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Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, 
aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome 
for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing 
complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling 
devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive 
chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To high-
light the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications 
and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational 
studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, 
analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome 
using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough account-
ing of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how 
environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution 
characterization of the external exposome in human studies.

Keywords Exposome · Precision medicine · Silicone wristband samplers · Exposure assessment · High-resolution mass 
spectrometry

The Exposome

The past 10 years have seen rapid growth in exposomic stud-
ies, providing improved understanding of how environment 
and other non-genetic factors contribute to disease risk. 
First defined by Christopher Wild in 2005, the exposome 
was envisioned as a complement to the genome that aims to 
define an individuals’ history of exposure and relationship 
with disease risk, including the influence of lifestyle, diet, 
and the environment [1]. This definition was expanded by 

Rappaport and Smith to separately consider exposures exter-
nal (bottom-up) and internal (top-down) to the host [2, 3].

Recognizing the importance of biological response, the 
exposome concept has since been revised by Miller and 
Jones to: The cumulative measure of environmental influ-
ences and corresponding biological responses throughout 
the lifespan, including exposures from environment, diet, 
behavior, and endogenous processes [4]. Within this con-
ceptualization, exposures include the continuum from exter-
nal stressors, processes internal to the body, socioeconomic 
influences, and psychological factors. This characterization 
of the exposome as a combination of exposure and biologi-
cal response is referred to as functional exposomics and 
emphasizes multi-omic and systems biology strategies to 
systematically study the interaction of environment, host 
response, and disease [5, 6].

By providing a key measure of non-genetic disease risk 
factors, the exposome has the potential to broaden under-
standing of how environmental stressors contribute to 
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disease [6]. However, unlike genetic sequencing, measuring 
the cumulative effect of exposure over the lifespan comes 
with significant complications. Measurements of chemical 
exposure are compounded by the estimated millions of expo-
sures that vary temporally over a lifetime, including envi-
ronmental pollutants, chemicals in consumer-facing goods, 
biologics, and pharmaceuticals [7]. The relationship between 
many of these exposures and health effects is unknown, and 
there is a need to perform discovery studies that enable 
systematic characterization of the exposome and how it 
relates to health outcomes. These exposome-wide associa-
tion studies require robust sampling strategies that can be 
incorporated into population studies and enable detection 
of a wide range of exposures. In this review, we highlight 
the advantages of considering measurement of the untar-
geted external exposome for new insight into the relationship 
between environmental exposures and disease. We discuss 
the use of silicone passive sampling devices (PSDs), which 
show considerable promise for untargeted measurement 
of external exposures within an exposome-wide associa-
tion study framework. Analytical considerations, including 
untargeted analysis using high-resolution mass spectrom-
etry and strategies for exposome data science, are discussed. 
Lastly, we provide a framework for using untargeted external 
exposure monitoring within a deep exposome phenotyping 
framework.

Operationalization of the Human Exposome

The exposome is unique in ‘omic sciences because it rep-
resents an integrated measure across multiple compart-
ments characterizing how non-genetic factors external and 
internal to the host influence disease risk. As a result, the 
exposome in its totality requires attention to impacts from 
internal, external, and psychosocial factors, many of which 
require separate approaches and study designs to measure. 
The internal exposome combines measurement of biological 
activity with internal dose biomarkers that can include levels 
of the parent chemical, transformation products, and adducts 
of reactive compounds. The external exposome includes 
environmental exposures to toxic chemicals, pollution, and 
radiation, while also incorporating behavioral variables like 
diet, exercise, and drug use. Non-specific exposures, such as 
social and psychological stressors, are the third component 
of the exposome. While these three compartments tend to 
be measured and considered separately, they are dependent 
and interrelated. All exogenous biomarkers (internal expo-
some) originate from exposures that occurred outside the 
host (external exposome), and many of these exposures can 
be both potentiated and varied depending on non-specific 
factors, such as stress and lack of sleep (psychosocial expo-
some) [8].

Measuring the Internal Exposome

Most efforts to date have focused on the internal exposome 
due to the availability of biological specimens collected 
and stored from well-established population studies. These 
include approaches that aim to identify chemical biomark-
ers to estimate exposure burden and its relationship to 
adverse health outcomes, as well as ‘omic approaches that 
define specific phenotypes of exposure and disease. The 
most promising approaches for comprehensive measures of 
the internal exposome include untargeted high-resolution 
metabolomics, which detects low molecular weight com-
pounds within a biological sample [9–11]. While initially 
developed to characterize disease-related changes in endog-
enous metabolites, methods that use high-resolution mass 
spectrometry (HRMS) show sensitivity and dynamic range 
to detect low-level chemical exposures and drugs, in addition 
to endogenous metabolites from critical pathways [9, 12, 
13]. Continued advancement in HRMS instrumentation and 
computational approaches for data extraction has resulted in 
their widespread adoption for exposome research [14–16]. 
New applications show the strengths of HRMS to understand 
chemical phenotypes of exposure for environmental stress-
ors, exposures during pregnancy and other life stages, occu-
pational exposures, and environment-disease relationships 
[17–25]. When combined with additional ‘omic measures, 
HRMS provides a systems biology approach to link expo-
sure to internal dose, biological response, and disease [6]. 
Within this framework, internal dose is assessed by screen-
ing for the presence of metabolites that arise from exogenous 
chemicals, while biological response to exposure is deter-
mined by identifying alteration in endogenous processes 
(e.g., gene, protein, and metabolite expression). Biological 
alterations associated with exposure or disease can be con-
sidered separately using a “meet-in-the-middle” approach, 
and overlapping associations reinforce a causal relationship 
between exposure and disease, providing insight into under-
lying disease mechanisms [26–28]. However, interpretation 
of these results can be challenging due to exposure timing, 
varied or unknown biological half-lives of exposure bio-
markers, and complex exposure–response effects that occur 
in distal tissues.

