
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12551-021-00864-z

REVIEW

Fluorescence nanoscopy at the sub‑10 nm scale

Luciano A. Masullo1,2 · Alan M. Szalai1 · Lucía F. Lopez2 · Fernando D. Stefani1,2 

Received: 14 August 2021 / Accepted: 20 October 2021 
© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20–30 nm resolution using far-field 
fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores 
under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods 
that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular 
resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental fac-
tors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.
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First‑ and second‑generation nanoscopy 
methods

Super-resolution fluorescence microscopy, also called fluo-
rescence nanoscopy, has overcome the diffraction limit of 
light and enabled theoretically unlimited spatial resolution 
in far-field microscopy (Hell et al. 2007; Hell 2015). All 
nanoscopy methods rely on controlling molecular transitions 
in the fluorescent probes between bright states (emitting at 
the detected wavelengths) and dark states (not emitting at 
the detected wavelengths). Super-resolution is achieved by 
allowing only a subset of fluorescent markers to be in their 
bright state at each time point of the measurement. The 
methods are commonly grouped according to their readout 
mode. Among the first-generation methods, two families 
stand out: coordinate-targeted nanoscopies such as Stimu-
lated Emission Depletion (STED) (Klar et al. 2000; Hell 

and Wichmann 1994) or Reversible Saturable Optical Fluo-
rescent Transition (RESOLFT) (Hofmann et al. 2005; Hell 
et al. 2003), and coordinate-stochastic nanoscopies such as 
Stochastic Optical Reconstruction Microscopy (STORM) 
(Rust et al. 2006) or Photoactivated Localization Micros-
copy (PALM) (Betzig et al. 2006). The latter are also known 
as Single-Molecule Localization Microscopy (SMLM). The 
principles of these techniques are very well documented 
(Hell et al. 2007; Huang et al. 2009), and many implemen-
tations are nowadays commercially available.

Under ambient or biologically compatible conditions, 
first-generation techniques achieve a typical resolution of 
20–40 nm due to the limited photostability of fluorophores. 
Such an improved resolution represented a breakthrough for 
the life sciences because it enabled the visualization of bio-
molecular assemblies with unprecedented detail and even 
the discovery of protein supramolecular structures (Sahl 
et al. 2017). This practical resolution limit has motivated the 
development of a second generation of fluorescence nanos-
copy methods that achieve resolutions in the range of 1 to 
10 nm, reaching or surpassing the typical size of structural 
proteins and providing real molecular resolution.

Conceptually, there are two possible ways to circumvent 
the photostability limitation: obtaining more fluorescence 
photons from a given position in the sample or extracting 
more information from the limited photon budget. Recently, 
both strategies have been explored by techniques based on 
coordinate stochastic localization of single molecules. One 
way to obtain more fluorescence photons from specific 
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positions of a sample is through DNA-Points Accumula-
tion for Imaging in Nanoscale Topography (DNA-PAINT). 
In this SMLM method, programmable transient hybridiza-
tion of short, fluorescently labeled single-stranded DNA 
sequences is exploited to repeatedly interrogate positions of 
the sample with multiple fluorophores, and virtually unlim-
ited fluorescence photons (Schnitzbauer et al. 2017; Jung-
mann et al. 2010). DNA-PAINT provides a spatial resolu-
tion well below 10 nm (Dai et al. 2016; Strauss et al. 2018; 
Strauss and Jungmann 2020) using standard single-molecule 
camera-based localization algorithms.

On the other hand, the so-called MINFLUX method 
(Balzarotti et al. 2017; Masullo et al. 2021) combines con-
cepts of coordinate targeted and coordinate stochastic nanos-
copy to attain 1-nm resolution, by enhancing the informa-
tion carried in each detected photon. After the publication 
of MINFLUX, a series of techniques using single-molecule 
localization together with sequential structured illumina-
tion (which we will call SML-SSI) have been developed. 
They all inject the information of the spatial distribution 
of the excitation light in the localization process. Some of 
these techniques, namely, modulated localization (ModLoc) 
(Jouchet, et al. 2021), Repetitive Optical Selective Exposure 
(ROSE) (Gu et al. 2019), SIMFLUX (Cnossen et al. 2020), 
and Structured Illumination based Point Localization Esti-
mator with enhanced precision (SIMPLE) (Reymond et al. 
2019) have been recently reviewed (Reymond et al. 2020) 
and a common framework to describe SML-SSI methods 
has been developed (Masullo et al. 2021). While they should 
be considered single-molecule localization techniques, they 
differ from SMLM methods in the illumination used, which 
is not homogenous but carefully structured and characterized 
to enhance the localization precision. Moreover, some of the 
implementations do not use a wide-field detector array (cam-
era) but point-like detectors (e.g. avalanche photodiodes).

