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Abstract
The progress of agricultural green technology is an important means and fundamental way to achieve high-quality develop-
ment of agriculture. The current study takes the panel data of 31 provinces in China from 1998 to 2018 and uses the Epsilon 
Based Measure-Global Malmquist-Luenberger (EBM-GML) model to measure China’s agricultural green technological 
progress (AGTP) and discusses its dynamic evolution characteristics in the spatiotemporal dimensions. Finally, we analyze 
the spatial spillover effects of AGTP by the spatial Dubin model. The results show that China’s AGTP showed a trend of 
first rising and then falling, and the average value is 1.0525. AGTP has obvious regional unbalanced development, and the 
regional differences are expanding. It shows that AGTP between adjacent areas is closely linked. The Moran’s I index shows 
that AGTP has a significant positive spatial correlation. The local Moran’s I index shows that AGTP is concentrated in North-
west, Northeast, and North China, and green technological is degraded in East and South China. From the spatial spillover 
effects of AGTP, the level of agricultural economic development, real GDP per capita, and urbanization have significantly 
promoted AGTP in the local and neighboring areas, while the agricultural internal structure and the level of labor inhibit 
AGTP in the local and neighboring areas. In addition, the administrative environmental policy (ENVP) and the economic 
environmental policy (ECOP) have negative impacts in neighboring areas, while the policy has negative spillover effects and 
positive spillover effects in the local area, respectively. Therefore, we should adhere to the concept of green development, 
pay attention to the regional exchange of green technology, concentrate policies on low-low concentration areas, and increase 
the follow-up tracking and supervision mechanism of the policy design and implementation process.

Keywords Agricultural green technological progress · Temporal and spatial dynamic evolution · Spatial spillover effect · 
EBM-GML · Agriculture industry

Introduction

Against the backdrop of economic globalization and an ever-
increasing global population, the agricultural economy’s 
fast expansion is heavily reliant on organic inputs such as 
pesticides and fertilizers. This causes soil acidity and com-
paction, a loss in soil fertility, heavy metal contamination, 
and other issues. The growing trend of high-energy con-
sumption, high emissions, and high pollution has signifi-
cantly hampered agriculture’s sustainable development and 
jeopardized food security. According to statistics, the total 
annual chemical fertilizer application in China’s agriculture 
exceeds 1/3 of the global total, and the average application 
intensity exceeds 440 kg/ha, which is 2.8 times the aver-
age global fertilizer application intensity. The annual pes-
ticide application rate has exceeded 300,000 tons, and the 
application intensity has reached 25 kg/ha, which is three 
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times the world average (Guo et al. 2020). Agricultural water 
accounts for more than 60% of total water use in the national 
economy, and agricultural irrigation water efficiency is only 
75% of that of developed countries (Wang et al. 2018a). The 
excessively intense factor production technique has not only 
resulted in significant pollution of water and agrochemicals 
but has also resulted in a double-constraint dilemma on 
water and soil resources. The progress of agricultural green 
technology is an important means and fundamental way to 
achieve high-quality development of agriculture. Building 
a market-oriented green technology innovation system and 
promoting green development has become an important 
means to solve these problems.

After Acemoglu et al. (2000, 2007, 2011, 2012) proposed 
the endogenous theory of technological development and the 
theory of technological progress deviations. It has become 
the focus of many academic circles to investigate whether 
technological progress is biased toward saving resources and 
energy input and reducing pollution emissions. Based on 
this, the academic community extended the idea to the envi-
ronment (Acemoglu et al. 2012) and put forward the concept 
of green technological progress. In addition, according to 
incomplete statistics, terms related to green technological 
progress include: environment biased technical progress 
(Yang et al. 2020a), environmental technology innovation, 
green technology innovation (Razmi 2013), cleaner technol-
ogy progress (Fischer and Heutel 2013), and their essence is 
not much different. They are progress activities that are only 
oriented to improve environmental performance or can bring 
significant environmental performance improvement results. 
Academic circles mostly adopt the substitution method of 
scientific publication data or patent indicators (Doranova 
et al. 2010; Popp 2004). Total factor productivity (TFP) 
(Fischer and Heutel 2013), DEA-Malmquist, and SBM-
Malmquist methods (Kou et al. 2016) measure the progress 
of green technology.

In the field of agriculture, academic circles mainly involve 
green technological progress or environmental technological 
progress based on agricultural green technology efficiency 
or environmental technology efficiency research. There are 
few papers on the progress of agricultural green technol-
ogy. From the related research of China’s AGTP, it can be 
found that ignoring environmental factors will overestimate 
the growth of China’s agricultural productivity. Under envi-
ronmental constraints, agricultural technological progress 
in various areas of China is increasing while showing the 
descending characteristics of eastern areas, western areas, 
and central areas, the northeast area showed a technologi-
cal decline, and the progress of non-environmental tech-
nology decreased from east to west areas (Li 2014; Shuqin 
et al. 2019) studied China’s agricultural green productivity 
under the dual constraints of resources and the environment, 
and found that the cutting-edge technological progress in 

1978–1984, 1985–1991, 1992–1996, 1997–2001, and 
2002–2008 contributed 10.23%, 2.9%, 5.03%, 8.29%, and 
5.01%, respectively. At the same time, some studies have 
pointed out that green technological progress has an evi-
dent path dependence characteristic, and the rate of green 
technology progress at the early stage can affect the rate 
at the later stage (Yang et al. 2020b). In addition, Ren and 
Zeng (2021) evaluated the suitability of green technologi-
cal progress in the mariculture industry and concluded that 
nearly half of the provinces have chosen a direction of green 
technological progress that is not consistent with their factor 
endowments.

In addition to the measurement of green technological 
progress and the analysis of temporal and spatial differences, 
the socio-economic factors leading to the differences in 
green technological progress are also a new research direc-
tion. Relevant scholars have studied environmental regula-
tions (Xu 2021; Zhang et al. 2018), trade (Lovely and Popp 
2011), market pull (Horbach et al. 2012), wave destruction 
(Yang et al. 2020b), industrial structure (Yang et al. 2020a), 
average green patents in transportation, industrial scale, and 
local government financial expenditure (Zhang et al. 2020) 
on green technological progress or green technology innova-
tion. Although the research fields are different, these studies 
also provide important analytical ideas for the in-depth dis-
cussion of agricultural green technological progress. In the 
agriculture industry, Li. and Z. (2020) found that the level of 
income, the level of agricultural human capital, the propor-
tion of grain sown area, the income gap between urban and 
rural areas, and the support of agricultural policy can help 
to increase AGTP, whereas increasing the level of urbaniza-
tion and fertilizer application will hinder its development. 
According to Ji and Li (2019), the major variables influenc-
ing the growth of green technology in the marine aquacul-
ture sector are technological promotion and development 
scale, while the influence of science and education input 
elements is insignificant. He et al. (2021) found Agricultural 
technologies’ diffusion, absorption, implementation, the 
level of informatization, the number of agricultural techni-
cians in enterprises and institutions, average education level 
of residents, and the level of agricultural mechanization, 
absorption, and implementation of agricultural innovation 
technology can significantly influence the green efficiency 
of agricultural innovation.

