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Abstract

Motivation: Single-cell transcriptomics profiling technologies enable genome-wide gene expression measurements
in individual cells but can currently only provide a static snapshot of cellular transcriptional states. RNA velocity ana-
lysis can help infer cell state changes using such single-cell transcriptomics data. To interpret these cell state
changes inferred from RNA velocity analysis as part of underlying cellular trajectories, current approaches rely on
visualization with principal components, t-distributed stochastic neighbor embedding and other 2D embeddings
derived from the observed single-cell transcriptional states. However, these 2D embeddings can yield different repre-
sentations of the underlying cellular trajectories, hindering the interpretation of cell state changes.

Results: We developed VeloViz to create RNA velocity-informed 2D and 3D embeddings from single-cell transcrip-
tomics data. Using both real and simulated data, we demonstrate that VeloViz embeddings are able to capture
underlying cellular trajectories across diverse trajectory topologies, even when intermediate cell states may be miss-
ing. By considering the predicted future transcriptional states from RNA velocity analysis, VeloViz can help visualize
a more reliable representation of underlying cellular trajectories.

Availability and implementation: Source code is available on GitHub (https://github.com/JEFworks-Lab/veloviz) and
Bioconductor (https://bioconductor.org/packages/veloviz) with additional tutorials at https://JEF.works/veloviz/.
Datasets used can be found on Zenodo (https://doi.org/10.5281/zenodo.4632471).

Contact: jeanfan@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Current technologies for high-throughput single-cell transcriptomics
profiling provide a static snapshot of the transcriptional states of indi-
vidual cells. Still, the continuum of transcriptional states for cells along
dynamic processes such as organ development or tumorigenesis can be
used to infer how cell states may change over time (Saelens et al., 2019;
Tritschler et al., 2019). Notably, RNA velocity analysis can be applied
to infer dynamics of gene expression and predict the future transcrip-
tional state of a cell from single-cell RNA-sequencing and imaging data
(La Manno et al., 2018; Xia et al., 2019).

To interpret such cell state changes from RNA velocity analysis,
current approaches project the observed current and predicted future
transcriptional states onto 2-dimensional (2D) embeddings to visual-
ize the putative directed cellular trajectory (Bastidas-Ponce et al.,
2019; La Manno et al., 2018; Zhang et al., 2019; Zywitza et al.,

2018). Previously used 2D embeddings include those derived from
principal components (PC), t-distributed Stochastic Neighbor
Embeddings (t-SNE), Uniform Manifold Approximation and
Projection (UMAP) and diffusion maps (Coifman et al., 2005; van
der Maaten et al., 2008; McInnes et al., 2018) established using the
observed single-cell transcriptional states. However, these
approaches can yield different representations of the underlying cel-
lular trajectory. Furthermore, in dynamic processes where intermedi-
ate cell states are not well represented (e.g. rare or missing) due to
their transient nature or due to technical limitations in sample collec-
tion and processing, current 2D embeddings may be unable to cap-
ture global relationships between cell subpopulations thereby
hindering downstream interpretation of cell state changes (Kester
et al., 2018; Weinreb et al., 2018). Although alternative non-visual
methods such as identifying dynamic driver-genes have been devel-
oped to help interpret information from RNA velocity analysis
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(Bergen et al., 2020), visual representation of cellular trajectories
remains an important approach to understanding the overall rela-
tionships between cell states.

Here, we developed VeloViz to visualize cellular trajectories by
incorporating information about each cell’s predicted future tran-
scriptional state inferred from RNA velocity analysis. Using both
real and simulated data representing cellular trajectories, we demon-
strate that VeloViz embeddings are better able to consistently cap-
ture underlying cellular trajectories across diverse trajectory
topologies compared with other evaluated methods. Likewise, given
simulated and sparsely sampled cellular trajectories with missing
intermediate cell states, we find that VeloViz embeddings are able to
more robustly retain the overall cell state relationships in the under-
lying trajectories compared with other evaluated methods.