The axial resolution in fluorescence nanoscopy is often 
2- to 5- fold worse than the lateral counterpart. To date, 
only a small group of techniques have been able to achieve 
axial resolutions in the 1–10 nm range. The interferometric 
detection of single molecules in the, 4Pi configuration makes 
it possible to reach an axial resolution of around 10–20 nm, 
but at the expense of high technical complexity (Huang, 
et al. 2016; Shtengel et al. 2009; Aquino et al. 2011). On the 
other hand, strategies that localize single molecules based 
on properties dependent on their distance to a surface are 
likely to achieve high axial resolution in the vicinity of the 
interface. Supercritical Illumination Microscopy Photomet-
ric z-Localization with Enhanced Resolution (SIMPLER) 
(Szalai et al. 2021) is a technique capable of reaching sub-
10 nm axial resolution with a conventional total internal 
reflection (TIR) microscope, by calibrating the z-depend-
ent signal from single emitters considering the excitation 
through the TIR evanescent field and the modulation of the 

emission angular pattern by the interface (Szalai et al. 2021). 
In Supercritical Angle Localization Microscopy (SALM), 
the super-critical angular emission is the key property that 
encodes the axial position (Bourg et al. 2015). Performed 
with high numerical aperture objectives (NA = 1.70) and 
high-refractive index coverslips and immersion oil, SALM 
can reach sub-10 nm axial precision (Dasgupta et al. 2021). 
Methods that exploit the distance-dependent energy trans-
fer to a conductive surface, determine the axial position of 
fluorophores from lifetime measurements (Chizhik et al. 
2014). Particularly, methods using graphene-covered sub-
strates (graphene energy transfer, GET) reach sub-10 nm 
localization precision (Ghosh et al. 2019; Kaminska et al. 
2019; Kamińska et al. 2021). Finally, the SML-SSI methods 
described before can also be applied to localize molecules 
in the axial direction with sub-10 nm resolution, as demon-
strated by 3D-MINFLUX (Gwosch et al. 2020), ModLoc 
(Jouchet et al. 2021), and ROSE-Z (Gu et al. 2021).

Quantifying spatial resolution

In addition to the particular features of each method, the spa-
tial resolution achieved in real-life experiments is influenced 
by multiple experimental factors, such as sample drift, size 
and structure of the labels, or readout noise of the detec-
tors. Therefore, it is necessary to determine the resolution 
experimentally.

Until today, there is no standard procedure to quantify 
the resolution of fluorescence nanoscopy images. First 
works usually reported the achieved resolution in terms 
of the full width at half maximum of the smallest struc-
tures or features of the image (Huang et al. 2008; Willig 
et al. 2007; Rittweger et al. 2009; Heilemann et al. 2008). 
While such values provide valid performance examples, it 
should be noted that the resolution of a super-resolved image 
may vary from point to point of a sample. For example, in 
STED, the achievable resolution depends on the efficiency 
of depletion, which in turn depends on the local intensity and 
polarization of the depletion laser, and on the orientation and 
emission spectrum of the molecules involved. In SMLM, 
the localization precision varies from molecule to molecule 
because each one delivers a different number of fluorescence 
photons. Thus, in general, the resolution of a fluorescence 
nanoscopy image is not a single value but a distribution, 
which should be characterized. To date, different algorithms 
have been proposed to quantify the average resolution from 
a complete image (Nieuwenhuizen et al. 2013; Descloux 
et al. 2019; Descloux et al. 2021). We note that, in methods 
that include an image renderization step, such as SMLM, 
the determined average resolution may be influenced by the 
particular renderization algorithm. Also, in this regard, there 
is no established standard to render super-resolution images 
from single-molecule localization data.
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An alternative approach to demonstrate resolution and 
to obtain a resolution distribution consists of measuring 
calibration standards containing fluorescent markers at 
well-known positions. DNA origami are greatly suitable to 
fabricate this kind of standards as they enable the organi-
zation of individual fluorophores at predefined distances 
with nanometer precision, both statically and dynamically 
(Schmied et al. 2014; Scheckenbach et al. 2020). DNA ori-
gami standards have been widely used to characterize the 
super-resolution performance of various methods. Figure 1 
includes examples of MINFLUX (Fig. 1a) (Balzarotti et al. 
2017), p-MINFLUX (Fig. 1b) (Masullo et al. 2021), DNA-
PAINT (Fig. 1c) (Strauss and Jungmann 2020), and ROSE 
(Fig. 1d) (Gu et al. 2019). Moreover, three-dimensional 
origamis have also been developed to benchmark the 3D 
sub-10 nm techniques, such as the combination of graphene 
energy transfer and DNA-PAINT, as shown in Fig. 1e, where 
features separated 2.7 nm in the axial direction were resolved 
(Kamińska et al. 2021). DNA origami offer enormous ver-
satility in terms of geometries and functionalities that can 
be used. As disadvantage, the calibration with DNA origami 
may be slightly inaccurate because DNA structures present 
some degree of flexibility. Also, the linkage of the fluoro-
phores used in the calibration samples may differ from the 
one used in the target biological sample.