In conclusion, past studies have expanded research ideas 
for the advancement of agricultural green technology and 
established a theoretical framework for future study, but 
there were some research gaps or limitations. Firstly, the 
advancement of green technology serves as an impor-
tant support for the green development of the agriculture 
industry. In-depth comments on the advancement of green 
technologies for the agriculture sector are lacking in exist-
ing research. There are few analyses on the progress of 
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agricultural green technology. What is the changing trend 
of these green technologies? Has the progress of green 
technology enhanced over time? The regional differences 
and dynamic characteristics of AGTP need to study. Sec-
ondly, the factors affecting the progress of agricultural green 
technology may also show temporal and spatial heterogene-
ity. In particular, China has a vast territory, and there are 
obvious regional differences in the endowment of agricul-
tural production factors. Influencing factors may also show 
spatiotemporal heterogeneity. With the development of the 
economy and the transfer and diffusion of technology, the 
spatial spillover effect of green technological progress in 
China’s agriculture industry needs to document.

When compared to previous studies, this study has 
improved in two major areas. First, the EBM-GML model 
is used to assess the advancement of agricultural green 
technology, and the efficiency value’s divergence is recti-
fied. Second, in this work, the spatial correlation of green 
technological advancement via ESDA is employed, and the 
spatial spillover impact of agriculture green technological 
progress (AGTP) under diverse regional backgrounds have 
also been proven. Finally, this article takes the agriculture 
industry as the research object, and the status quo and chal-
lenges of AGTP in the agriculture industry are confirmed. 
To some extent, the findings of this study may be utilized to 
develop relevant green technology utilization strategies and 
management systems in various areas of China.

The specific objectives of this study are as follows: to 
explore and verify the changing trend of green technology 
in China since 1998–2018 and whether the elapsed time has 
been improved, exploring and studying the spatial difference 
of AGTP, expecting to master the spatial change dynamics of 
the level of AGTP among regions in China after the transfer, 
and the diffusion of green technology. Grasp the spatial and 
temporal pattern and influencing factors of green technol-
ogy progress so that policy designers in different regions 
can adopt green technology progress strategies according 
to local conditions, which is of great significance to provide 
lessons for further promoting China’s agricultural green 
development policy.

The theoretical contributions of this study are as follows: 
compared with the traditional agricultural environmental 
protection and governance, agricultural green development 
is a benign development strategy and development model 
that integrates environmental sustainability into economic 
and social sustainable development. Targeted research 
on green technological progress can enrich the theory of 
China’s green agriculture, green technological progress, 
and ecological environment. In addition, the study of spa-
tial–temporal heterogeneity of green technological progress 
from the perspective of geospatial interaction also enriches 
the value of spatial heterogeneity theory. The practical 
contributions of this study are as follows: the space–time 

dimension is an important way to describe the informa-
tion and development rules of things. The analysis of the 
time–space dynamic evolution of green technological pro-
gress in this study can better reflect the reality of agricultural 
green technological progress. At the same time, analyzing 
the spatial spillover effects of various factors on the progress 
of agricultural green technology is also more conducive to 
the formulation and implementation of regional technology 
progress policies.

The rest of this study is organized as follows. The mate-
rial and method section introduces methods and data, includ-
ing (EBM-GML) and the spatial Dubin model. The results 
and discussion section introduces the temporal and spatial 
characteristics of agriculture green technological progress 
(AGTP) and the estimated results of dynamic evolution. We 
also provided the test results of direct and indirect effects 
under the spatial Dubin model. The conclusion and sug-
gestions section is the conclusion and policy implications.

Material and methods

Measurement method and index selection

Epsilon‑based measure‑global Malquist‑Luenberger 
(EBM‑GML)

Since technological progress is an intangible variable, it is 
difficult to measure directly. Therefore, the measurement 
research on the progress of green technology has always 
been a key problem in this field. The first is the index sub-
stitution method. Use scientific publication data, patent data, 
etc. to measure the progress of green technology (Doranova 
et al. 2010; Popp 2004), but Liu et al. (2020) believe that 
the number of patents reflects the direct impact of green 
technology innovation. Evaluation of green technology inno-
vation capabilities will produce bias. Secondly, using TFP 
to comprehensively reflect the green technological progress 
index (Feng and Serletis 2014). However, their findings 
on “total factor productivity with consideration of energy 
input and pollution emission factors” do not reflect the true 
connotation of biased technological progress (Ji and Wang 
2014; Song et al. 2016). Finally, a nonparametric estima-
tion method was commonly used to measure the progress 
of green technology and included DEA-ML and SBM-ML 
methods to measure it (Kou et al. 2016). But DEA model 
assumes that the return on the scale is unchanged, which is 
contrary to the real economic phenomenon, and the SBM 
model loses the original proportional information of the 
front projection value of efficiency, and when the optimal 
relaxation takes 0 and positive value, the results will be sig-
nificantly different. To solve these problems effectively, this 
study refers to Tone (2001) and constructs a mixed distance 
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function EBM model with radial and non-radial character-
istics, and its expression is as follows:

where E represents input, L represents output, and 
Si− represents input relaxation vector; �∗ is the value of agri-
cultural green total factor productivity in each province; θ is 
the radial component in γ* εx is a key parameter with a value 
of [0, 1], which represents the importance of the non-radial 
part in the calculation of the efficiency value. When it is set 
to 0, it is equivalent to the radial model, and when it is set to 
1, it is equivalent to the SBM model.

In order to further decompose the progress of green tech-
nology, we draw on the research ideas of (Oh 2010), and 
on the basis of calculating the green TFP, the GML index 
decomposition method (global Malmquist-Luenberger) 
is introduced to obtain the AGTP index. The GML index 
method is obtained by constructing a global production pos-
sible set, and its formula is as follows:

EG,t+1 represents the overall efficiency value in t + 1 
period. The GML index is the green total factor produc-
tivity index, which can be decomposed into green technol-
ogy efficiency (GMLEC) and green technological progress 
(GMLTC). When the value is greater than 1, it represents 
green technological progress; when the value is less than 1, 
it means that the green technology has regressed; the value 
equal to 1 means that the level of green technology remains 
unchanged. The green technological progresses in this study 
are all completed with MaxDEA 7.12 version.

Kernel density estimation method

Because the nonparametric estimation of the Kernel density 
estimation method has a weak dependence on the model 
and is robust, it has become a common method for study-
ing unbalanced distribution (Qin and Xiao 2018b, a). This 
article uses this method to analyze the dynamic distribution 
characteristics of China’s AGTP. The specific formula is

In Eq. (3), F( _
X
) represents the density function of AGTP, 

_
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is the bandwidth. The bigger w, the smoother the density 
function curve of AGTP, the estimation accuracy will 
decrease accordingly. Therefore, a smaller w is generally 
selected in actual research.

According to the different expression forms of the Kernel 
density function, the kernel function can be divided into 
uniform kernel density method, quadratic kernel density 
method, and Gaussian kernel density method (Gerber 2014). 
We choose the Gaussian kernel density function to estimate 
the distribution dynamics of China’s AGTP. The function 
expression of the Gaussian kernel is shown in Eq. (4). Since 
there is no definite functional expression for nonparametric 
estimation, it is necessary to compare the position, shape, 
and ductility of the graph distribution to investigate the 
change of the distribution.

The method of spatial autocorrelation (ESDA)

Moran’s I and Anselin Local Moran’s I are an analysis 

method widely used to study spatial correlation (Pan et al. 
2015). The current study uses two methods to verify the 
spatial correlation of China’s AGTP. The specific equation 
is as follows:

Equation (5) is Moran’s I, n is the total number of cities, 
Wij is the spatial weight, Xi and Xj are the attributes of the 
city i and j, respectively, and X is the mean value of the 
attribute. Equation (6) is Moran’s I. S2

X
 is the variance of the 

observations, the formula isS2
X
=
∑

jW  ij (X j −X)∕n.