2 Materials and methods

To create an RNA velocity-informed embedding, VeloViz uses each
cell’s current observed and predicted future transcriptional states
inferred from RNA velocity analysis to represent cells in the popula-
tion as a graph (Fig. 1, Supplementary Information S1). Briefly,
starting with spliced and unspliced RNA counts from single-cell
RNA-sequencing (scRNA-seq) data or cytoplasmic and nuclear
RNA counts from single-cell molecular imaging data, the predicted
future transcriptional state of cells are inferred using RNA velocity
analysis pipelines such as velocyto (La Manno et al., 2018) or scVelo
(Bergen et al., 2020). We then optionally restrict to over-dispersed
genes (Fan et al., 2016) and unit scale each gene’s variance, as well
as mean center each gene’s expression for the observed current and
predicted future transcriptional states, followed by dimensionality
reduction by projecting these observed current and predicted future
transcriptional states into a common PC space. Using this reduced
dimensional representation of the observed current and predicted fu-
ture transcriptional states, VeloViz then computes a composite dis-
tance D between all cell pairs in the population. The composite
distance between two cells, Cell A and Cell B, takes into account: (i)
their transcriptional dissimilarity, defined as the Euclidean distance
in the common PC space between Cell A’s predicted future state and
Cell B’s observed current state (dAB) and (ii) their velocity similarity,
defined as the cosine correlation between Cell A’s velocity vector
and the change vector representing the transition from Cell A to Cell
B (hAB). An additional tuning parameter (x) weighs the relative im-
portance of the transcriptional similarity and the velocity similarity
components.

DA!B ¼ �cos hABð Þ� 1

x�dAB þ 1
(1)

In this manner, the composite distance will be minimized when
Cell A’s predicted future transcriptional state is similar to Cell B’s
observed current transcriptional state and when the direction of Cell
A’s RNA velocity is similar to the direction of the transition from
Cell A to Cell B. Based on these composite distances, VeloViz creates
a k-nearest neighbor graph by assigning k directed, weighted edges
from each cell to the k neighboring cells with smallest composite dis-
tances. Edges are further pruned based on parameters that specify
the minimum transcriptional and velocity similarity to remove spuri-
ous cell state relationships. Finally, the pruned graph can be visual-
ized in 2D or 3D using graph layout or graph-embedding
approaches such as force-directed layout algorithms (Fruchterman
and Reingold, 1991) or UMAP (McInnes et al., 2018).

3 Results

3.1 Comparing VeloViz to other embeddings
To evaluate the performance of VeloViz, we first assessed VeloViz’s
ability to capture cellular trajectories in simulated data representing
cycling or branching trajectories (Supplementary Information S2).
We compared the VeloViz embeddings to more conventional PC, t-
SNE, UMAP and diffusion map embeddings. To evaluate how accur-
ately each embedding captured the ground truth trajectory, we cal-
culated a trajectory consistency (TC) score [Supplementary
Information S3 (Boggust et al., 2019)] where high TC scores indicate
more accurate representations of the ground truth trajectory. For the
simulated cycling trajectory, all evaluated embeddings were able to
capture the cycling structure of the trajectory except for the PC
embedding (Supplementary Fig. S1A). The TC score for the VeloViz
embedding was further higher than that of the PC, t-SNE and
UMAP embeddings. For the simulated branching trajectory, the TC
score for the VeloViz embedding was higher than TC scores for the
t-SNE, UMAP and diffusion map embeddings (Supplementary Fig.
S1B and C). Likewise, we evaluated VeloViz’s ability to capture sim-
ultaneously cellular trajectories in conjunction with terminally dif-
ferentiated cell-types using simulated data representing both cycling
or branching trajectories with a stable cell population. For the simu-
lated cycling trajectory with a stable cell population, all evaluated
embeddings were able to correctly distinguish the cycling and stable
populations except for the PC embedding (Supplementary Fig. S1D).
Likewise, the VeloViz, t-SNE, UMAP and diffusion map embeddings