Alternatively, highly stable natural supramolecular pro-
tein structures with well-defined nanometric geometries 
are abundant in biological cells, and may serve as in-situ 
calibration standards (Fig. 1f–l). For example, the nuclear 
pore complex (NPC) is a suitable structure to determine the 
resolution of fluorescence nanoscopy methods both in 2D 
and 3D (Schlichthaerle et al. 2019; Thevathasan et al. 2019). 
The NPC is a protein assembly consisting of three rings: 
an inner ring complex, a cytoplasmic ring, and a third ring 
located in the nuclear side. It contains copies of approxi-
mately 30 different nucleoporins (Appen et al. 2015). A 
usual strategy consists of imaging the distribution of the 
nucleoporins Nup96 or Nup107 (Loïodice et  al. 2004), 
present in the nuclear and cytoplasmic rings of the NPC 
of vertebrates, which are organized in clusters forming a 
regular octahedron with a side of ~ 42 nm. Each cluster is 
composed of two nucleoporins separated by around 12 nm 
(see schematic in Fig. 1f). The nuclear and cytoplasmic 
rings are parallel to the nuclear membrane and separated by 
a distance of ~ 50 nm for Nup96 (Thevathasan et al. 2019) 
and ~ 60 nm for Nup107 (Heydarian et al. 2021). In the area 
of the nuclear membrane parallel to the sample substrate, 
the structure of the NPC represents a unique platform to 
benchmark the performance of nanoscopy methods in 2D 
and 3D, with well-defined distances ranging from 10 to 
60 nm, approximately. Figure 1g shows images of the Nup96 
acquired using 3D DNA-PAINT (Schlichthaerle et al. 2019), 
while Fig. 1h presents images of the same structure obtained 

with MINFLUX (Gwosch et al. 2020). In 3D-MINFLUX, 
Nup96 was localized axially with ~ 2 nm precision, and the 
50 nm-separation was accurately retrieved (Schmidt et al. 
2021) (Fig. 1i). Aiming at broadening the access to this 
reference standard, genome edited cell lines were recently 
developed, in which nucleoporin Nup96 was endogenously 
labeled with different tags (Thevathasan et al. 2019). Other 
well-defined supramolecular protein structures can also be 
used to test the performance of nanoscopy methods. Micro-
tubules, for instance, are a cylindrical and hollow structure 
formed by the assembly of α-/β-tubulin heterodimers, with 
an external diameter of ~ 25 nm (Fig. 1j) that can scale up to 
40–50 nm when labeled (the actual diameter depending on 
the labeling strategy). Microtubule cross-sections were used 
as calibration standards to demonstrate the performance of 
several methods (Jouchet, et al. 2021; Szalai et al. 2021; Gu 
et al. 2021; Li et al. 2018; Huang et al. 2016). An example 
is shown in Fig. 1k, where images of fully resolved hollow 
cross-section of single microtubules were used to demon-
strate that SIMPLER combined with DNA-PAINT can reach 
sub-10 nm resolution in the three dimensions of biological 
samples (Szalai et al. 2021). 4Pi-SMLM has been shown to 
provide almost isotropic resolution of 10–20 nm by resolv-
ing the hollow structure of microtubules (Fig. 1l) (Huang, 
et al. 2016).

Sample drift

All microscopes suffer from thermo-mechanical instabili-
ties that produce undesired misalignments of the setup. For 
microscopy, the most critical one is the displacement of 
the sample with respect to the objective of the microscope, 
which is commonly called sample drift. A well-built micro-
scope presents sample drifts in the order of a few nm per 
minute, typically. While this level of drift is insignificant 
for most diffraction-limited imaging situations and for fast 
super-resolution methods like STED, it becomes a serious 
bottleneck for slower methods like SMLM and SML-SSI 
aiming to achieve sub-10 nm resolution.

