Skip to main content
. 2022 Jan 4;22:2. doi: 10.1186/s12911-021-01742-0

Table 6.

Performance evaluation of the selected ML algorithms for COVID-19 death prediction

Algorithms Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) ROC (%)
Random forest 90.70 95.10 95.03 94.23 99.02
XGBoost 90.89 95.01 94.25 92.43 98.18
KNN 97.38 82.15 89.56 80.11 96.78
MLP 90.81 91.07 91.25 87.19 96.49
Logistic regression 91.45 84.47 91.23 83.94 94.22
J48 decision tree 87.77 94.47 92.17 89.97 92.19
Naïve Bayes 90.44 84.31 87.47 81.32 92.05