Spatial Dubin model

At present, the mainstream research methods of spatial 
metrology include the spatial lag model (SLM), spatial error 
model (SEM), and spatial Dubin model (SDM). Compared 
with the SLM and SEM models, the SDM model consid-
ers the spatial correlation of the dependent variable and the 
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spatial correlation of the independent variables. At the same 
time, it also has spatial autocorrelation and spatial interac-
tion effects. In addition, for endogenous problems, the SDM 
model can be used to get the estimated value that is not 
amplified and biased (Elhorst and Paul 2014, Lesage and 
Pace 2008; Wang et al. 2018b). Therefore, we use this model 
to examine the impact of each variable on the progress of 
agricultural green technology and the spatial spillover effect. 
The model is set as follows:

Y is the dependent variable, β is the spillover effect of 
neighboring provinces, X is the independent variable, β and 
γ are the parameters to be estimated, and W is weight. In 
order to increase the robustness of the model, we refer to the 
study of Wang et al. (2018b) to construct three spatial weight 
matrices, including spatial adjacency weight matrix, geo-
graphic distance weight matrix, and geographic economic 
distance spatial weight.

Data sources

This study takes the narrow agriculture industry as the 
research object, including the data of 31 provinces (cit-
ies and autonomous regions) of China (excluding Hong 
Kong, Macao, and Taiwan) from 1998 to 2018. The data 
used includes input data including employees of agriculture 
industry, chemical fertilizers, pesticides, agricultural film, 
agricultural diesel, total power of the agricultural machinery 
and agriculture area, the output includes the expected output 
of the agriculture industry total output value, and undesired 
output carbon emissions. The data used are from the “China 
Rural Statistical Yearbook,” “China Agricultural Statistical 
Yearbook,” and “China Fishery Statistical Yearbook.” In 
addition, the total power data of agriculture machinery is 
obtained by subtracting the total power of forestry, animal 
husbandry, and fishing machinery from the total power of 
farming, forestry, animal husbandry, and fishery machin-
ery in the current year. The data of agriculture industry 
employees is calculated by multiplying the number of peo-
ple employed in agriculture, forestry, animal husbandry, and 
fishery that year by the ratio of the total output value of the 
agriculture industry and the total output value of agriculture, 
forestry, animal husbandry, and fishery that year.

Index selection

Green agriculture is an agricultural development model 
based on technological progress, integrating energy conser-
vation, protecting and improving the agricultural ecologi-
cal environment, and advocating a green consumption life-
style (Wanzenboeck et al. 2016). According to the literature 

(7)Y = � + �Wy + �X +WX� + �

summary and research results, if the market subject and 
regional environment are taken as the mainline, the inter-
nal promotion mechanism of AGTP can be attributed to the 
level of agricultural development, interregional interaction, 
and regional policy environment (Vocke and Heady 1978; 
Zhang et al. 2021). The internal mechanism of these three 
aspects will effectively promote green sustainable produc-
tion and promote the progress of agricultural green technol-
ogy. On this basis, learn from the research of scholars (Li 
2014, Li, 2020, Li. and Z. 2020, Vocke and Heady 1978, 
Zhang et al. 2021), and based on the availability of data. 
We choose the research of relevant scholars (in Table 1, the 
detailed description of index selection is provided in the sup-
plementary file) and select indicators to explore the spatial 
spillover effect of green technological progress and its role 
in green technological progress. The descriptive statistical 
analysis results of specific indicators are shown in Table 1.

Results and discussion

The spatiotemporal characteristics and dynamic 
evolution of AGTP

The spatiotemporal characteristics of AGTP

According to the EBM-GML model, we calculated the 
AGTP index of each province in China’s agriculture industry 
from 1998 to 2018. Table 2 only shows the AGTP index of 
1998, 2005, 2012, and 2018. Other data can be found in the 
supplementary file. From the perspective of time, there were 
14 provinces in 1998 and 2005 that saw green technological 
progress. In 2012 and 2018, the decline of green technology 
decreased significantly, but the extent of the decrease was 
not obvious, it is even lower in 2018 than in 2012. From a 
spatial perspective, the 5 provinces, including Shandong, 
Jilin, Zhejiang, Beijing, and Hainan always in a state of 
AGTP, this has played a role in demonstrating and driving 
AGTP. According to the average value of the AGTP index in 
Table 1, all regions demonstrated a state of green technology 
advancement from 1998 to 2018. This demonstrates that the 
general growth of green technology in China’s agriculture 
industry is increasing; however, there are some variations 
across provinces. As a result, additional research into the 
dynamic changes of AGTP in China’s agriculture sector is 
required.

We develop a line chart of time-series changes to compare 
and assess the time-series features of AGTP in the three key 
areas of Central, East, and West (Fig. 1). It can be observed 
that the progress of agricultural green technology in the 
three key areas is dynamic and increasing, and the chang-
ing pattern is essentially the same. It can be divided into 
three stages, the first stage is the continual optimization and 
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enhancement of AGTP from 1998 to 2008, which seems to 
be a period of rapid economic development and urban–rural 
convergence. Rural surplus workforce entering the city, a 
rise in high agricultural scientific research, and more market 
potential have enhanced agricultural production efficiency 
and fueled the agricultural economy’s rapid expansion. 

AGTP The overall performance is the improvement of 
AGTP. Second, agricultural green technology progress 
remained mostly constant between 2011 and 2014. Because 
large-scale production aided the growth of the agricultural 
economy in the early stages, the efficiency of green invest-
ment and factor allocation briefly approached the optimal 

Table 1  Descriptive statistics of related variables

Variable Index description Minimum Maximum Average SD References

Green technological progress 
(AGTP)

The index of EBM-GML (%) 0.51 2.41 1.05 0.13 (Oh 2010)

Agricultural economic develop-
ment level (eco)

The gross production value of 
agriculture industry (100 mil-
lion yuan)

22.40 4973.70 1071.50 1035.19 (Levain et al. 2015)

GDP per capita (rjgdp) The total output value of 
agriculture industry/total 
agricultural population

0.00 11.00 2.64 2.01 (Nyam et al. 2021)

The level of labor (labor) The employed population of 
agriculture industry (million 
people)

16.97 2277.09 508.29 404.78 (Emilio et al. 2018)

The level of urbanization (city) The urbanized population/total 
population (%)

0.04 0.90 0.45 0.18 (Morya and Punia, Onanuga 
et al. 2021)

Internal structure of agriculture 
(agst)

The gross production value 
of agriculture industry/the 
production value of agricul-
tural (%)

0.30 1.85 0.53 0.10 (Li J 2020)

The environmental policy of 
administrative (ENVP)

The number of environmental 
regulation policies imple-
mented at the provincial level 
in the year (pieces)

0.00 388.00 25.56 39.87 (Xu 2021; Zhang et al. 2018)

The environmental policy of 
economic (ECOP)

Pollution control project com-
pleted investment this year/
GDP (%)

0.33 99.19 16.33 13.88 (Xu 2021; Zhang et al. 2018)

Table 2  The index of 
agriculture green technological 
progress (AGTP) in China’s 
agriculture industry