There are basically two ways to correct for sample drift: 
post-processing corrections and active corrections during the 
measurement. A basic post-processing drift correction that is 
often applied in SMLM consists of determining the sample 
motion by correlation between subsequent images (Wang 
et al. 2014). This correction can only compensate long time-
scale drift because several frames must be used to obtain 
a partial image of sufficient quality to perform a sensible 
correlation. A more accurate correction is obtained by intro-
ducing fiducial markers into the sample (micro or nanopar-
ticles detectable by scattering, photoluminescence, fluores-
cence, or transmission) (Rust et al. 2006; Betzig et al. 2006; 
Balinovic et al. 2019). The positions of the fiducial markers 
are registered in time through the same super-resolution 
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Fig. 1  Examples of the performance of some sub-10  nm resolution 
nanoscopy methods using DNA origami (a–e) and biological calibra-
tion standards (f-l). a MINFLUX images of DNA origami structures 
showing ~ 1–2 nm resolution (adapted from (Balzarotti et al. 2017)). 
b p-MINFLUX localizations and lifetime data of a DNA origami 
structure (adapted from (Masullo et al. 2021)). c DNA-PAINT images 
of a DNA origami structure used to demonstrate 5-nm resolution 
(adapted from (Strauss and Jungmann 2020)). d Images of DNA- ori-
gami structures obtained using ROSE, demonstrating 5  nm resolu-
tion (adapted from (Gu et  al. 2019)). e GET + DNA-PAINT images 
of a cubic DNA origami structure, where ~ 3  nm axial resolution is 
proved (adapted from (Kamińska et  al. 2021)). f Schematic of the 
NPC molecular structure. g 3D DNA-PAINT images of the Nup96-
HALO in a whole cell nucleus and selection of single NPCs (adapted 

from (Schlichthaerle et al. 2019)). 12 nm distances between neighbor-
ing Nup96 are resolved. h MINFLUX images of NPCs in a U-2 OS 
cell (adapted from (Gwosch et  al. 2020)). i 3D MINFLUX images 
of an individual NPCs in U-2 OS cells (adapted from (Schmidt et al. 
2021)). j Schematic of the microtubule molecular structure. k SIM-
PLER + DNA-PAINT images of microtubules in COS7 cells, where 
sub-10  nm-axial resolution allows fully resolving the cross-sections 
of single microtubules (adapted from (Szalai et  al. 2021)). l 4Pi-
SMLM image of a microtubule at ~ 10 nm resolution shows the hol-
low structure clearly resolved (adapted from (Huang, et  al. 2016)). 
Scale bars: a 10 nm, b 5 nm, c 20 nm, d 50 nm, e 30 nm, g 2 µm 
(left) and 50 nm (right), h 500 nm (top) and 50 nm (bottom), k 1 µm 
(left) and 50 nm (right), l 300 nm
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measurement or independently, and are subsequently used 
to correct the sample position in a post-acquisition analysis 
(Fig. 2a). The more fiducial markers used, the more accu-
rate the correction will be. Advanced post-processing drift 
correction methods using DNA origami as fiducial mark-
ers and particle averaging algorithms have made it possible 
to achieve sub-5 nm resolution in DNA-PAINT (Dai et al. 
2016) but this method requires having several hundreds of 
DNA origami per field of view in addition to the biologi-
cal structure. Post-processing drift corrections are limited 
to in-plane lateral drifts (x, y) and should be complemented 
with an active correction for the axial position (z). Using the 
lateral displacement of an auxiliary infrared focused beam 
that is incident on the sample in total internal reflection is a 
typical strategy to lock the sample in focus. In this way, axial 
stabilization with precision down to 5 nm can be achieved. 
It is worth to mention that those 3D nanoscopy methods 
that estimate the axial position of single molecules from a 
signal that depends on the distance to an interface, such as 
SIMPLER, SALM, or GET, are unaffected by the axial drift. 
In contrast, the capability of 3D-MINFLUX, ModLoc, or 
ROSE-Z to achieve sub-10 nm axial resolution depends criti-
cally on the stability of the microscope, and usually require 
active (x, y, z) drift correction.

Sample drift can be actively corrected in real-time with 
a feedback loop by tracking the position of fiducial markers 
in the sample and correcting the sample-objective relative 
position with a piezoelectric stage (Fig. 2a). In this way, 
stabilization precisions of ∼ 1nm or better can be achieved 
in the three dimensions (Carter 2007; Pertsinidis et al. 2010), 
limited mainly by the localization precision of the fiducials 
and the resolution of the piezoelectric stage. For the axial 
correction, a z-dependent imaging scheme should be imple-
mented such as astigmatic imaging. Simple, cost-efficient, 
high-performance (x, y, z) stabilization systems have been 
proposed recently (Balzarotti et al. 2017; Masullo et al. 
2021; Schmidt et al. 2021; Coelho et al. 2020) and some of 
them are open-source hardware implementations (Masullo 
et al. 2021; Coelho et al. 2020) that have the potential to 
be implemented in many existing optical systems. We note 
that actively stabilizing the system is fully compatible with 
carrying out a further post-acquisition drift correction which 
allows to correct residual drift that might have not been 
actively corrected.