Measuring the External Exposome

External exposome monitoring provides a standalone, but 
complementary, measure of environmental stressors [29]. 
Unlike measurements for the internal exposome, which 
tend to be precise to the individual, precision for the exter-
nal exposome varies depending on measurement strategy. 
When estimating inhalation and location-driven exposures 
for populations over large geographical areas, geospatial/
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remote sensing and regional stationary sampling approaches 
are often used [30–32]. Air pollution is often assessed with 
satellite-based surface-point differentiation, and remote 
sensing methods have also been used to assess distance 
to green and blue space, temperature, and light pollution 
[33]. Chemical exposures can be estimated using distance 
from known pollution sources, such as location relative to 
contaminated sites, or surface and groundwater pollution 
[34]. Stationary samplers that incorporate sensors can pro-
vide highly accurate measurements at a single location over 
time, while others that use absorbent sampling material to 
collection pollutants provide an integrated measure over the 
observation period. These point-measurements from station-
ary samplers are then often extrapolated to estimate regional 
concentrations. Depending on the age of the samplers or 
satellites, these approaches provide temporally dense meas-
ures to estimate exposure histories for large populations, 
a key advantage when studying how past exposures influ-
ence current health outcomes [35–42]. However, many of 
the techniques used to estimate exposures are limited and 
lack the precision to assess microenvironment changes. The 
use of mobile sampling devices, including automobiles or 
drones that include adjustment for time and activity patterns 
using smart phones, has improved accuracy; however, these 
approaches still cannot account for high variability due to 
activity and changes in microenvironment exposure levels.

Individual exposome monitoring focuses on characteriz-
ing interactions between a person and exposure sources. As 
a result, multiple strategies are possible, including detection 
of chemical exposures in food or water and characteriza-
tion of the indoor and outdoor microenvironments [43]. To 
measure inhalation exposures, mobile samplers are often 
worn by study participants or can be placed throughout dif-
ferent microenvironments to improve measurement resolu-
tion. These samplers can be active, which combines a pump 
with samplers to quantitatively measure exposure, as well 
as PSDs, which collect time-integrated concentrations of 
chemicals through passive diffusion into the sampler matrix. 
Though various designs for active samplers have been devel-
oped, key limitations include the need for an external battery 
to power sampling pumps, frequent calibration to verify air 
flow, and expensive equipment. Thus, active samplers can 
be difficult to operate and uncomfortable to carry, especially 
for children [44–47]. Passive samplers, which rely on less 
invasive technologies such as adsorbent strips and wearables 
like silicone wristbands, pouches, and badges, provide an 
alternative strategy to screen for both known and unknown 
exposures in large populations. PSDs validated for exposures 
with known uptake rates, such as benzene or trichloroeth-
ylene, have been widely used in occupational monitoring 
studies for industrial chemicals [23, 48–54]. However, for 
most PSDs, ongoing research is focused on better under-
standing the mechanisms for chemical equilibrium with 

sampler matrices, which can vary by chemical molecular 
weight, media pore size, and silicone/air partitioning coef-
ficients [55]. Determining these parameters for different PSD 
materials and designs is necessary for understanding biases 
when this approach is used for exposure monitoring.

To better incorporate the exposome into the study of 
human health, there is a critical need to leverage strategies 
that enable comprehensive characterization across different 
exposome compartments. To achieve the power necessary 
to identify how low-level exposures and associated mixture 
effects contribute to disease outcomes, it is necessary to 
use approaches that allow low-cost sampling options and 
can be deployed in large populations. Current studies show 
how biospecimens, including blood, urine, and saliva, com-
bined with untargeted assays, provide a solution for inter-
nal exposome characterization [7, 56–59]; however, no 
similar approaches are routinely available for the external 
exposome. In the following sections, we review the use of 
innovative silicone PSDs that show considerable promise as 
sampling devices to screen the external exposome.

