of structural antibody data as well
as improved antibody modelling and improved fast docking

Fig. 2. DLAB-VS and ZDock binder classification performance. For each approach, the ratio of pairings for which the binding antibody was ranked in the top 2%, top 5%,

top 10% and top 20% respectively is shown. (A) Comparison of the performance of ZDock and DLAB-VS binder classification on the model dataset to the random expect-

ation (‘random’) of finding the binder in the top N%. Using the combination of DLAB-VS and ZDock scores (‘DLAB-VSþZDock’) detailed in Section 3 and supplementing it

with the DLAB-Re-max thresholding (‘DLAB-VSþZDock þ thresholding’), the classification performance on the model dataset can be improved significantly. (B) Performance

on the post-snapshot model dataset after removing any CDR sequences with overlap to the model dataset (at 90% CDR sequence identity as defined above) both without

(‘DLAB-VSþZDock’) and with (‘DLAB-VSþZDock þ thresholding’) DLAB-Re-max score thresholding. Performance for the CDR sequences clustering with sequences in the

model dataset is shown in Supplementary Figure S12
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methods. DLAB demonstrates the potential of structure-based deep
learning approaches to supplement traditional experimental screen-
ing approaches and sets a course for structure-based virtual screen-
ing methods for antibody drug discovery.
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