Labeling strategy

Exploiting the full potential of advanced nanoscopy meth-
ods calls for decorating biological targets with nanometer 
precision and high density, a biochemical challenge not yet 
achieved in most super-resolution experiments. The most 
used labeling strategy is indirect immunostaining. Immu-
noglobulin G (IgG) antibodies have molecular weights of 

150 kDa and a size of approximately ~ 7 nm, resulting in a 
total distance between the targeted protein and the fluoro-
phore of 10–15 nm or more (Ganji et al. 2021; Früh et al. 
2021). As the orientation and stoichiometry of the primary/
secondary antibody conjugation is impossible to control, this 
strategy leads to an increase in the localization uncertainty, 
as shown schematically in Fig. 2b, impairing the possibility 
of achieving sub-10 nm resolution. Moreover, the steric hin-
drance produced by the combination of primary/secondary 
antibodies also limits the achievable labeling density.

One way to decrease the linkage error is to directly label 
primary antibodies with fluorophores or DNA handles for 
DNA-PAINT. The main disadvantage of this approach is 
the need to conjugate fluorophores or oligonucleotides to 
specific antibodies for each target. Alternatively, antigen-
binding fragments (Fab) can be used to decrease the size of 
the labels from 150 to 50 kDa. Combining primary full IgG 
antibodies with secondary Fab fragments outcomes a linkage 
error comparable to the one achieved when using directly 
labeled primary antibodies. Recently, a pipeline for site-
specific labeling of antibodies has been shown to increase 
the control over the stoichiometry and localization of the 
markers, which is useful for understanding and minimizing 
linkage error (Früh et al. 2021).

In recent years, small-sized affinity reagents including nan-
obodies (Schlichthaerle et al. 2019; Ries et al. 2012; Pleiner 
et al. 2015), affimers (Schlichthaerle et al. 2018), aptamers 
(Strauss et al. 2018), small binding molecules (Wang et al. 
2019), and genetically encoded self-labeling enzymes (e.g. 
SNAP-Tag, Halo-Tag) (Keppler et al. 2003; Los et al. 2008) 
have improved the final resolution achieved in fluorescence 
nanoscopy. However, all these strategies have limitations that 
still need to be addressed before they are routinely applied.

Nanobodies are single-domain antibodies with typical 
molecular weights of 12–15 kDa and sizes of 2–3 nm but 
their availability is limited to a small population of targets, 
and developing new ones is costly and requires complex 
steps not available in most laboratories, such as immuniza-
tion of animals. A typical procedure to address the restricted 
availability of nanobodies consists of fusing the target pro-
tein with GFP and using well established anti-GFP nano-
bodies, which has the drawback of increasing the label size 
by ~ 40 kDa. On the other hand, self-labeling enzymes allow 
covalent labeling of fusion proteins with small and bright 
organic dyes. A disadvantage of these strategies is that they 
involve the genetic modification of cell lines (through, for 
example, CRISPR Cas technology), in which the expression 
level of the targeted protein has to be carefully characterized 
in order to avoid potential artifacts.

Affimers are 2 nm-sized proteins (10–12 kDa) that can act 
as binding agents similarly to antibodies (Tiede et al. 2017). 
Tubulin (Tiede et al. 2017) and actin (Schlichthaerle et al. 
2018) affimers have been successfully developed and tested 
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Fig. 2  Key experimental factors 
for sub-10 nm resolution nanos-
copy. a Drift correction can be 
performed either actively or 
by post-acquisition processing. 
The former strategy keeps the 
sample in a fixed position with 
nanometer or sub-nanometer 
precision, while the latter lets 
the sample drift freely (often 
hundreds of nanometers) and 
corrects the position of each 
detected molecule during the 
data analysis, considering the 
trajectory of the fiducial mark-
ers. b Labeling strategies are 
critical in the final achieved 
resolution. Bulky labels, such as 
the combination of primary and 
secondary antibodies, prevent 
reaching sub-10 nm resolution. 
In contrast, small labels (e.g. 
nanobodies, affimers, aptam-
ers, self-labeling enzymes) 
introduce minimal linkage 
errors (3–4 nm). c Detecting 
with low noise, low dark-
counts, single-photon detectors 
such as avalanche photodiodes 
(blue) produces data with only 
Poisson noise. Devices such as 
EMCCD or sCMOS cameras 
add significant readout noise 
to the measurement (orange), 
increasing the uncertainty in the 
position estimation
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in dSTORM and DNA-PAINT, reaching minimal linkage 
errors. Similarly, aptamers are single-stranded DNA or RNA 
molecules that can bind specifically to targets (Opazo et al. 
2012) and have been recently used as labeling reagents in 
DNA-PAINT measurements, allowing to achieve sub-10 nm 
resolution in biological samples (Strauss et al. 2018). While 
both strategies have great potential to be utilized in super-
resolution microscopy methods, their use is still in an early 
stage and only few targets have been labeled with them so far 
(Strauss et al. 2018; Schlichthaerle et al. 2019; Bedford et al. 
2017). In both cases, high-throughput screening is needed to 
find suitable affinity reagents candidates.

