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ABSTRACT

Asia-Pacific is a populous region with remarkable variations in socioeconomic development 
and environmental exposure among countries. The prevalence rates of asthma and allergic 
rhinitis appear to have recently reached a plateau in Western countries, whereas they are 
still increasing in many Asian countries. Given the large population in Asia, even a slight 
increase in the prevalence rate will translate into an overwhelming number of patients. To 
reduce the magnitude of the increase in allergic diseases in next few decades in Asia, we 
must understand the potential factors leading to the occurrence of these disorders and the 
development of potential preventive strategies. The etiology of allergic disorders is likely 
due to complex interactions among genetic, epigenetic, and environmental factors for the 
manifestations of inappropriate immune responses. As urbanization and industrialization 
inevitably progress in Asia, there is an urgent need to curtail the upcoming waves of 
the allergy epidemic. Potentially modifiable risk exposure, such as air pollution, should 
be minimized through timely implementation of effective legislations. Meanwhile, re-
introduction of protective factors that were once part of the traditional farming lifestyle 
might give new insight into primary prevention of allergy.

Keywords: Asthma; allergic rhinitis; atopic dermatitis; food allergy; prevalence; Asia; 
environment; pollution; urbanization

INTRODUCTION

Asthma, allergic rhinitis, atopic eczema, food allergy, and other allergic diseases are a 
large spectrum of clinically observable phenotypes and distinct immunological/molecular 
mechanisms called endotypes.1 The pathogenesis of allergic disorders is still not well 
understood, but this group of highly heterogeneous and multifactorial disorders is most 
likely due to combinations of genetic, epigenetic, and environmental factors involving 
redundant and overlapping pathways (Fig. 1). The prevalence rates of asthma and allergic 
rhinitis appear to have reached a plateau in Western countries in the past decade, whereas 
data from many Asian countries suggest that it is still increasing.2,3 The recent increase 
in the prevalence of allergic disorders in Asia cannot be attributed only to major changes 
in the genetic factors of the population. Previously, great efforts have been launched into 
genome-wide association studies (GWASs) in pursuit of genes that contribute to risk of 
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asthma and allergic diseases. Unfortunately, most of the genetic variants identified by 
the GWAS approach only have weak effects on asthma,4 atopic dermatitis,5 and allergic 
rhinitis,6 as reflected by odds ratios very close to one. On a general note, paradigms 
have shifted increasingly, acknowledging the critical role of environmental factors in 
development of allergic diseases. The environment harbors not only risk exposure, but also 
potentially protective factors for host immune homeostasis, especially those related to a 
traditional rural/farming lifestyle. Because many Asian countries are densely populated, 
even a slight increase in the prevalence rates of allergic diseases will translate into a large 
number of affected individuals. Notably, Asian populations may be even more genetically 
susceptible to the adverse effects of “Westernization.”7-9 As the urbanization of many Asian 
countries will continue in the foreseeable future, there is an urgent need to develop a novel 
strategy to curtail the upcoming waves of allergy epidemic. This review provides ideas for 
countermeasures to reduce the development of allergic diseases in Asian children based on 
recent findings of epidemiology and mechanistic studies.

EPIDEMIOLOGY OF ALLERGIC DISEASES IN THE ASIAN-
PACIFIC REGION
Increasing trends of and wide variations in allergic diseases in the Asian-
Pacific region
The past few decades have witnessed an increase in the prevalence of allergic diseases. 
For epidemiological studies across the world, the standardized survey instruments of the 
International Study of Asthma and Allergies in Childhood (ISAAC) have been widely used and 
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Fig. 1. The complex interactions between genetic, epigenetic, and environmental factors in the development 
of allergic disorders. Allergic disorders are a group of highly heterogeneous diseases which involve myriads of 
factors interacting under diverse genetic and immune backgrounds. Environmental exposure may modulate the 
risk of allergic diseases through the mechanisms of epigenetic control including DNA methylation and histone 
modification. Convergence of these factors leads to the clinical phenotypes and molecular endotypes of different 
allergic disorders. 
SNP, single nucleotide polymorphism; CpG, consumer packaged goods; Treg, regulatory T cell; Th, T helper; DC, 
dendritic cell; ILC, innate lymphoid cell.