Province 1998 2005 2012 2018 Mean Province 1998 2005 2012 2018 Mean

Eastern areas Henan 0.972 0.847 1.080 1.000 1.065
Beijing 1.057 1. 091 1.102 1.000 1.052 Hubei 1.020 0.987 1.051 1.000 1.065
Tianjin 0.528 1.088 1.135 1.293 1.018 Hunan 0.924 0.960 1.023 1.062 1.064
Hebei 0.949 0.771 1.159 1.056 1.061 Guangxi 1.069 0.892 1.056 0.980 1.053
Shanghai 0.766 1.184 0.997 1.138 1.045 Jilin 1.247 1.103 1.048 1.076 1.068
Jiangshu 0.985 0.887 1.054 1.000 1.055 Heilongjiang 0.901 0.981 1.195 1.000 1.050
Zhejiang 1.046 1.017 1.082 1.000 1.057 Western areas
Fujiang 0.987 1.035 1.073 1.000 1.057 Chongqing 0.947 0.946 1.067 1.089 1.049
Shandong 1.095 1.149 1.167 1.111 1.112 Sichuan 0.978 0.964 1.029 1.000 1.055
Hainan 1.000 1.001 1.135 1.000 1.010 Guizhou 1.029 0.902 1.083 1.000 1.041
Guangdong 0.941 1.007 1.081 1.000 1.041 Yunnan 1.080 1.056 1.060 1.119 1.058
Liaoning 1.147 0.943 1.062 1.075 1.068 Tibet 1.000 1.086 0.952 1.000 1.002
Central areas Shaanxi 1.036 0.941 1.081 1.000 1.053
Shanxi 0.884 1.014 1.076 1.050 1.055 Gansu 1.057 1.041 1.055 1.143 1.053
In. Mongolia 1.104 1.056 1.078 1.091 1.064 Qinghai 1.045 1.215 1.056 1.000 1.030
Anhui 0.956 1.011 1.057 0.990 1.063 Ningxia 1.244 1.462 1.090 1.000 1.045
Jiangxi 0.879 0.871 1.025 1.064 1.062 Xinjiang 1.327 1.269 1.028 1.000 1.057
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allocation state. As a result, the external market potential 
was largely saturated during this time period. Third, agricul-
tural green technology progress slowed somewhat between 
2015 and 2018. During this time, the issue of capital accu-
mulation in the external market became apparent, resulting 
in a reduction in green investment efficiency and a diversion 
of factor allocation, which hampered the progress of green 
technology. Nevertheless, because the government promotes 
the green development idea of “adjusting structure, trans-
forming techniques, and encouraging modernization,” the 
problem of agricultural green technology deterioration is 
not severe.

Differences in resource endowments and economic 
development levels have caused certain differences in the 
level of AGTP in various provinces. In order to reflect the 
spatial spillover laws and spatial gradient effects of AGTP 
in China’s agriculture industry, we use ArcGIS software to 
draw a spatial distribution map of China’s AGTP in 1998, 
2005, 2012, and 2018, as shown in Fig. 2. In 1998, it can be 
seen that the progress of green technology was not obvious, 
accounting for only 55%. Northwest, Northeast, and North 
China are the main gathering areas of AGTP. East China 
and South China are the main areas where green technology 
has degraded. The possible reason is that in the 1990s, high 
agricultural yields and maximizing economic benefits were 
the main goals pursued in East China and South China. It 
ignores the protection of the ecological environment to a 
certain extent, blindly invests in work and fertilizer, and has 
seen the phenomenon of green technology regressing. In 
2005, there were 24 progresses in agricultural green tech-
nology, accounting for 78.5%. The decline of green tech-
nology was mainly concentrated in the southwest. During 
this period, the development of the market economy and 

the professionalization of the agriculture industry’s science 
and technology teams accelerated the promotion of green 
production technology, and other achievements enhanced the 
awareness of ecological environment protection. In 2012, the 
proportion of AGTP in 31 provinces reached 96.78%, and 
the AGTP index reached 1.1768, which was the best year 
for AGTP. The main reason is that the government gradu-
ally implements the coordinated development of alternative 
technologies and improved technologies. In 2018, 64.52% 
of provinces have maintained the same level of green tech-
nology in China’s agriculture industry. The main reason is 
that the efficiency of green investment and the allocation 
of factors in the early stage have reached the optimal allo-
cation state. In addition, the progress of green technology 
in the northwestern area was significantly higher than that 
in the eastern area in 1998, 2005, and 2012. The possible 
reason is that due to the constraints of natural and economic 
conditions, the northwestern area is an area with a fragile 
ecological environment and underdeveloped economy, and 
its agriculture industry has always paid attention to green 
ecological environmental protection.

The dynamic evolution of AGTP in China’s agriculture 
industry

In order to intuitively understand the dynamic evolution 
characteristics of AGTP in China’s agriculture industry, we 
take 1998, 2005, 2012, and 2018 as the survey years, and 
use the Kernel density estimation method to analyze the time 
dynamic evolution trend of AGTP, as shown in Fig. 3. It can 
be seen that the dynamic evolution of AGTP in China’s 31 
provinces from 1998 to 2018 has the following character-
istics: (1) from the perspective of location distribution, the 

Fig. 1  Time series charac-
teristics of AGTP in China’s 
agriculture industry
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center of the national overall distribution curve has experi-
enced a “right shift-left shift” trend. Among them, the den-
sity distribution curve from 1998 to 2012 shifts to the right. 
It shows that the agriculture industry’s AGTP is showing 
an upward trend. The distribution curve from 2012 to 2018 
shifts slightly to the left. This shows that the progress of 
green technology has declined at this stage, showing a trend 
of technological decline. (2) From the perspective of the 
distribution pattern, the wave crest changed from a single 

peak in 1998 to a double peak in 2018. The width of the 
main peak is characterized by the transition of “broad peak-
sharp peak-broad peak.” Among them, the period from 1998 
to 2012 was dominated by a single peak, and the kurtosis 
decreased year by year. The peak shape changes from “broad 
peak” to “sharp peak,” and the horizontal span of the density 
distribution curve is reduced. It shows that each province 
is at a high level of AGTP and the degree of concentration 
has increased, and regional differences have narrowed. From 

Fig. 2  The spatial distribution 
characteristics of AGTP in 
China’s agriculture industry

Fig. 3  The kernel density 
estimation of AGTP in China’s 
agriculture industry
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a single peak to a double peak in 2012–2018, the kurto-
sis decreased year by year. The peak shape changes from a 
weak “spike” to a “broad peak,” and the horizontal span of 
the density distribution curve becomes wider. This means 
that with the development of the economy and the gradual 
improvement of the level of agricultural modernization, 
the differences between areas are gradually widening. The 
gradual “outdated” level of AGTP in some provinces has led 
to a decline in the overall level of technology concentration 
and widening regional differences. The above analysis also 
shows that there is an uneven regional development in the 
Chinese agriculture industry’s AGTP.

Empirical results and analysis

The “spillover effect” alludes to the notion that when a par-
ticular group or organization engages in a specific activity, in 
addition to the expected effects it might create, it could have 
an unexpected impact on groups other than the organization. 
In the context of this research, the spillover effect indicates 
that within a certain location, the development of green 
technology in the agriculture industry in the local region 
may promote or inhibit the growth of green technology in 
the immediate neighborhood. From the temporal and spatial 
dynamic evolution characteristics of AGTP, we can see that 
AGTP has obvious temporal and spatial heterogeneity in 
China’s agriculture industry. As a result, an in-depth assess-
ment of the mechanisms causing this difference and whether 
it has spatial spillover advantages is required.

Spatial autocorrelation test

In order to analyze the relevance of AGTP between regions, 
we use the global Moran’s I and the Local Moran’s I to test 
their spatial relevance. The results are shown in Table 3 and 
Fig. 4.