Passive Sampling Devices for External 
Exposome Profiling

PSDs are non-invasive, easy to distribute, and can overcome 
many of the limitations that complicate interpretation of 
exposure biomarkers in biological samples [60]. While the 
configuration and material can vary, resulting in differences 
in uptake kinetics and exposure sampling, PSDs generally 
include some type of sorbent material allowing diffusion 
within the sorbent matrix following air or surface contact. 
Ideal sampling materials show linear uptake, high capacity, 
and reproducible sampling behavior under typical deploy-
ment conditions. When displaying these properties, PSDs 
have the ability to collect a time-averaged, personalized 
measurement of respiratory and/or dermal chemical expo-
sures. Many of these properties are dependent on sampler 
material, the analyte of interest, and the sampler design, as 
such, PSD validation for specific analytes may be needed 
if strict quantitation is required. PSD configurations and 
placement can also be optimized to detect specific routes of 
exposure. For example, some are designed to only measure 
airborne exposures by minimizing contact with media other 
than air, either by encasing sampling material or by placing 
as a brooch over clothing [61–63]. Others, such as wrist-
bands, show promise as an integrated measure of multiple 
exposure pathways [64].

Ideal PSDs for exposomic studies should have high par-
titioning coefficients for compounds with a wide range of 
physiochemical properties, be cheap to manufacture, and 
be provided in a form that is easy for the participant to use. 
While multiple strategies have been proposed, the use of 
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commercially available silicone wristbands has shown to 
provide a versatile, low-cost PSD that enables screening for 
a broad range of chemical exposures [65–67]. As a result, 
use of PSDs that are primarily composed of polydimethyl-
siloxane and other silicone elastomers are one of the more 
commonly used sampling materials for PSDs. In Table 1, we 
summarize the human exposure studies completed to date 
that leveraged commercially available silicone materials as 
PSDs for human exposure monitoring.

Of these studies, wristbands were the most commonly 
used PSD device, while a limited number used multiple 
placement strategies to isolate exposure pathways, includ-
ing brooch samplers for airborne respiratory exposures, and 
isolated wristbands to minimize dermal contact [46, 61–65, 
68, 69]. Silicone PSDs have been used to measure different 
classes of environmental pollutants, including polycyclic 
aromatic hydrocarbons (PAHS), brominated and organo-
phosphate flame retardants (B- or OFR), pesticides and 
insecticides, phthalates, passive tobacco smoke exposure, 
and volatile organic chemicals (VOCs), among others. In 
most cases, PSDs exhibited high affinity for these chemical 
classes, highlighting the benefit of using this material for 
exposome monitoring. Most study participants wore wrist-
bands for 7 days, with some studies extending to 30-day 
continuous wear periods [65, 67, 70].

Most PSDs (84%) were characterized using targeted 
approaches, where specific chemical classes were quanti-
fied with in-house analytical standards. An additional 18%  
of the studies included some form of suspect screening. 
Most  exposures included volatile and semi-volatile com-
pounds measured using gas-chromatography (GC), includ-
ing single- and triple-quadrupole mass spectrometers, with 
some studies leveraging electron capture detectors for 
increasing specificity towards halogenated compounds [60, 
67, 71, 72]. Only a few studies combined GC with HRMS, 
including time of flight (TOF) and Orbitrap mass spectrom-
eters [61–63, 73–79]. Of the studies using HRMS technolo-
gies, only 50% were untargeted, defined as methods that  
used data-driven approaches for signal detection, filtering, 
and annotation. The use of liquid chromatography (LC) 
methods, which enables detection of many contemporary-
use pesticides and emerging chemicals of concern, was also 
limited. Five studies included LC–MS analysis of wrist-
bands, with one measuring pesticide exposures, one phenol 
exposure, one SVOCs, and the remaining two focused on 
passive tobacco smoke exposure [80–84]. None of these 
studies used LC-HRMS, a key technology for untargeted 
screening of many environmental exposures [85, 86].

Since the use of silicone PSDs is a new approach for 
passive exposure monitoring, 38 of the 44 reviewed stud-
ies combined PSDs with validated approaches for assessing 
exposures, including comparison to biomarker levels and 
established sampling devices. These include quantification 

of known exposure biomarkers in blood and urine [45, 68, 
81, 87, 88], hand wipes [64, 75, 87], active air sampling [45, 
46, 89, 90], and low-density polyethylene PSDs [67, 91], as 
well as using questionnaires to estimate past exposures [60, 
61, 77, 78, 81, 82, 84, 87, 88, 92, 93]. Findings include a 
significant correlation between the PSD chemical concentra-
tions and accepted biomarker measurements in urine [45, 
87], demonstrating usability of silicone PSDs to evaluate 
personal exposures. These samplers similarly showed high 
specificity to detect unique chemical profiles, including 
detection of exposure profiles based on dietary and behav-
ioral trends, as well as unique chemical signatures within 
different rooms of the same residence [84, 94].