Finally, small fluorophores can also be used to directly 
bind to the targets through specific interactions. Although 
this is a laborious route for each specific target, there are 
successful examples. Fluorogenic cell-permeable probes 
have been developed to label the cytoskeleton proteins actin 
and tubulin in live cells (Lukinavičius et al. 2014). These 
silicon-rhodamine (SiR) derivatives (Lukinavičius et al. 
2013) (SiR-actin and SiR tubulin) allow, for example, to 
perform live-cell STED imaging (D’Este et al. 2015). On 
the other hand, phalloidin is a widely used reagent capa-
ble of binding filamentous actin (F-actin) (Dancker et al. 
1975), the use of which has allowed imaging actin filaments 
with ~ 13 nm resolution (Schlichthaerle et al. 2018). Moreo-
ver, small fluorescent markers of membrane receptors have 
been developed, either by labeling small receptor agonist or 
antagonist with organic dyes (Hern and a,  2010; Cai et al. 
2004), or by designing a specific fluorophore capable of act-
ing as an antagonist itself, i.e. being able to directly bind to 
the receptor (Szalai et al. 2018).

Signal, background, and detector noise

For all methods, the localization precision of single mol-
ecules scales with the number N  of photons used for the 
localization as ∼ 1∕

√

N , and improves with increasing SBR 
and SNR (signal to background ratio and signal to noise 
ratio). The photophysics of fluorescent probes and their use 
in super-resolution microscopy is a very well documented 
topic (Ha and Tinnefeld 2012; Vogelsang et al. 2010; Demp-
sey et al. 2011; Linde et al. 2012), so we will just men-
tion a few important aspects. As a rule of thumb, organic 
dyes are brighter and more photostable ( N ∼ 10

3 − 10
4 ) 

than fluorescent proteins ( N ∼ 10
2 − 10

3 ), which is why 
they are preferred for sub-10 nm nanoscopy. Additionally, 
it is remarkable how certain imaging buffers can modulate 
the performance of fluorophores. It is well established that 
reducing and oxidizing agents in dynamic equilibrium can 
suppress photoblinking, thus allowing to collect more fluo-
rescence photons per single molecule (Ha and Tinnefeld 
2012; Vogelsang et al. 2008). The most spread reagent used 
for this purpose is Trolox. When this compound is dissolved 

in the imaging solution, it is partially converted into Trolox-
quinone, which plays the role of reductant, while the remain-
ing unconverted Trolox is the oxidant (Cordes et al. 2009). 
Furthermore, the removal of oxygen from the solution is 
crucial to increase the photostability of the fluorescent 
probes. To this end, enzymatic oxygen scavenging systems 
are widely used, such as the combination of glucose oxidase, 
glucose, and catalase (Harada et al. 1990). Alternatively, 
protocatechuic acid and protocatechuate-3,4-dioxygenase 
can also be used to reduce the oxygen concentration, with 
the comparative advantage of avoiding a drop in the pH of 
the solution over time (Aitken et al. 2008).

Oxidizing and reducing systems, including both Trolox 
and an oxygen scavenger, are suitable for STED nanoscopy, 
where they enable several STED acquisitions down to the 
single molecule level (Szalai et al. 2021; Kasper et al. 2010). 
Moreover, it is an excellent strategy to be applied in DNA-
PAINT measurements, where it helps to increase the number 
of emitted photons before the unbinding of imager strands. 
In addition, it prevents the photo-induced damage of bind-
ing sites (Blumhardt, et al. 2018). However, this reagent is 
not suited for STORM because it blocks the required transi-
tion to long-lived redox dark states of most fluorophores. 
An attractive alternative for STORM measurements is 
the use of polyunsaturated hydrocarbon cyclooctatetraene 
(COT), which can increase photon yields of the dye Alex-
aFluor-647 (the best performing dye for STORM (Dempsey 
et al. 2011)), without compromising its blinking behavior 
(Olivier et al. 2013).

Despite being a technique in which large number of flu-
orescence photons can be collected, DNA-PAINT suffers 
from high background levels due to the presence of freely 
diffusing imager strands in the imaging buffers. While 
decreasing the concentration of imager strands reduces 
the background, this also reduces the frequency of bind-
ing events and leads to longer acquisitions times. Recent 
efforts to diminish background and increase imaging speed 
in DNA-PAINT have allowed reaching sub-10 nm resolu-
tion (Hofmann et al. 2005). These strategies include modify-
ing the salt concentration of the imaging buffers (Schueder 
et al. 2019), introducing repetitive motifs in the capturing 
strands (Strauss and Jungmann 2020; Civitci et al. 2020), 
using fluorogenic probes (Chung, et al. 2020), or implement-
ing Förster resonance energy transfer (FRET) approaches 
that allow increasing imager strands concentrations without 
affecting the background level (Lee et al. 2017; Auer et al. 
2017).