Fig. 1. Overview of VeloViz. RNA velocity-informed embeddings are created by VeloViz in five steps: (1) The observed current (Xc) and predicted future (Xp) transcriptional

cell states are inferred from RNA velocity analysis and reduced into a common PC space; (2) composite distances (D) between all cell pairs are computed. The composite dis-

tance from Cell A to Cell X ðDA!XÞ takes into account the similarity in transcriptional profiles (dAX) between Cell X’s observed current (Xc) and Cell A’s predicted future tran-

scriptional state (Ap), and the cosine correlation between Cell A’s RNA-velocity (vA) and the change vector (tAX) representing a transition from Cell A’s current state (Ac) to

Cell X’s current state (Xc). A distance weight (x) is used to adjust the relative importance of transcriptional similarity and cosine correlation in the composite distance; (3) each

cell is represented as a node in a graph, and for each cell, graph edges are assigned to the k cells with the minimum composite distances. Edge weights are computed based on

composite distances as weightAB ¼max(D) – DAB; (4) edges assigned in (3) are pruned (in grey) using transcriptional and velocity similarity thresholds. Edge shade corresponds

to edge weight computed based on composite distance, with darker arrows representing edges with larger weights; (5) the resulting graph can be visualized as a 2D or 3D

embedding using graph-based embedding approaches
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preserved the cycling trajectory, while the PC embedding did not.
The TC score for the VeloViz embedding was higher than that of the
other embeddings. For the simulated branching trajectories with a
stable cell population, all embeddings were able to separate the dy-
namic and stable populations, but only the VeloViz and PC embed-
dings were able to capture the underlying branching trajectory of the
dynamic population (Supplementary Fig. S1E and F). This is again
reflected in the TC scores, which are consistently higher for the
VeloViz and PC embeddings compared to the TC scores for the t-
SNE, UMAP and diffusion map embeddings. These simulation
results demonstrate that VeloViz is able to capture trajectories of
various topologies compared to other embeddings, which may be
better suited for specific topologies.

Next, we assessed VeloViz’s ability to capture cellular trajecto-
ries in scRNA-seq data. We applied VeloViz to scRNA-seq data of
mouse spermatogenic cells (Supplementary Information S4), where
we expect a developmental progression from spermatogonial stem
cells to more differentiated spermatids (Hermann et al., 2018). For
this simple, linear cellular trajectory, VeloViz was able to capture
the overall expected trajectory from secondary spermatocytes to
early, mid, then late round spermatids (Supplementary Fig. S2).
Generally, PCA, t-SNE, UMAP and diffusion map were also able to
capture this expected trajectory. To assess VeloViz’s ability to cap-
ture more complex trajectory structures, we applied VeloViz to
scRNA-seq data of the developing mouse pancreas (Supplementary
Information S5), where we expect to see both cycling and branching
topologies at different stages of the trajectory. Briefly, we expect
cycling ductal cells to give rise to endocrine progenitor-precursor
(EP) cells, which become pre-endocrine cells that then differentiate
into four hormone producing endocrine cell-types (Alpha, Beta,
Delta and Epsilon cells) (Bastidas-Ponce et al., 2019). We observed
that while all evaluated embeddings captured the progression of EP
cells toward pre-endocrine cells, VeloViz, UMAP and t-SNE embed-
dings also captured the terminal branching differentiation into the
different endocrine cell-types, which is not clear in the PC or diffu-
sion map embeddings (Fig. 2). In addition, VeloViz was better able
to capture the cycling structure of ductal cells. Overall, these results
indicate that VeloViz embeddings are able to recapitulate expected
trends from real scRNA-seq data.

To explore the potential of using VeloViz with velocity estimated
from other data types, we further applied VeloViz to multiplexed
error-robust fluorescent in situ hybridization (MERFISH) data (Xia
et al., 2019) of cycling cultured U-2 OS cells (Supplementary
Information S6). Again, we compared the VeloViz embedding to
embeddings constructed using PCA, t-SNE and UMAP and found
that all evaluated embeddings, including VeloViz, were able to cap-
ture the expected cycling trajectory (Supplementary Fig. S3). In this
manner, we find that VeloViz is able to capture cellular trajectories
of diverse topologies using both simulated and real data from mul-
tiple single-cell transcriptomics technologies.