Most of the reviewed studies include questionnaires 
to associate PSD detected chemical classes with behavio-
ral, lifestyle, and demographic patterns that may influence 
exposure patterns and potential health outcomes. Although 
few studies focus on biological endpoints, recent applica-
tions have attempted to link PSD measurements to health 
outcomes, including DNA damage biomarkers [72], thyroid 
function [95], social behaviors in children [96], and respira-
tory-related disorders [62]. Interestingly, one study combined 
wristbands with effect-directed analysis (EDA) to identify 
wristband-captured exposures contributing to thyroid dys-
function [76]. In this study, extracted wristbands were tested 
using gene-reporter assays that evaluate thyroid disrupting 
bioactivity, providing a biological-based prioritization of 
compounds potentially contributing to adverse effects.

One of the challenges facing large-scale adoption of 
silicone-based PSDs for monitoring multiple exposures is 
uncertainty in partitioning and diffusion rates into the sam-
pler matrix for compounds showing a wide range of physi-
cal–chemical properties [67, 91]. Contact with surfactants 
and oils, such as soaps and lotions, may also influence 
uptake of certain compounds. Since chemical uptake into 
wristbands vary, estimating environmental concentrations 
can be difficult [72]. To improve quantitative interpretation, 
recent efforts have focused on identifying partitioning coef-
ficients by chemical class [44]. Silicone PSDs have been 
shown to outperform traditional sampler materials like low-
density polyethylene (LDPE), showing improved sequestra-
tion of polar compounds and heavier polybrominated flame 
retardants [91]. However, other chemical classes have shown 
lower affinity for silicone, including PAHs [97]. While this 
could limit detection of important air- and smoke-related 
exposures, silicone showed a higher correlation with uri-
nary PAH metabolites and outperformed polyurethane foam 
combined with active air sampling [45]. Sorbent bars coated 
in polydimethylsiloxane showed comparable performance 
for sampling for higher molecular weight PAHs, with stable 
uptake for periods greater than 24 h [62]. Additional chemi-
cal classes showing good affinity for PSDs include OFRs, 
compounds in tobacco smoke, and plasticizers [75, 87].
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PSDs are available commercially in a wide range of 
colors and sizes and can be modified to include text through 
embossing/debossing. While price varies depending on ven-
dor, amount purchased, color/text options, and size, most 
are available at low cost (< $0.50 USD) and provide an eco-
nomical solution for PSDs. However, wristbands purchased 
commercially often contain a high degree of impurities that 
can interfere with measurement sensitivity. Before deploy-
ment, thorough conditioning and cleaning are required to 
remove unbound siloxanes and other impurities [44, 65]. 
Dyes and inks can further contribute to background impuri-
ties, and testing should be performed to assess their impact 
before use. If available, uncolored or clear silicone mate-
rials should also be considered [68]. The importance of 
conditioning prior to wristband deployment is highlighted 
in Fig. 1. Uncleaned samplers result in a high degree of 
co-extracted siloxanes (Fig. 1A) that can impact compound 
detection, foul GC columns, and introduce a high degree of 
instrument contamination. Wristbands cleaned using solvent 
washing or heat treatment remove the majority of impuri-
ties present in the silicone (Fig. 1B), enhancing detection of 
exposures following wristband deployment (Fig. 1C). The 
most common method for silicone conditioning includes a 
series of washes using organic solvents, including ethyl ace-
tate, methanol, hexanes, and pentane (Table 1). Wristbands 
are often equilibrated with each solvent for a period ranging 
from 30 min to multiple days [65, 87, 98]. Following all 
washes, wristbands are allowed to dry under an inert gas or 
in a clean environment prior to packaging for distribution.

While solvent washing can remove a significant number 
of impurities, this approach is expensive, time consuming, 
and difficult to adapt to large quantities. Recent attempts to 
lower time and cost of conditioning have been developed, 
including re-use of solvents and accelerated methods that 
reduce solvent-washing [44, 84]. Heat conditioning provides 
a suitable alternative to solvent washing and can result in 
considerable savings in personnel time and solvent costs 
[44]. When using heat conditioning, wristbands are heated 
to 250–300 °C and maintained under vacuum (< 1 Torr) 
with periodic nitrogen flushing. Heating times can vary, 
with some studies showing 3 h provides sufficient removal 
of siloxanes; experience with heat conditioned wristbands 
for untargeted analysis suggests periods of 20–24 h may be 
more suitable. Depending on the size of the oven, it is pos-
sible to prepare 50–100 wristbands per day. While heat con-
ditioning improves wristband preparation throughput, effects 
of high temperatures on the silicone material, removal of 
less volatile siloxanes, and frequent cleaning of vacuum 
systems must be considered. All new batches of silicone 
must be tested for suitability with heat conditioning, as even 
minor changes in manufacturing can influence how silicone 
elastomers respond to the heating process. Cost-effective and 
robust conditioning of a large number of silicone PSDs is 

one of the main barriers for use in large population studies. 
While current conditioning approaches can increase costs by 
50–1000-fold, continued development of heat conditioning 
and alternative strategies is expected to decrease cost and 
improve capacity.