Many second-generation methods rely on an estimation of 
the expected detected photons ( �

i
 ) in a given time interval. 

In camera-based approaches, �
i
 corresponds to the expected 

detected photons in each pixel. In SML-SSI, �
i
 corresponds 

to the i different exposures used in the sequential struc-
tured excitation. Intrinsically, photon counting is Poisson 
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distributed. Thus, the detected photon counts for each expo-
sure or pixel with an ideal detector is n

i
∼ Poisson(�

i
) . For 

single-photon counting detectors such as avalanche photodi-
odes (APD), the pure Poisson noise is a good approximation. 
However, this is not true for CCD, EM-CCD, or sCMOS 
cameras in which the number of detected photons presents 
higher variability and follows a more complex statistical 
distribution due to the convolution of additional readout 
and/or amplification noise with Poisson noise (Mortensen 
et al. 2010; Huang et al. 2013). Thus, experimental schemes 
that detect the fluorescence photons using APDs or future 
advances in camera technologies and position sensitive sin-
gle-photon detectors have the potential to boost the locali-
zation precision and hence the spatial resolution of super-
resolution methods (Fig. 2c).

Temporal resolution, live cell imaging, and single 
molecule tracking

Among the first generation super-resolution methods, coordi-
nate-targeted are naturally faster and were first to demonstrate 
video-rate live imaging of biological specimens (Westphal 
et al. 2008). Parallelized STED (Bergermann et al. 2015) and 
RESOLFT (Masullo, et al. 2018; Bodén et al. 2021) imple-
mentations have greatly helped increasing the throughput and 
frame-rate of super-resolution imaging. SMLM methods, on the 
other hand, are intrinsically slower as their time resolution is 
limited by the switching kinetics of fluorophores, constraining 
their applicability to either fixed samples, or a restricted number 
of live cell imaging applications. Nonetheless, making proper 
use of fast sCMOS cameras, video-rate SMLM has been dem-
onstrated (Huang et al. 2013).

All methods of the second generation reaching sub-10 nm 
resolution involve stochastic single-molecule localization 
and thus share with SMLM the time resolution limita-
tions. As mentioned above, recent advances that reduce the 
background of the imager solution have speeded-up DNA-
PAINT, roughly matching the imaging velocity achieved in 
STORM (Strauss and Jungmann 2020; Schueder et al. 2019; 
Civitci et al. 2020; Chung, et al. 2020; Lee et al. 2017; Auer 
et al. 2017). While the final performance is still too slow to 
capture the dynamics of most biological processes, there 
seems to be room for improvement, still. Interestingly, deep 
and machine learning-based methods have been shown to 
help reducing the time required to obtain super-resolved 
images (Ouyang et al. 2018). Another novel approach uses 
a protein that pre-orders the imager strands in solution and 
enables a tenfold faster binding (Filius et al. 2020). Among 
the new generation methods reviewed here, MINFLUX is 
the only one that has been performed in live cells, by imag-
ing the Nup96–mMaple construct (Gwosch et al. 2020). It 
should be noticed, however, that the nuclear pore complex 
had to remain still in the timescale of minutes, and that more 

dynamic structures will still be elusive if no substantial 
improvement in the switching kinetics is achieved.

Single-molecule tracking, while not a super-resolution 
imaging technique per se, is a relevant tool to investigate 
biological phenomena in live-cell systems (Enderlein 
2000; Weigel et al. 2011; Sako et al. 2000). In this regard, 
MINFLUX holds a unique potential due to its high photon 
efficiency, which together with the fast response of APDs 
allow tracking single molecules with both high temporal 
and spatial resolution. For example, 30S ribosomal subunit 
proteins fused to mEos2 was tracked in living Escherichia 
coli at 8 kHz (Balzarotti et al. 2017) with a localization 
precision of ~ 50 nm (using just 9 photons per localiza-
tion). In turn, this enabled the computation of diffusion 
coefficients at video-rate, providing unprecedented insight 
into the diffusion behavior of proteins. MINFLUX has also 
been demonstrated to attain localization precisions of 2nm 
at 400�s time resolution (Eilers et al. 2018). Interestingly, 
p-MINFLUX is unique among single-molecule localiza-
tion methods since it can reach the absolute time resolution 
limit posed by the emission rate of the emitter because the 
sequential structured excitation is performed at the repeti-
tion rate of the pulsed laser (Masullo et al. 2021). Also, 
p-MINFLUX delivers the fluorescence lifetime, which 
can be used to obtain information about molecular inter-
actions and local environment. Apart from applications in 
ultrafast tracking of fluorescent molecules, we believe that 
p-MINFLUX can become a method of choice to track small 
( ∼ 10nm ) metallic or fluorescent nanoparticles or quantum 
dots. Metallic NPs are particularly interesting since their 
photoluminescence presents very high emission rates and 
very short lifetimes, thus allowing to increase the speed 
of the tracking measurement up to the limit posed by the 
single-photon detectors.