As shown in Table 3, the global Moran’s I statistics are 
significant under the 10% level of significance, and both are 
greater than zero. This shows that there is a positive spatial 
correlation in the progress of agricultural green technology 
in various provinces in China. From the local autocorre-
lation LISA cluster map of the AGTP index in 1998 and 
2018 (Fig. 4), it can be seen that the AGTP of China’s 31 
provinces shows an obvious spatial imbalance. The over-
all cluster is “high-high” and “low–high.” This shows that 
there is a strong positive spatial correlation between the 
progress of green technology in China’s provinces. That is, 
most provinces are adjacent to the location, or the economic 
development level is close to the provinces showing similar 
agglomeration characteristics. The provinces belonging to 
the “high-high” agglomeration area are located in the south-
west (1998) and northeast (2018) and have special advan-
tages in agricultural resource endowments. In particular, the 

industrial advantages of the Northeast area can provide good 
technical support for the progress of green technology. The 
provinces belonging to the low–high agglomeration area are 
located in the northwest (1998) and the western area (2018). 
It can be seen that the AGTP in the southwest has less driv-
ing effect on the western area. It has yet to establish a com-
pletely competitive agricultural economic system and needs 
enough scientific and technical assistance, in particular, so 
the “low–high” agglomeration effect of AGTP is significant.

Selection of spatial econometric model

Before measuring and analyzing the model, we should judge 
the rationality of the model. The commonly used test meth-
ods are the Lagrange multiplier test (LM test), likelihood 
ratio test (LR test), and Wald test. From the test results in 
Table 4, it can be seen that the Lagrange test value (LM test 
value) and robust Lagrange test value (robust LM) of the 
spatial lag model and spatial error model under the eco-
nomic weight matrix are positive at the significance level 
of 1%, indicating that the spatial Doberman model (SDM) 
should be used. Meanwhile, the LR value and Wald test 
denied the original hypothesis is rejected at the significance 
level of 1%, indicating that the SDM model should be the 
best choice compared with the SAR model and SEM model.

Model selection of spatial spillover effects and analysis 
of results

It can be seen from the above test that AGTP has significant 
spatial autocorrelation, so the current study uses a spatial 
measurement model to estimate the spatial spillover effects. 
Since the Hausman test values under the three spatial weight 
matrices are all significant at the 1% level, the null hypoth-
esis that “random effects are better than fixed effects” is 
rejected. And the estimation result of the spatial fixed effect 

Table 3  The Moran’s I statistics of Chinese agriculture industry’s 
AGTP in 1998–2018

Year Moran’s I Z-value Year Moran’s I Z-value

1998  − 0.02066 0.171612 2009  − 0.07644  − 0.73133
1999 0.095506 1.654413 2010 0.021197 0.719458
2000 0.00417 0.490302 2011  − 0.05971  − 0.34177
2001 0.324151 4.771178* 2012  − 0.0304 0.039725
2002 0.087163 1.709623* 2013 0.186519 2.887275*
2003  − 0.02919 0.055367 2014 0.001333 0.500758
2004 0.03857 0.939415 2015 0.050896 1.297294
2005 0.072932 1.378816 2016 0.227033 3.323797*
2006 0.046953 1.039502 2017 0.228646 3.502269*
2007 0.001238 0.444126 2018  − 0.03629  − 0.04085
2008  − 0.0059 0.592876
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is the best under fixed time, fixed space, and dual fixed. 
Therefore, we use the spatial Doberman model based on 
fixed space to test and use the partial differentiation method 
of the SDM model to decompose the total effects under the 
three spatial weight matrices into direct effects and indirect 
effects. The results are shown in Table 5.

The results in Table 5 portray that the level of agricul-
tural economic development has a positive impact on the 
progress of green technology in the area. GDP per capita, 
as part of the level of agricultural economic development, 
has also substantially aided the progress of green technology 
in the area. In terms of economic development, it is widely 
assumed that an area’s economic growth may effectively 
support innovative activities, offer a material foundation for 
innovation, establish a suitable innovation environment, and 
increase information exchanges. This promotes the consoli-
dation of technology, knowledge, and skills, as well as the 
enhancement of innovative consciousness and the develop-
ment of innovation ambition (Yang et al. 2019). Therefore, 
we should focus on the research and promotion of green 
production technologies with market application value that 
has emerged as the primary driving force for agriculture to 
enhance profitability (Nelms et al. 2007). Simultaneously, 
Table 5 also reveals that the two indicators of the level of 

agricultural economic development inhibited the spatial 
spillover effect of AGTP in the adjacent area, and the level of 
agricultural economic development in the adjacent area also 
has a negative impact on the spatial spillover effect of AGTP 
in the area, but both are not obvious. This demonstrates that 
the greater the level of agricultural economic development 
in the locality, the more evident it will be to encourage the 
progress of green technology in the area, but the influence on 
surrounding areas is non-significant. The reason is that with 
the development of the economy, organic fertilizers have 
replaced chemical fertilizers, green prevention, and control 
technologies such as biological control and physical con-
trol have gradually replaced pesticides, thereby promoting 
the progress of local green technologies. Nevertheless, the 
cropping industry’s cross-regional market competitiveness 
is low, and its geographical radiation range is restricted. This 
might also explain why there is not a clear spatial spillover 
impact of green technological improvement between areas 
(Shen et al. 2021).

The level of labor has a negative impact on the pro-
gress of green technology in the area. All three types of 
weight matrix models pass the significance test, and their 
coefficients are all − 0.0001. The possible reason is that 
the labor factor has become relatively cheap, and the price 
distortion has destroyed the market principle of allocating 
labor resources to green technologically advanced farmers 
or agricultural enterprises. Simultaneously, conventional 
production techniques offer minimal risks, thus farmers or 
agricultural enterprises rely heavily on original production 
technology and equipment and extensively utilize unskilled 
and low-skilled labor for extended output. This is the path 
dependency of the extended development model of input of 
tangible components such as labor, which impedes green 
technological growth and has a low-end lock-in impact (Zou 
et al. 2018). Therefore, creating more adequate employment 
opportunities, providing a more stable employment envi-
ronment, and a complete social security system will help 
provide an important guarantee for the green and high-
quality development of agriculture (Xu and Wu, 2020). 

Fig. 4  The LASA cluster map 
of Chinese agriculture indus-
try’s AGTP in 1998 and 2018

Table 4  LM, LR, and Wald test results

***, **, and * represent the significance levels of 1%, 5%, and 10%, 
and the Z-value is in parentheses.

Model Index Value

SAR LM 246.5315***
Robust LM 107.2387***
LR 149.8000***
Wald 55.6360***

SEM LM 275.6583***
Robust LM 77.6370***
LR 106.9900***
Wald 59.6569***
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Furthermore, there is no significant spatial spillover impact 
of labor level on AGTP in surrounding locations. The major 
reason for this is that rural excess labor is typically shifted to 
the urban areas in search of greater job possibilities (Knight 
et al. 2011). As a result, the influence on the progress of 
green technology in adjacent areas is non-significant.

The level of urbanization has a positive impact on the 
progress of green technology in the area, but only in the 
terms of geographic distance. The loss of labor force and 
economic development in the process of urbanization will 
bring crisis and opportunities to agriculture and will encour-
age the improvement of agricultural technology to some 
extent, although not significantly. The loss of rural human 
capital, on the other hand, limits the growth of agricultural 
mechanization and the development of the agricultural 
industrial chain. Simultaneously, due to land urbanization 
or the disposal of a large number of lands, non-agricul-
tural employment demand growth is constrained. All these 
directly restrict the progress of green technology in the local 
area (Jiang et al. 2020). In particular, the construction of the 
ecological environment will be emphasized in the process of 
urbanization, which will further promote the spillover effect 

of green technology. Finally, the spatial spillover effect of 
the level of urbanization on the progress of green technology 
in neighboring areas is not significant. The possible reason 
is that economic development resources such as population 
and land in rural areas tend to be in the urban sector. There 
is not much influence on the economic and technological 
development of other rural places (Shang et al. 2018).