3.2 Performance with missing intermediate cell states
To visualize how cell states may change over time, current visualiza-
tion approaches rely on a reasonably uniform sampling of the con-
tinuum of transcriptional states for cells along dynamic processes in
the collected data. However, in dynamic processes where certain
intermediate cell states may be rare or short-lived or differentially
impacted by cell isolation protocols, such intermediate cell states
may be lost during data collection (Fan et al., 2020; Krishnaswami
et al., 2016; MacLean et al., 2018; Moffitt et al., 2018; Slyper et al.,
2020; Villani et al., 2017). Such a loss of intermediate cell states in
the collected data could lead to differentiation gaps in the observed
cellular trajectory. Because current visualization approaches such as
t-SNE and UMAP preferentially preserve local cell-cell relationships,
given such data with missing intermediate cell states, we hypothe-
sized that the resulting embeddings could split the visualized trajec-
tories into distinct components before and after the differentiation
gap (Heiser and Lau, 2020; Kobak and Berens, 2019), thereby no
longer accurately reflecting the underlying trajectories and potential-
ly hindering downstream interpretation of cell state relationships. In
contrast, we hypothesized that by incorporating information about
each cell’s predicted future transcriptional state, VeloViz could more
robustly construct representative cellular trajectories even when the
collected data of sampled cell states contain missing intermediate
cell states or differentiation gaps in the underlying trajectory.

To evaluate these hypotheses, we first used simulated and real
single-cell transcriptomics data where some intermediate cells were
removed, creating a trajectory gap. Again, because t-SNE and
UMAP preferentially preserve local cell-cell relationships, we

Fig. 2. VeloViz reconstructs trajectories from pancreatic endocrinogenesis scRNA-seq data. 2D embeddings visualizing pancreatic endocrinogenesis using VeloViz (A), PCA

(B), t-SNE (C), UMAP (D) and diffusion mapping (E). Cells are colored by cell state annotations provided in Bergen et al. (2020). Arrows show the projection of velocities

derived from dynamical velocity modeling (Bergen et al., 2020) onto the embeddings
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hypothesized that these embeddings would result in two distinct
clusters of cells before and after the simulated gap (Heiser and Lau,
2020; Kobak and Berens, 2019). Therefore, in addition to TC scores,
we calculated a gap distance (Supplementary Information S3), which
measures the distance in the 2D embedding space between cells be-
fore and after the simulated gap in the trajectory. Embeddings that
preserve the underlying trajectory despite this simulated gap will
have a smaller gap distance. A small gap distance between cells that
are part of the same trajectory will facilitate a clearer depiction of
the underlying cell transitions compared to a large gap distance
which may erroneously suggest that the cells are unrelated.

Indeed, for the simulated cycling trajectory where cells corre-
sponding to a segment of the cycle were removed (Supplementary
Information S2), VeloViz was the only evaluated embedding able to
clearly represent the cycling structure of the trajectory
(Supplementary Fig. S4A). The gap distance in the VeloViz embed-
ding was also smaller than in t-SNE, UMAP and diffusion map
embeddings. Likewise, for the simulated branching trajectories
where cells corresponding to a segment of an intermediate branch
were removed (Supplementary Information S2), only VeloViz and
PCA were able to preserve the underlying topology (Supplementary
Fig. S4B and C). The gap distance in the VeloViz embedding was
smaller than that in the t-SNE, UMAP and diffusion map embed-
dings. In contrast, t-SNE and UMAP split cells before and after the
simulated gap into distinct clusters as expected. TC scores were also
consistently higher for VeloViz than with t-SNE, UMAP and diffu-
sion map embeddings. Similar trends were observed with simulated
data that included both dynamic cycling and branching populations
with missing intermediate cell states along with a stable cell popula-
tion (Supplementary Fig. S4D–F).