Finally, we note that single-molecule FRET and diffrac-
tion-limited FRET imaging have been widely used to inves-
tigate dynamic processes involving changes in distances in 
the 1–10 nm range (Piston and Kremers 2007; Lerner 2018). 
Recently, super-resolved FRET imaging was successfully 
demonstrated based on DNA-PAINT (Deußner-Helfmann 
et al. 2018) and STED measurements (Tardif et al. 2019; 
Szalai et al. 2021). In particular, the intensity-based STED-
FRET approach (Szalai et al. 2021) enables the observation 
of FRET dynamics in super-resolved observation volumes, 
providing an interesting combination of visualization/locali-
zation of FRET events with ~ 40 nm resolution, with FRET 
dynamics delivering sub-10 nm information with ms tem-
poral resolution.

Conclusions and future perspectives

The development of fluorescence nanoscopy methods and 
protocols has evolved impressively during the past decade, 
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particularly in pushing the achieved resolution into the 
sub-10 nm regime. New approaches, combining the use 
of sequential structured illumination with the detection of 
single molecules, have enhanced the spatial resolution by 
increasing the information carried by each photon, ultimately 
reaching the molecular scale. Many features and limitations 
of these techniques are also present in older nanoscopies. 
Thus, different strategies that have been followed to improve 
first-generation nanoscopy methods will surely be useful to 
improve the performance of new generation nanoscopies. 
For example, developing brighter, smaller, and more stable 
fluorescent labels with suitable switching kinetics and com-
patible with live-cell imaging (Wang et al. 2019; Linde et al. 
2012; Fernández-Suárez and Ting 2008; Grimm et al. 2020), 
or finding general strategies to decrease background levels 
are improvements from which the entire super-resolution 
field can benefit. Furthermore, analysis based on machine 
and deep learning represents an appealing route to increase 
the throughput of nanoscopies. The combination of fluores-
cence nanoscopy with the so-called expansion microscopy 
(Chen et al. 2015) is also a straightforward way to maximize 
the resolution of every nanoscopy method. Nonetheless, to 
achieve sub-10 nm resolution, the key experimental factors 
reviewed in this article, namely, mechanical stabilization, 
labeling strategies, and detector noise are critical.

The throughput of the techniques has also raised perma-
nent interest of the nanoscopy community. Important steps 
were taken in this direction, allowing SMLM-based nanos-
copy to be performed in areas of ∼ 200 × 200μm2 under 
homogeneous illumination (Mau et al. 2021; Stehr et al. 
2019). While the imaging field of view in the first MIN-
FLUX implementation was limited to ~ 50–100 nm, a later 
iterative approach enabled scaling it up to a few microm-
eters (Gwosch et al. 2020). Thus, MINFLUX still has a way 
to go regarding the throughput compared to camera-based 
techniques. In contrast, MINFLUX has proved to be the 
best choice for ultraprecise single molecule tracking. With 
respect to the third dimension, techniques depending on the 
distance to the interface such as SIMPLER, SALM, or GET, 
while having excellent performances close to the interface, 
they are limited in depth, and other alternatives (e.g. Mod-
Loc or ROSE-Z) should be used to study molecules located 
at micrometers far from the coverslip.

Sub-10 nm nanoscopy has enormous potential to enable 
biological studies with molecular resolution and provide 
key information relevant to big open questions in life sci-
ences. For example, neighboring EGFR proteins labeled 
with aptamers and separated one from each other 14–16 nm 
were resolved thanks to the capabilities of DNA-PAINT and 
the small size of the labels (Strauss et al. 2018). Dual-color 
3-D MINFLUX allowed to study the mitochondrial contact 
site and cristae organizing system with ultra-high preci-
sion, shedding light into the nanometer-scale arrangement 

of Mic60 and Mic19 proteins (Pape et al. 2020). However, 
its widespread application in biology labs remains challeng-
ing. While technical improvements will keep coming and 
increasing the quality and performance of these techniques, 
bridging the gap between the nanoscopy and cell biology 
communities should also be a priority.

Studying living cells at sub-10 or even sub-20 nm resolu-
tion remains challenging for most fluorescence nanoscopy 
methods. While MINFLUX has taken first steps in this 
direction, both in imaging and tracking applications, the 
full potential of live-cell nanoscopy at 1–10 nm spatial and 
sub-second temporal resolution is still to be unlocked and 
should be a main goal for the near future.
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