validated at different settings. Recent ISAAC surveys indicated that the increase in childhood 
allergic diseases is most evident in developing countries.2 For example, the prevalence 
rates of asthma and allergic rhinitis among adolescents doubled in Guangzhou, southern 
China, rising from 3.9% and 17.4% in 1994 to 6.9% and 25.1%, respectively, in 2009.10 Such 
increases are most likely attributable to the environmental and lifestyle changes accompanied 
by economic development and urbanization. In general, asthma and allergic diseases are 
less common in the Asia-Pacific region than in Western countries. However, wide variations 
in the prevalence of allergic disorders have been documented among Asian countries and 
regions with marked differences in the development and environmental exposure.3,11,12 
Not surprisingly, allergic diseases are more prevalent in highly developed countries such 
as Singapore, Japan, and South Korea than in the other Asian countries. A recent decrease 
was documented in Japan, with prevalence of current wheeze and atopic dermatitis among 
children aged 6- to 8-years dropping from 13.6% and 15.8% to 10.2% and 14.6%, respectively, 
over the 10-year period from 2005 to 2015.13 A similar decreasing trend was also found in 
South Korea, where the prevalence of childhood asthma derived from the Korea National 
Health Insurance claims database decreased from 7.29% in 2010 to 5.95% in 2015.14 Although 
the prevalence of allergic diseases may well have reached a plateau in several high-income 
countries in Asia, the plateau is not as high as that observed in Western countries.15

Food allergy and anaphylaxis in the Asia-Pacific region
Food allergy has been emerging over the recent 2 decades as a “second wave” of allergy 
epidemics.16 Although the overall prevalence of food allergy is thought to be lower in Asia 
than in the Western world, substantial variations in the diagnostic criteria of food allergy 
make accurate comparison rather difficult. Patients, especially those living in rural areas, 
may have limited access to appropriate diagnostic work-up. Nevertheless, hospitalization 
for food-induced anaphylaxis, the most severe manifestation of food allergy, provides a 
proxy measure to facilitate understanding of the epidemiology of food allergy. In Australia, 
a country with the highest incidence of food allergy across the world, a 3-fold increase in the 
rates of hospital admissions for food-related anaphylaxis was documented between 1993-
1994 and 2004-2005.17 In particular, most of this increasing disease burden was observed 
among children under 5 years of age.17 Comparable to Australian populations, more than 
2-fold increase in anaphylaxis incidence over the past decade was observed in Hong Kong.18 
In order to obtain a comprehensive picture of anaphylaxis in the Asia-Pacific region, the 
Asia-Pacific Academy of Pediatric Allergy, Respirology, and Immunology (APAPARI) 
Anaphylaxis Study Group reviewed available data on anaphylaxis incidence.19 Unfortunately, 
considerable heterogeneity existed regarding methodologies of Asian studies, hindering 
accurate comparison and interpretation of data between countries. In Western countries, 
the incidence of anaphylaxis ranged from 1.5 to 7.9 per 100,000 persons per year,20-22 which 
is comparable to the estimated incidence rate in Hong Kong (4.68 per 100,000 person-years 
in 2019).18 Studies from South Korea (incidence 22 per 100,000 person-years),23 Singapore 
(estimated incidence > 2.5 per 100,000 children),24 Thailand (incidence 4.51 per 1,000 
pediatric hospital admissions),25 Taiwan (12.71 to 13.23 per million population),26 and Japan 
(0.006%)27 also reported a similar incidence (summarized in Table), suggesting anaphylaxis 
may also be an emerging problem in Asia.