The direct effect of agricultural internal structure on 
the progress of green technology is − 0.0373, and the 
indirect effect is − 0.2588. This shows that for every 1% 
increase in the agriculture industry in the internal struc-
ture of agriculture, the probability of AGTP in local and 
foreign agriculture industries will decrease by 0.0373 and 
0.2588, respectively. The reason is that compared with 
other agricultural agriculture industries such as forestry 
and animal husbandry, agriculture production will increase 
the input of fertilizers, pesticides, machinery, and other 
carbon source products. With the popularization of agri-
cultural mechanization and chemical products, ordinary 
farmers tend to be extensively managed, and there is little 
demand for green technologies that require a large amount 
of labor (Jiang et al. 2020). The agriculture industry is 

Table 5  The results of direct and indirect effects of the SDM model under spatial fixation

*** , **, and * represent the significance levels of 1%, 5%, and 10%, and the Z-value is in parentheses.

Variables Spatial adjacency weight matrix Geographic distance weight matrix Geographic economic distance weight 
matrix

Direct effect Indirect 
effect

The total 
effect

Direct effect Indirect 
effect

The total 
effect

Direct effect Indirect 
effect

The total 
effect

Eco 0.0957*** 0.0197 0.1154*** 0.1127***  − 0.0194 0.0933 0.1083***  − 0.0187 0.0896**

(3.15) (0.43) (2.76) (3.93) (− 0.26) (1.35) (3.68) (− 0.39) (2.43)
rjgdp  − 0.0105*  − 0.0234*  − 0.0339***  − 0.0121**  − 0.0209  − 0.0330*  − 0.0096  − 0.0271**  − 0.0367***

(− 1.71) (− 1.75) (− 2.70) (− 2.57) (− 1.13) (− 1.67) (− 1.55) (− 2.16) (− 2.98)
Labor  − 0.0001*  − 0.0001  − 0.0002*  − 0.0001***  − 0.0002  − 0.0003  − 0.0001**  − 0.0002  − 0.0003*

(− 1.92) (− 1.11) (− 1.85) (− 2.35) (− 0.87) (− 1.14) (− 2.50) (− 1.20) (− 1.67)
City 0.0136 0.0002 0.0139 0.0264* 0.0016 0.0281 0.0033 0.0516 0.0548

(1.09) (0.01) (0.44) (1.68) (0.03) (0.46) (0.33) (1.03) (1.18)
agst  − 0.0373  − 0.2588***  − 0.2960***  − 0.0024  − 0.2808  − 0.2832 0.0068  − 0.2905***  − 0.2837**

(− 0.58) (− 2.86) (− 2.87) (− 0.03) (− 1.52) (− 1.49) (0.10) (− 2.88) (− 2.25)
ENVP  − 0.0001  − 0.0003  − 0.0004  − 0.0001  − 0.0008  − 0.0009 0.0000  − 0.0002  − 0.0003

(− 0.88) (− 0.75) (− 0.85) (− 1.06) (− 1. 50) (− 1.58) (− 0.63) (− 1.18) (− 1.31)
ECOP 0.0036  − 0.0282**  − 0.0246 0.0041  − 0.0538***  − 0.0498** 0.0025  − 0.0324  − 0.0298

(0.47) (− 2.04) (− 1.48) (0.54) (− 2.59) (− 2.06) (0.36) (− 1.62) (− 1.35)
Rho 0.3794*** 0.3949*** 0.2952***

9.46 6.35 3.90
sigma2_e 0.0116*** 0.0118*** 0.0123***

3.74 3.88 3.89
log-likeli-

hood
514.9778 510.9499 502.4969

0.1911 0.2047 0.2004
N 651 651 651 651 651 651 651 651 651
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more suitable for large-scale agriculture to obtain higher 
economic profits. These intensified the extensive man-
agement mode of farmers and reduced the possibility of 
farmers’ green technology. In addition, the agricultural 
internal structure in neighboring areas also has a signifi-
cant negative impact on the progress of green technology 
in the area. The main reason is that foreign areas face 
the mode of obtaining market profits based on chemical 
and mechanization in the face of local technological pro-
gress and will conform to the market model (Zhou et al. 
2021). As a result, a condition of “bad money pushing 
away good money” has emerged, reducing the likelihood 
of green technology adoption and AGTP by farmers out-
side the area.

The environmental policy of administrative (ENVP) 
has a negative impact on the progress of green technology 
in the local area and neighboring areas, and they are not 
significant. However, the “innovation-induced hypothesis” 
considers that environmental policies (such as emission 
fees/taxes and trading permits), as an external compulsory 
factor, make products more expensive explicitly or implic-
itly, thereby promoting technological innovation (Hicks 
1963). The explanation might be that China’s mandatory 
environmental laws are insufficient or ineffective in pro-
moting the progress of agricultural green technologies. 
Thus, the government should through green environmental 
regulations and system design, implement a macro-layout 
for the green growth of area agriculture.

The environmental policy of economic (ECOP) has a 
positive impact on the progress of green technology in 
the area, but they are not significant. This is inconsistent 
with the result of the “innovation-induced hypothesis.” 
The possible reason is that this study selected pollution 
control fees as an economic environmental policy. How-
ever, pollution control fees only control the pollution that 
has already occurred, which does not support the pro-
gress and innovation of green technology. On the con-
trary, due to the increased investment in pollution control 
costs, farmers or agricultural enterprises have “financial 
dependence.” In other words, it is not important whether 
farmers or agricultural enterprises carry out technological 
innovation and green, because pollution will have funds, 
and it will even cause more pollution (Jiang and Li 2021). 
The government should provide greater policy assistance 
in the form of rules, funding, and platforms by defining 
the essential tasks of agricultural green development. This 
tends to increase the supply of agricultural green develop-
ment policies, lowers the disguised and emphatic costs 
of agricultural green development, boosts the profitability 
of agricultural green development and boosts agricultural 
energy savings, emission reduction, and consumption 
reduction enthusiasm and initiative (Verweij et al. 2019).

Conclusions and suggestions

Conclusions

The dynamic monitoring of the advancement of green 
technology has garnered broad attention as the idea of 
green development has matured. The key to effectively 
establishing green development strategies and imple-
menting environmental protection measures is to analyze 
its temporal and spatial dynamic evolution features and 
influencing factors. Taking the agriculture industry as an 
example, this study uses the EBM-GML model to measure 
the AGTP index and analyzes the temporal and spatial 
dynamic evolution characteristics of AGTP from 1998 
to 2018 in 31 provinces in China. Finally, discussed its 
spatial spillover effects from three aspects: direct effects, 
indirect effects, and total effects. The main conclusions 
and inspirations are as follows:

(1) From the perspective of the temporal characteristics of 
AGTP, the development of AGTP in China’s agricul-
ture has a phased characteristic of “rising first and then 
falling,” and there is obvious regional unevenness in 
development. At the same time, the kurtosis decreased 
year by year, the width expanded year by year, and the 
number of peaks gradually changed from a single peak 
to a double peak. The degree of regional concentration 
of AGTP has declined, and regional differences have 
widened.

(2) From the perspective of the spatial distribution char-
acteristics of AGTP, the spatial autocorrelation test 
results of AGTP at the global level are significantly 
positively correlated. While the regional level of inter-
provincial AGTP in agriculture shows agglomeration 
characteristics in space. Among them, the provinces in 
the “high-high” agglomeration area are located in the 
southwest (1998) and northeast (2018). The provinces 
in the “low–high” agglomeration area are located in the 
northwest (1998) and western area (2018). In particu-
lar, the progress of green technology in the southwest 
has little effect on the surrounding areas.