Following deployment of silicone PSDs, exposure-related 
compounds must be removed from the matrix and trans-
ferred to a form that is amendable to the chosen analytical 
method. Since the majority of silicone PSDs have focused on 
volatile and semi-volatile exposures, most commonly used 
preparation methods are GC-friendly and include solvent 
extraction or thermal desorption (TD) (Table 1). The most 
common solvents for extraction include ethyl acetate, hex-
ane, and dichloromethane. Extracts can then be processed 
through additional steps, including solvent evaporation and 
exchange, cleanup using solid-phase extraction (SPE), or 
injection as is. Care must be taken when selecting processing 
steps, as significant analyte loss could occur depending on 
the physiochemical properties of the analytes. For example, 
selection of extraction solvents with high octanol–water par-
titioning coefficients (Kow) may prevent extraction of more 
polar compounds, while drying steps can result in loss of 
volatile compounds.

TD methods have been used extensively for environmen-
tal sampling of volatile compounds, as well as analysis of 
silicone PSDs [44, 99]. When using TD to analyze PSDs, 
silicone samplers are heated so that compounds are volatized 
and either injected directly onto the GC column or trapped 
using filters prior to analysis. The advantages of these meth-
ods for deployed silicone samplers include improved sample 
preparation times, reduction in co-extracted matrix and non-
volatiles that can foul GC systems, and the ability to char-
acterize highly volatile organic compounds. Development 
of the Fresh Air wristband, which uses thermal desorption 
to analyze polydimethylsiloxane PSDs, shows it is possible 
to measure many different volatile and semi-volatile envi-
ronmental exposures, and can be combined with untargeted 
analysis to identify exposures associated with health out-
comes [61–63]. Although limited, LC analyses of wristbands 
have all used solvent extraction sample preparation methods, 
which is consistent with better detection of non-volatile and 
polar compounds [80–84].

High‑Resolution Mass Spectrometry 
for Measuring the External Exposome

Although PSDs have received considerable attention for 
exposure monitoring, their combination with untargeted 
analysis is limited and most applications have focused on 
measuring common classes of known exposures. These 
studies provide important insight into chemical expo-
sures in human populations but do not allow detection of 
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unsuspected or uncharacterized chemical that may be driv-
ing health effects [6, 100]. Untargeted analyses depend upon 
methods that use HRMS, as it enables sensitive detection of 
low-level chemicals while providing sufficient mass accu-
racy and resolution for prediction of chemical formulas 
[7]. One of the first studies to combine silicone PSDs with 
untargeted analysis used GCxGC-TOF to identify personal 
exposure pattern variation for 27 participants across multi-
ple regions within an urban environment [78]. Wristbands 
were characterized using a combination of targeted and 
untargeted methods, with targeted analysis including semi-
volatile organic compounds (SVOCs). Untargeted results 
showed variable exposure profiles that included up to 1,000 
detected chemical features and identified distinct clusters 
of compounds that distinguished seasons and regions. Tar-
geted SVOCs showed no difference among these regions, 
highlighting the importance of expanding beyond known 
exposures when considering variability in individual expo-
some profiles.

The Fresh Air wristband, which includes a polydimethyl-
siloxane coated sampler bar located in an enclosed PTFE 
chamber, has been used extensively with GC-based HRMS 
methods that include Orbitrap and QTOF-based analyses for 
sampling exposures [101]. Using untargeted analysis, Koelmel 
et al. incorporated stringent filtering and deconvolution strat-
egies to detect and identify exposures, including up to 615 
high confidence annotations from the original 6,000 chemical 
signals detected in samplers worn by participants enrolled in a 
study designed for identifying biomarkers of air pollution [63]. 
Due to their flexible sampler design, they have also shown that 
PSD placement, season, and residence type influence exposure 
profiles. Their work underscores the high sensitivity of PSDs 
when combined with untargeted analysis, and how this can be 
leveraged to characterize the external exposome and routes of 
exposure [61, 62].

Recently, ultra-high-resolution mass spectrometry 
methods have been applied to stationary silicone PSDs to 
evaluate microenvironment exposures, as well as silicone 
wristbands worn by study participants. In the study by Kalia 
et al., silicone samplers were placed throughout different 
rooms within a residential location for a period of 7 days 
and analyzed using untargeted GC-HRMS [94]. Although 
none of the detected chemical features were identified, 1,347 
signals were measured across all samplers located within 
one residence after correcting for background using field 
blanks. Comparisons between rooms in the same residence 
using principal component analysis (PCA) showed detec-
tion of room-specific signatures was possible. Untargeted 
GC-HRMS has also used to characterize silicone wristbands 
worn by study participants; the results from this study show 
benefits of untargeted methods to characterize the exposome 
using PSDs, and demonstrate potential influence of sample 
and data processing on detected chemicals [74].