Likewise, for the U-2 OS MERFISH data, to simulate missing
intermediate cell states, we removed cells in the G2/M cell cycle
phase. Briefly, we identified cells in the G2/M cell cycle phase by
computing for each cell a G2/M score based on the aggregated ex-
pression of canonical G2/M phase genes (Supplementary
Information S6). As before, we compared the VeloViz embedding to
those constructed with PCA, t-SNE and UMAP. We found that
VeloViz was better able to retain the cycling trajectory despite the
missing G2/M cells compared to the other evaluated embeddings
(Supplementary Fig. S5).

Similarly, for the developing mouse pancreas scRNA-seq data, to
simulate missing intermediate cell states, we removed pre-endocrine
cells and used cell latent time (Bergen et al., 2020) to identify cells
before and after pre-endocrine cells in the developmental trajectory
and to calculate differentiation gap distances in the recalculated
embeddings (Supplementary Information S5). Notably, while all
embeddings depicted the transition from ductal cells to endocrine
progenitors, the subsequent transition from endocrine progenitors
into terminal endocrine cell-types was best captured by VeloViz. As
expected, t-SNE and UMAP split ductal and endocrine progenitor
cells from terminal endocrine cell-types, which is reflected in the dif-
ferentiation gap distances (Fig. 3). In particular, the position of
endocrine progenitors and terminal endocrine cells and the resulting
velocity streams may lead to the interpretation that these two cell
populations are differentiating in two separate trajectories.

Still, because low dimensional representations can vary depend-
ing on parameter choices, we explored the effect of changing these
parameters on t-SNE and UMAP visualizations to see if certain par-
ameter choices would yield visualizations more representative of the
underlying cellular trajectory. For t-SNE embeddings, the perplexity
parameter affects the extent to which the embedding reflects global
versus local structure, with higher values resulting in embeddings
that better preserve global structure (Kobak and Berens, 2019).
However, with a differentiation gap in the trajectory, the t-SNE
embeddings result in two distinct clusters of cells before and after
the trajectory gap, even at large perplexity values (Supplementary
Fig. S6). Likewise, for UMAP, we varied the values of two parame-
ters: minimum distance, which controls how densely packed points
are in the embedding with small values resulting in more dense clus-
ters, and the number of neighbors, which functions similarly to per-
plexity in t-SNE (McInnes et al., 2018). As with t-SNE, when

embedding data with a simulated gap, UMAP is unable to capture
the expected trajectory even at large values of number of neighbors
(Supplementary Fig. S7). This indicates that when intermediate cell
states are missing, t-SNE and UMAP embeddings may be unable to
recapitulate the expected underlying trajectory structure regardless
of parameter choices.

While the simulation of missing intermediate states by explicitly
removing cells represents an extreme case, we note that missing
intermediate states may also occur with sparsely sampled datasets.
To illustrate how this may occur, we subsampled the full pancreas
dataset by factors of 4 and 10, resulting in datasets with 924 and
369 cells, respectively (Supplementary Information S5). We then
used only the 924 or 369 cells to construct 2D embeddings using t-
SNE, UMAP and VeloViz (Supplementary Fig. S8). Again, given
such sparsely sampled datasets, both t-SNE and UMAP represented
cells before the transition from ductal to endocrine progenitors as a
distinct cluster from cells after this transition. In contrast, when con-
structing an embedding using VeloViz, the expected transitions from
ductal cells to endocrine progenitors, pre-endocrine, then alpha,
beta, delta and epsilon cells, was well represented. This suggests that
the predicted future transcriptional states inferred from RNA vel-
ocity analysis can provide an additional source of information to
help ensure that low dimensional embeddings accurately capture
underlying cellular trajectories, even when sparse cell sampling lim-
its the number of observed intermediate cell states. Overall, we find
that VeloViz is able to visualize a more reliable representation of
underlying trajectories even when intermediate cell states may be
missing.