(3) From the perspective of the spatial spillover effects 
of AGTP, the difference in spatial spillover effects 
of AGTP under different spatial weights is relatively 
small. The level of agricultural economic development, 
GDP per capita and the level of urbanization have sig-
nificantly promoted the progress of agricultural green 
technology in the local and adjacent areas. Agricultural 
internal structure and the level of labor have inhibited 
the progress of green agricultural technology in the 
local and neighboring areas. In addition, both the envi-
ronmental policies of administrative (ENVP) and eco-
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nomic environmental policies (ECOP) have a negative 
impact on the progress of green technology in neigh-
boring areas. The imperative environmental policies 
(ENVP) and economic environmental policies (ECOP) 
have negative spillover effects and positive spillover 
effects on the progress of agricultural green technology 
in the area, respectively.

Policy suggestions

The above conclusions are of great significance at the policy 
level. Firstly, according to the previous conclusions, differ-
ent regions have different levels of green technology, so we 
should improve the level of agricultural economic develop-
ment, per capita GDP, and urbanization. At the labor level, 
we must use the corresponding technology to adjust the 
capital and labor input in the production process, realize the 
optimal allocation of rural labor resources and optimize the 
relationship between man and land. At the same time, the 
government should improve the positive role of economic 
and environmental policy (ECOP), avoid the obstructive 
effect of mandatory environmental policy (ENVP), improve 
the policy implementation system, and mobilize the pub-
lic to participate in environmental governance. Secondly, 
regional heterogeneity of green technological progress indi-
cates that policy should tend to low-low concentration areas 
and narrow the labor productivity gap between them and 
high-high concentration areas. At the same time, we can 
try to establish a bilateral or multilateral regular exchange 
system and further strengthen technical exchange and dif-
fusion as well as institutional arrangements. The AGTP 
developed areas should play the role of model pacesetter 
and actively promote the technological progress of surround-
ing areas through technology diffusion. At the same time, 
the AGTP underdeveloped areas need to improve their own 
technology promotion system and create a favorable pro-
motion environment to avoid the further widening of the 
inter-provincial gap caused by blocked technology promo-
tion. Finally, the government should actively develop a com-
pensation mechanism for ecological environment damage, 
an effective resource management system, and a later track-
ing and oversight mechanism during the policy design and 
implementation process.

In addition, agricultural economic activities in the back-
ground of novel coronavirus will also have a significant 
impact. The new coronavirus urgently needs to restore the 
livelihood activities of affected farmers, which requires the 
role of technology. Adhere to the concept of agricultural 
green progress, improve farmers’ green production technol-
ogy, and reduce pollution. Respecting nature, loving nature, 
conforming to nature, and coexisting in harmony with all 
things in nature is an important part of preventing the inva-
sion of viruses, and it is the long-term survival of mankind.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 021- 18424-z.

Author contribution Yue Deng: conceptualization, methodology, writ-
ing—original draft, software, writing—review and editing, and visuali-
zation. Sufyan Ullah Khan: investigation, editing, formal analysis, and 
writing—review and editing. Yu Cui: data curation, methodology, and 
formal analysis. Minjuan Zhao: supervision and funding acquisition. 
Qian Lu: data curation, investigation, and supervision.

Funding The authors gratefully acknowledge the financial support 
from the National Natural Science Foundation of China (NSFC) 
under grant no. 15ZDA052, the National Natural Science Foundation 
of China (grant no. 71973105), the Key Special Funds of the Ministry 
of Agriculture and Ministry of Finance (grant no. CARS-07-F-1), Key 
Project of Six Industrial Research Institutes of Northwest Agricul-
tural and Forestry University (grant no. Z221021601), and Scientific 
Research and Innovation Projects of Northwest A&F University (no. 
JGYJSCXXM202001). We truly appreciate all the peer reviewers for 
their valuable suggestions, meanwhile, we would like to thank all the 
co-authors and anonymous referees for their help and corrections on the 
earlier draft of our paper, according to which we improved the content.

Data availability The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.

Declarations 

Ethics approval This is an observational study. We confirmed that no 
ethical approval is required.

Consent to participate Not applicable.

Consent to publish Not applicable.

Competing interest The authors declare no competing interests.

References

Acemoglu D (2000) Labor- and capital- augmenting technical change. 
NBER Working Papers 1:1–37

Acemoglu D (2007): Equilibrium bias of technology, National Bureau 
of Economic Research, Inc, pp. 1371–1409

Acemoglu D, Aghion P, Bursztyn L, Hemous D (2011): The environ-
ment and directed technical change. CEPR Discussion Papers, 
1–64

Acemoglu D, Aghion P, Bursztyn L, Hemous D (2012) The environ-
ment and directed technical change. American Economic Review 
102:131–166

Doranova A, Costa I, Duysters G (2010) Knowledge base determinants 
of technology sourcing in clean development mechanism projects. 
Energy Policy 38:5550–5559

Elhorst, Paul J (2014): Matlab software for spatial panels. International 
Regional Science Review, 1–23

Emilio P, Mercedes S, Verstegen J, Thomas L (2018) Searching for 
the entrepreneurs among new entrants in European agriculture: 
the role of human and social capital. Land Use Policy 77:19–30

Feng G, Serletis A (2014) Undesirable outputs and a primal Divisia 
productivity index based on the directional output distance func-
tion. J Econometrics 183:135–146

27921Environmental Science and Pollution Research (2022) 29:27909–27923

https://doi.org/10.1007/s11356-021-18424-z


1 3

Fischer C, Heutel G (2013): Environmental macroeconomics: envi-
ronmental policy, business cycles, and directed technical change. 
UNCG Economics Working Papers, 197–210

Gerber MS (2014) Predicting crime using Twitter and kernel density 
estimation. Decis Support Syst 61:115–125

Guo H, Xu S, Pan C (2020) Measurement of the spatial complexity and 
its influencing factors of agricultural green development in China. 
Sustainability 12:1–18

He W, Li E, Cui Z (2021) Evaluation and influence factor of green 
efficiency of China’s Agricultural innovation from the perspective 
of technical transformation. Chin Geogra Sci 31:313–328

Hicks JR (1963): The theory of wages. Palgrave Macmillan UK
Horbach J, Rammer C, Rennings K (2012) Determinants of eco-

innovations by type of environmental impact — the role of regu-
latory push/pull, technology push and market pull. Ecol Econ 
78:112–122

Ji, Li (2019) Research on green technological progress measurement 
and influencing factors in marine aquaculture industry in China. 
J Ocean Univ China(Social Sci) 2 51–56

Ji Y, Wang Y (2014) Some comments on Antonelli and Quatraro’s 
paper of measuring effect of biased technology on TFP. J Technol 
Transfer 39:276–280

Jiang M, Hu X, Chunga J, Lin Z, Fei R (2020) Does the popularization 
of agricultural mechanization improve energy-environment per-
formance in China’s agricultural sector? J Clean Prod 276:124210

Jiang SS, Li JM (2021) Do political promotion incentive and fiscal 
incentive of local governments matter for the marine environ-
mental pollution? Evidence from China’s coastal areas. Marine 
Policy 128:104505

Knight J, Deng Q, Shi L (2011) The puzzle of migrant labour shortage 
and rural labour surplus in China. China Econ Rev 22:585–600

Kou M, Chen K, Wang S, Shao Y (2016) Measuring efficiencies of 
multi-period and multi-division systems associated with DEA: 
an application to OECD countries’ national innovation systems. 
Expert Syst Appl 46:494–510

Lesage J, Pace RK (2008): Introduction to spatial econometrics. rei, 
19–44

Levain A, Vertes F, Ruiz L, Delaby L, Gascuel-Odoux C, Barbier M 
(2015) ‘I am an intensive guy’: the possibility and conditions of 
reconciliation through the ecological intensification framework. 
Environ Manage 56:1–15