Many chemicals of emerging concern (CECs) are only 
detectable using LC-HRMS methods and are known to be 
volatilized and transported on aerosols; these include per- 
and polyfluorinated alkyl substances (PFAS). PFAS and 
many other CECs are ionizable, and partition between the 
gas and particulate phase depending on interaction with 
aqueous aerosols and matrices, resulting in unique interac-
tions with PSDs dissimilar from nonpolar SVOCs and per-
sistent organic pollutants [102]. Novel PSD designs have 
been developed to characterize PFAS and other target CECs 
in indoor air [103], outdoor air, [104], and aqueous matri-
ces [105, 106]. Limited research has paired untargeted LC-
HRMS analyses with PSD deployment of any kind [107], 
though active sampler applications with untargeted analysis 
show important airborne exposures from both biotic and 
abiotic sources can be detected using LC-HRMS and com-
bined with biological endpoints, thus predicting disease risk 
[29, 108]. To date, untargeted LC-HRMS has not been used 
to characterize personal exposome profiles using wearable 
silicone PSDs, despite well-established instrumental proto-
cols for detection of low abundance, polar environmental 
chemicals. This data gap highlights an opportunity for opti-
mization of wearable PSDs for semi-polar and polar chemi-
cals suitable for LC-HRMS analysis, potentially leveraging 
sorbent or material modifications and innovative untargeted 
analytical workflows.

Analytical Considerations for Untargeted 
Analysis of Silicone PSDs

While targeted methods provide excellent sensitivity and can 
generate new insight into ongoing exposures, costs increase 
with the number of chemicals analyzed [109]. Thus, devel-
opment of targeted exposome-level assays is cost-prohibitive 
and does not enable detection of unknown and uncharacter-
ized exposures. Since untargeted analytical methods using 
HRMS maximize the number of chemicals that can be 
measured in a single sample, these approaches are optimal 
for combining the exposome with silicone PSDs. The most 
commonly used HRMS platforms include QTOFs, which 
estimate accurate mass based on the time an ion takes to 
traverse a given flight path, and Orbitraps, where injected 
ions are introduced into a charged and rotating spindle and 
the oscillation frequency of orbiting ions is used to estimate 
accurate mass. While both QTOFs and Orbitrap instruments 
have excellent mass accuracy for high-abundance peaks, 
Orbitraps that provide ultra-high-resolution capabilities 
(> 120,000) display the greatest sensitivity and resolution 
for low abundance environmental chemicals, making them 
the preferred platform for exposome research. Combined 
with adaptive algorithms for processing complex mass spec-
tral data, it is now possible to detect over 100,000 chemical 
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signals in samples, including low-level environmental pol-
lutants [12, 110–112].

The number and types of chemicals detected in PSDs 
can be expanded by combining complementary separation 
and ionization approaches for HRMS. These include using 
alternate chromatography strategies, with LC and GC as the 
most comprehensive platforms for exposome-wide associa-
tion studies. LC-HRMS platforms are best suited for meas-
urement of polar molecules with ionizable functional groups, 
or large, non-polar molecules that include lipids, fatty acids, 
and sterols. However, many exposome chemicals are volatile 
enough to be introduced into the gas phase when heated and 
are not detected by LC-HRMS. Thus, GC-HRMS provides 
the best sensitivity and selectivity for these compounds [12, 
113]. Most detected chemicals from wearable silicone PSDs 
will exhibit some degree of volatility and most exposures are 
best detected using GC-HRMS [78]. When analyzing sili-
cone PSD extracts, care must be taken to ensure the extracted 
samples are suitable for the analytical method of choice. All 
analyses should use a rigorous QA/QC plan, including at 
least 10% of samples as field blanks, which are non-deployed 

PSDs that were subjected to similar storage and transporta-
tion conditions. Often, these blanks are needed to separate 
the background from true signals and can be used to filter 
silicone-related chemicals from the final results.

Following analysis of PSDs, chromatograms can be pro-
cessed using a number of software tools. Key steps include 
identification of peaks and integration, deconvolution to 
identify mass spectra, and alignment of peaks across sam-
ples. Both commercial and open-source tools are available; 
however, algorithms optimized for detection of low abun-
dance peaks are best for exposome research [114–117]. 
Deconvolution strategies enhance detection and identifica-
tion of chemicals, with current approaches based upon peak 
shape similarity, hierarchical clustering, and correlation 
across samples [118–122]. By incorporating correlation for 
deconvolution, these methods are optimized for low abun-
dance peaks that are often characterized by poor peak shape, 
and will include fragments, isotopes, and adducts from the 
same compound [123].

Identification of mass spectral signals is one of the key 
challenges in applying untargeted HRMS. Many detected 