3.3 Scalability
Given the increasing availability of large single-cell transcriptomics
datasets (Lähnemann et al., 2020), we sought to evaluate the scal-
ability of VeloViz with increasing cell numbers. Briefly, we down-
sampled a dataset of approximately 10,000 cells (10X Genomics,
2020) to create datasets ranging from 100 to 9,295 cells. For each
dataset, we calculated RNA velocity using velocyto.R and con-
structed an embedding using VeloViz while evaluating runtime and
memory usage (Supplementary Information S7). We find that both
runtime and memory usage of VeloViz scales linearly with the num-
ber of cells and is comparable to that of RNA velocity calculations
by velocyto.R (Supplementary Fig. S8).

4 Discussion

To facilitate better visual representation of relationships between
cell states in single-cell transcriptomic data, we developed VeloViz
to create low dimensional embeddings that incorporate dynamic in-
formation inferred from RNA velocity analysis. We find that
VeloViz is able to visualize cellular trajectories of diverse topologies
and capture global cell state relationships, even when intermediate
cell states may be missing. Particularly when intermediate cell states
are missing, we find that visualization with t-SNE and UMAP may
result in distinct clusters containing cells before and after differenti-
ation gaps, potentially leading to the erroneous interpretation that
these cells are part of biologically distinct subpopulations rather
than the same biological trajectory. In contrast, VeloViz is able to re-
tain the underlying cellular trajectory and connect cells before and
after differentiation gaps even when intermediate cell states are miss-
ing. As demonstrated, such missing intermediate cell states may re-
sult from insufficient sampling, though other biological and
technical limitations of data collection may also lead to their prefer-
ential loss (Fan et al., 2020; Krishnaswami et al., 2016; MacLean
et al., 2018; Moffitt et al., 2018; Slyper et al., 2020; Villani et al.,
2017). Though it may be difficult to determine a priori whether a dy-
namic process or collected dataset contains such missing intermedi-
ate cell states, VeloViz is robust to such potential missing
intermediate cell states and thus provides an additional approach for
visualizing cellular trajectories.

However, several limitations of VeloViz should be considered
when using VeloViz embeddings to interpret putative cellular
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trajectories. Embeddings constructed using VeloViz incorporate
multiple user inputted hyperparameters (Supplementary Information
S1). We explored the effects of changing these parameters on the
visualization of simulated cycling trajectories with missing inter-
mediates and the resulting TC scores (Supplementary Fig. S10). We
found that the VeloViz embedding was most robust to changes in co-
sine similarity threshold (tt) and most sensitive to changes in k.
However, without a priori knowledge of expected relationships be-
tween cell subpopulations, it may be challenging to find the optimal
parameter set that yields the most representative embedding.
Furthermore, different components of the trajectory being visual-
ized, such as gaps versus branching structures, may have different
optimal parameters. Thus, a range of hyperparameters may need to
be explored to evaluate the stability of visualized cellular trajecto-
ries. Further limitations of VeloViz extend from the limitations of
RNA velocity analysis in general. Notably, RNA velocity analysis
can only infer cell state changes that are determined by changes in
gene expression. Other molecular features such as alternative splic-
ing, chromatin state, post-translational modifications, differential lo-
calization and cell microenvironment that contribute to cell state
changes are not considered in RNA velocity analysis, and therefore
these cell state changes will not be represented in the VeloViz embed-
ding (Tritschler et al., 2019; Weinreb et al., 2018). In addition, it
remains unknown the degree to which cell state changes are stochas-
tic i.e. the probability that two cells with similar transcriptional
states will develop differently. This stochasticity may limit the accur-
acy of predicting future cell state based on current gene expression
dynamics. Ultimately, insights gained from RNA velocity analysis
should be considered within the context of other available data, such
as differential gene expression, mutational analysis and targeted ex-
perimental validation.

Overall, by taking into account the predicted future transcrip-
tional states of cells from RNA velocity analysis, VeloViz provides

an additional approach for visualizing putative cellular trajectories
to aid in the interpretation of cellular dynamics from single-cell tran-

scriptomics data.
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