Li G (2014): The green productivity revolution of agriculture in China 
from 1978 to 2008. China Economic Quarterly, 117–138

Li J ZC (2020): Research on green output bias of China’s agricultural 
technology progress and its influence factors: bias decomposition 
of technology progress output based on agricultural green TFP 
growth during 1999 -2018. West Forum, 1674–8131

Li. J, Z. C (2020): Research on green output bias of China’s agricultural 
technology progress and its influence factors: bias decomposition 
of technology progress output based on agricultural green TFP 
growth during 1999 -2018. West Forum 1674–1813

Liu Y, Zhu J, Li EY, Meng Z, Song Y (2020) Environmental regula-
tion green technological innovation and eco-efficiency: the case 
of Yangtze river economic belt in China. Technol Forecast Soc 
Change 155:119993

Lovely M, Popp D (2011) Trade, technology, and the environment: 
does access to technology promote environmental regulation? J 
Environ Econ Manag 61:16–35

Morya CP, Punia M Impact of urbanization processes on availability 
of ecosystem services in National Capital Region of Delhi (1992–
2010). Environment Development and Sustainability

Nelms CE, Russell AD, Lence BJ (2007) Assessing the performance of 
sustainable technologies: a framework and its application. Build 
Res Inform 35:237–251

Nyam YS, Kotir JH, Jordaan AJ, Ogundeji AA (2021) Developing a 
conceptual model for sustainable water resource management 

and agricultural development: the case of the Breede River 
catchment area, South Africa. Environ Manage 67:632–647

Oh DH (2010) A global Malmquist-Luenberger productivity index. 
J Prod Anal 34:183–197

Onanuga MY, Eludoyin AO, Ofoezie IE (2021): Urbanization and its 
effects on land and water resources in Ijebuland, southwestern 
Nigeria. Environment, Development and Sustainability, 1–25

Pan X, Liu Q, Peng X (2015) Spatial club convergence of regional 
energy efficiency in China. Ecol Ind 51:25–30

Popp D (2004) ENTICE: endogenous technological change in 
the DICE model of global warming. J Environ Econ Manag 
48:742–768

Qin B, Xiao F (2018a): A non-parametric method to determine basic 
probability assignment based on kernel density estimation. 
IEEE Access, 73509 - 73519

Qin B, Xiao F (2018b): A non-parametric method to determine 
basic probability assignment based on kernel density estima-
tion. IEEE Access, 1–1

Razmi A (2013) Environmental macroeconomics simple: stylized 
frameworks for short-run analysis. Umass Amherst Econ Work 
Papers 44:212–217

Ren W, Zeng Q (2021) Is the green technological progress bias of 
mariculture suitable for its factor endowment? ——empirical 
results from 10 coastal provinces and cities in China. Marine 
Policy 124:104338

Shang J, Wang Z, Li L, Chen Y, Li P (2018): A study on the correla-
tion between technology innovation and the new-type urbani-
zation in Shaanxi province. Technol Forecast Soc Change, 
266–273

Shen Y, Cui B, Wang Y, Cui H (2021): Marketing strategy and envi-
ronmental safety of nano-biopesticides - scienceDirect. Advance 
Nano-Fertilizers and Nano-Pesticides in Agriculture, 265–279

Shuqin M, Dai J, Wen H (2019) Trade openness, environmental regu-
lation and green technology progress——spatial econometric 
analysis based on provincial data in China. J Int Trade 10:132–145

Song M, Wang S, Wu K (2016) Environment-biased technological pro-
gress and industrial land-use efficiency in China’s new normal. 
Ann Oper Res 268:425–440

Tone K (2001) A slacks-based measure of efficiency in data envelop-
ment analysis. Eur J Oper Res 130:498–509

Verweij P, Cormont A, Hoetjes P, Meyer KD, Janssen S (2019) Co-
designing a data platform to impact nature policy and manage-
ment: experiences from the Dutch Caribbean. Environ Sci Policy 
100:13–20

Vocke G, Heady EO (1978) Impact of pesticide restrictions on regional 
production patterns. Water Air Soil Pollut 10:105–114

Wang H, Wang L, Yang G, Jia L, Zhang Y (2018) Agricultural water 
resource in China and strategic measures for its efficient utiliza-
tion. Chinese Journal of Engineering Science 20:9

Wang Y, Tao Z, Wang J, Guo F, Xu K, Rong Y (2018b): Spatial anal-
ysis on carbon emission abatement capacity at provincial level 
in China from 1997 to 2014: an empirical study based on SDM 
model. Atmos Pollution Res, 97–104

Wanzenboeck I, Scherngell T, Brenner T (2016) Agroecology and per-
maculture: addressing key ecological problems by rethinking and 
redesigning agricultural systems. J Environ Stud Sci 6:239–250

Xu HSN, Wu LL (2020) High-quality development level and its spati-
otemporal changes in the Yellow River Basin. Res Sci 42:115–126

Xu S (2021): Do foreign direct investment and environmental regula-
tion improve green technology innovation? An empirical analysis 
based on panel data from the Chinese manufacturing industry. 
Environmental Science and Pollution Research, 1–13

Yang G, Zha D, Zhang C, Chen Q (2020a) Does environment-biased 
technological progress reduce CO2 emissions in APEC econo-
mies? Evidence from fossil and clean energy consumption. Envi-
ron Sci Pollut Res 27:20984–20999

27922 Environmental Science and Pollution Research (2022) 29:27909–27923



1 3

Yang J, Cai W, Ma M, Li L, Chen X (2019) Driving forces of China’s 
CO2 emissions from energy consumption based on Kaya-LMDI 
methods. Sci Total Environ 711:134569

Yang Z, Shao S, Fan M, Yang L (2020b): Wage distortion and green 
technological progress: a directed technological progress perspec-
tive. Ecol Econ 106912

Zhang J, Lu G, Skitmore M, Ballesteros-Pérez P (2021) A critical 
review of the current research mainstreams and the influencing 
factors of green total factor productivity. Environ Sci Pollut Res 
28:35392–35405

Zhang S, Zhao X, Yuan C, Wang X (2020) Technological bias and its 
influencing factors in sustainable development of China’s trans-
portation. Sustainability 12:1–26

Zhang Y, Wang J, Xue Y, Yang J (2018) Impact of environmental regu-
lations on green technological innovative behavior: an empirical 
study in China. J Clean Prod 188:763–773

Zhou X, Cai Z, Tan KH, Zhang L, Song M (2021) Technological inno-
vation and structural change for economic development in China 
as an emerging market. Technol Forecast Soc Change 167:120671

Zou X, Ye X, Yin G (2018) Labor quality and production technology 
in provincial China. Soc Sci J 56:588–598

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

27923Environmental Science and Pollution Research (2022) 29:27909–27923


	The spatiotemporal dynamic and spatial spillover effect of agricultural green technological progress in China
	Abstract
	Introduction
	Material and methods
	Measurement method and index selection
	Epsilon-based measure-global Malquist-Luenberger (EBM-GML)
	Kernel density estimation method
	The method of spatial autocorrelation (ESDA)
	Spatial Dubin model
	Data sources
	Index selection


	Results and discussion
	The spatiotemporal characteristics and dynamic evolution of AGTP
	The spatiotemporal characteristics of AGTP
	The dynamic evolution of AGTP in China’s agriculture industry
	Empirical results and analysis
	Spatial autocorrelation test
	Selection of spatial econometric model
	Model selection of spatial spillover effects and analysis of results


	Conclusions and suggestions
	Conclusions
	Policy suggestions

	References