Fig. 1  Sample total ion chro-
matograms for A unconditioned 
silicone wristband analyzed 
as received from the manu-
facturer; B silicone wristband 
conditioned for 18 h at 300 °C 
maintained at < 0.1 Torr with 
nitrogen venting at 15, 30, 45, 
60, 90, 120, 180, 240, 300, and 
360 min; C heat conditioned 
silicone wristband after a 7-day 
deployment period where the 
wristband was worn continu-
ously by the study participant
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ions do not match compounds listed in metabolomic or envi-
ronmental chemical databases and authentic standards are 
not available. Computational approaches that assign annota-
tion confidence can enhance prediction of chemical identi-
ties. These approaches harness multiple lines of evidence to 
evaluate the quality of annotation and, combined with appro-
priate databases, improve the number of annotated com-
pounds [124, 125]. Multiple databases exist for exposome 
research, including the Blood-Exposome database [126] 
and CECScreen, which includes over 70,000 CECs and pre-
dicted metabolites [85, 126, 127]. The US EPA CompTox 
Dashboard provides a key resource for identifying detected 
chemicals [128], with information on 765,000 chemicals and 
includes in silico predicted electron ionization (GC) and MS/
MS (LC) spectra for all entries [129, 130]. For annotating 
unknown peaks that do not match database entries, numer-
ous tools can be used to characterize ion fragmentation pat-
terns and predict possible identities and biotransformation 
products of parent metabolites [131, 132]. Continued efforts 
focused on developing new chemical databases that house 
both environmental chemicals and endogenous metabolites 
are expected to improve annotation capabilities for untar-
geted mass spectrometry data in exposome research [133]. 
Molecular networking of GC-HRMS spectra and MS/MS 
data from LC-HRMS [134, 135] provides an additional strat-
egy for classifying and inferring potential chemical iden-
tities, thus enabling insight into related substructures and 
similar compounds based upon similarity networks among 
spectra.

Exposomic Data Science

For exposome studies designed to evaluate a disease or other 
adverse outcomes, signals from untargeted profiling must 
be prioritized to identify which exposures are driving risk 
[59]. When applying an exposome-wide association study 
framework to study relationships between exposures and 
outcomes, uni- or multivariate data analysis approaches are 
applied to evaluate the relationship of each detected chemi-
cal with the outcome. Because identification of all detected 
signals is often not possible, variable selection enables pri-
oritization of exposures for identification. Due to the large 
number of signals detected in exposome studies, traditional 
data analysis methods are challenged by false positives and 
robust identification of the top signals defining environment-
disease relationships. There are several sources of error that 
lead to this issue, including insufficient sample size rela-
tive to the number of compounds analyzed, excessive false 
discovery rate from multiple hypothesis tests, and analyz-
ing each part of known or hypothesized networks individu-
ally [136]. An alternative approach is to apply multivariate 
methods that analyze the entire HRMS dataset jointly. These 

methods represent the samples as points and determine pro-
jections of these points into lower dimensional space, hyper-
planes, components, or latent variables, such that a measure 
of information about the data points is maximized.

Multivariate and data reduction analytic strategies solve 
two major issues with the traditional exposome-wide asso-
ciation studies by (1) increasing power, since corrections 
for multiple comparisons are performed on the number of 
latent features (tens) rather than the number of chemicals 
(hundreds or thousands), and (2) facilitating determina-
tion of networks, since the latent variables are constructed 
based upon statistical or functional similarity and jointly 
use information across chemicals. Linear versions of these 
methods, such as PCA, independent component analysis 
(ICA), canonical correlation analysis (CCA), linear discri-
minant analysis (LDA), and partial least squares discrimi-
nant analysis (PLS-DA), are popular due to their simplicity 
of interpretation [137–143]. Nonlinear methods, such as 
self-organizing maps, support vector machines, and random 
forests, are less useful for interpretation but can be more 
powerful than linear methods for regression or classifica-
tion [144–146]. Continued development of multivariate and 
dimension reduction techniques for application to exposomic 
studies is an ongoing area of research, with future applica-
tion of these methods being expected to reduce complexity 
of the exposome while improving insight into how chemi-
cal mixtures influence health. For further information about 
multivariate methods used in exposome applications, we 
refer the reader to the following review articles [147–149].

Strategies for Operationalizing Deep 
Exposome Phenotyping

To realize measurement of the exposome, it is critical to 
consider exposures across multiple compartments. While 
most studies use HRMS to characterize the internal expo-
some using biological samples, personal PSDs provide 
complementary advantages. First, PSDs are much cheaper 
to produce and distribute compared with the cost for collect-
ing blood or urine samples. Biologics often require special 
methods and trained personnel for collection, including clin-
ical visits. These materials must be stored at low tempera-
tures to maintain sample integrity, and different handling 
and storage procedures can increase variability. PSDs can 
be provided directly to participants and returned by mail, 
with limited-to-no contact between study participants and 
coordinators. This capability is especially important when 
considering the additional restrictions placed on in-person 
research due to the COVID-19 pandemic. Long-term, secure 
storage of biologics can also be costly, as storage in −80 °C 
is common. In contrast, PSDs can be stored in sealed bags 
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at 4 °C or room temperature, since compounds are stable 
within the silicone matrix.

Although studies to date have only used silicone PSDs 
with a small number of participants (average 50 partici-
pants; max 255; Table 1), this technology has the potential 
to provide a key exposome measurement within longitudinal 
cohort studies. Using heat-based conditioning methods, sili-
cone wristband PSDs can be produced for as little as $5–$10, 
which is significantly lower than the cost for clinical visits 
to complete blood or other biofluid collection. The low cost 
and non-invasive nature of the silicone PSDs allows routine 
distribution to participants in large cohorts at study enroll-
ment, and additional PSDs can be provided to participants 
during longitudinal follow-up periods. While cost for analy-
sis by untargeted HRMS can be in the $200–$500 range, 
longitudinal follow-up can prioritize participant selection 
based upon health outcomes. Finally, silicone PSDs may 
provide improved detection and reduced variability for 
exposures with short biological half-lives. Depending on 
the compound, time for clearance from the human body 
can vary on the range of days to decades. When measur-
ing compounds with short biological half-lives in blood or 
urine, the ability to detect a biomarker is dependent on the 
time of sample collection. Thus, exposome measurements 
in biological samples often suffer from high variability for 
rapidly metabolized compounds [150]. Due to compound 
stability within the silicone matrix, PSDs eliminate biologi-
cal transformation and enable detection of the parent com-
pounds averaged over longer time scales [83].

Due to their non-invasive nature, price, and ease of distri-
bution, silicone PSDs are a key technology for measuring the 
exposome. While quantitative exposure measurements using 
PSDs are challenging if air-silicone partitioning behavior of 
analytes is not known, PSDs show considerable potential as 
a sampler to screen for the presence of both known and unex-
pected exposures that can be prioritized for further follow-up 
using traditional exposure assessment methods. Thus, rather 
than replacing collection of blood, urine, or other biological 
samples, they provide a complementary measure to assess 
specific compartments of the external exposome in popula-
tion studies. For example, ingestion (eating and drinking) 
is one of the primary routes of environmental exposure and 
must be assessed using other approaches. Biospecimens 
also allow measurement of alterations across biological 
levels and long-term maladaptations, an important consid-
eration for evaluating cumulative effects of environmental 
exposures. Combined with internal chemical and bioeffect 
monitoring, the use of silicone PSDs provides a strategy for 
deep exposome phenotyping in human populations (Fig. 2).

The goal of deep exposome phenotyping is to provide 
a systematic framework that operationalizes exposome-
wide association studies of human health by combining the 
key measures necessary to understand the continuum from 

exposure to disease. Application in longitudinal cohorts can 
enable in-depth, comprehensive assessment of exposures, 
and when combined with untargeted HRMS analysis, pro-
vides the chemical coverage necessary for characterizing 
complex mixtures. Integrating external and internal meas-
ures of the exposome with multiple “-omic” layers will allow 
a functional approach to understanding how environment 
contributes to disease risk laying a foundation for the mecha-
nisms underlying environment-related diseases [26, 27].

Because silicone PSDs are available at low cost, they 
can be easily incorporated into ongoing longitudinal stud-
ies and employed as a tool to estimate temporal changes 
in exposure patterns through repeated follow-up with new 
samplers. While the focus to date has been environmental 
health studies, silicone PSDs also provide a strategy for 
incorporating the exposome into precision medicine. Envi-
ronmental factors are widely recognized for their potential to 
alter treatment efficacy and disease progression [151]. Sili-
cone wristbands and other PSDs can provide a non-invasive 
means of chemical surveillance, helping identify patients for 

Fig. 2  To better understand the human exposome, there is a need 
to measure exposures across both the external and internal expo-
some. Combining silicone PSDs, biological samples, and untargeted 
HRMS provides a unified strategy for deep exposome phenotyping 
that enables systematical measures of environmental exposures and 
corresponding biological exposures. While most efforts to date have 
focused on the internal exposome, silicone PSDs are low cost, non-
invasive, easy to distribute, and allow measurement of compounds 
with short biological half-lives. Application of silicone PSDs within 
longitudinal studies will improve measurement of exposures at differ-
ent life stages and provides the chemical coverage necessary for char-
acterizing complex mixtures. Integrating external and internal meas-
ures of the exposome with other omic layers will allow a functional 
approach to understanding how environment contributes to disease 
risk, laying a foundation for the mechanisms underlying environment-
related diseases
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primary intervention or participants who would benefit from 
increased follow-up.

Conclusions

While environment is one of the main drivers of disease 
risk, the ability to measure the complexity of the exposome 
is limited by its temporal nature, availability of samples, 
and the technology to detect complex exposures patterns. 
While considerable advances have been made in analytical 
strategies for the internal exposome, comparable methods 
for the external compartment are not well-developed. Sili-
cone wristbands and other PSDs, which can be combined 
with untargeted HRMS platforms to characterize the expo-
some, are a natural way to integrate measures of the external 
exposome into longitudinal studies. These devices are cheap, 
non-invasive, and can be easily distributed. Previous studies 
demonstrate their suitability for many environmental chem-
ical exposures, which is critical for success in exposome 
applications. By using untargeted approaches, it is possible 
to detect and identify ongoing exposures that may have not 
been expected or characterized, supporting pollution control 
and identification of the primary chemical exposures experi-
enced by humans. Thus, continued development and appli-
cation of silicone PSDs will facilitate greater understanding 
of how environmental exposures drive disease risk, while 
providing a feasible strategy for incorporating untargeted, 
high-resolution characterization of the external exposome 
in human studies.
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