The pattern of food allergies can be quite distinct in Asia compared to the Western world, 
especially in older children and adolescents. For example, wheat and buckwheat are common 
food allergens in Japanese and Korean children, followed by hen’s egg and cow’s milk,28,29 
while shellfish allergy is more common in South-east Asian countries such as Singapore, 
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Philippines, and Vietnam.30,31 In contrast, the prevalence of peanut allergy is extremely low 
in Asia compared to the West.30 A birth cohort study with follow-up of over 1,000 infants in 
Korea found that by 1 year of age, 5.3% (n = 62) of the infants developed food allergies, with 
2.8% (n = 33) allergic to hen’s eggs, 1.7% (n = 20) to cow’s milk, and 0.7% (n = 8) to peanuts/
nuts.32 The EuroPrevall consortium was funded by the European commission to evaluate 
the burden of food allergies using the standardized and validated methodologies. A recent 
EuroPrevall survey screened more than 35,000 children aged 6-11 years from 3 countries 
including urban and rural China, India, and Russia.33 Using the definition of probable food 
allergy as reporting allergic symptoms within 2 hours after consuming a specific food plus 
positive results of objective measurement (serum specific immunoglobulin E [IgE] and/or 
positive skin prick test reaction to specific food), the highest prevalence of food allergy was 
documented in Hong Kong (1.50%), a highly urbanized city of China, when compared with 
other participated cities with lesser degree of urbanization including Tomsk (Russia, 0.87%), 
and Bengaluru and Mysore (India, 0.14%). One notable finding from Hong Kong was that 
children born and raised in Hong Kong were 4 times more likely to have food sensitization 
and allergies than those born in mainland China and subsequently migrated to Hong Kong 
(mean migration age of 5 years). Such findings echoed our previous studies showing that 
children born in mainland China had a significantly lower prevalence of wheeze than those 
children born and raised in Hong Kong,34 underscoring the important role of early-life 
environmental exposure on the subsequent development of allergies. Furthermore, the high 
rates of IgE sensitization to common food allergens, such as milk (14.23%), egg (14.05%), 
shrimp (7.87%), and wheat (7.27%) among Chinese primary schoolchildren, did not 
translate into a high prevalence of food allergy, suggesting additional factors other than IgE 
sensitization must be critical for clinical manifestations of food allergy.

One of the most potent risk factors for food allergy is atopic dermatitis, especially for 
those who developed severe disease early in life.35,36 The dual-allergen exposure hypothesis 
proposes that transcutaneous sensitization to food allergens through an inflamed and 
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Table. Incidence of anaphylaxis reported in the Asia-Pacific region and Western countries
Country References Study design Setting Data collection 

years
Age of study 

population (yr)
Anaphylaxis incidence

Europe Panesar et al. 
(2013)20

Systematic 
Review

Epidemiological studies of 
anaphylaxis in Europe

1990–2010 0–80 1.5 to 7.9 per 100 000 person-years

United 
States

Michelson et al. 
(2020)21

Cross-sectional Emergency department (ED) 
attendances for anaphylaxis

2008–2016 0–85+ 94 ED visits per million person-years (2008)
217 ED visits per million person-years (2016)
Increase of incidence rate ratio of 1.14 in 
children

Australia Andrew et al. 
(2018)22

Retrospective Emergency medical services 
(EMS)

2008–2016 0–16 38.7 per 100,000 person-years (2015–2016)

Hong Kong Li et al. (2020)18 Retrospective Clinical Data Analysis and 
Reporting System (CDARS)

2009–2019 0–98  
(median 46)

3.57 per 100,000 person-years per annum
Estimated incidence rate of 7.40 per 100,000 
person-years for the 0–19 age group (2019)

South KoreaYang et al. (2017)23 Retrospective Korean National Health 
Insurance (NHI) claims 
database

2008–2014 0–70 22.01 per 100,000 person-years per annum
Crude incidence rate of 21.26 per 100,000 
person-years for the 0–19 age group (2014)

Singapore Liew et al. (2013)24 Retrospective Hospital admission, ED visits, 
Allergy service outpatient 
clinics in a tertiary hospital

2005–2009 0–18  
(median 7.9)

Estimated incidence > 2.5 per 100,000 children 
per year

Taiwan Liu et al. (2017)26 Retrospective National Health Insurance 
Research Database

2005–2012 0–80+ 12.71 to 13.23 per million population over study 
period

Thailand Manuyakorn et al. 
(2015)25

Retrospective Hospital admission in a 
tertiary hospital

2009–2013 0–18  
(mean 8.7)

2.7 per 1000 admissions (2004–2008)
4.51 per 1000 admissions (2009–2013)

Japan Inoue and 
Yamamoto (2013)27

Retrospective ED attendances for 
anaphylaxis

2009–2012 0–14  
(mean 4.7)

61/10,030 (0.006%)



impaired skin barrier resulting from atopic dermatitis may present a sensitizing route 
bypassing oral tolerance. In the absence of early consumption of food protein to induce 
oral tolerance, the effect may trigger the development of food allergy.37,38 Recent evidence 
has confirmed the presence of peanut allergens in household dust that contributes to the 
increased risk of peanut allergy in exposed children.39,40 Atopic dermatitis is often associated 
with the development of allergic diseases in the sequential order of food allergy, asthma 
and allergic rhinitis, described as the “atopic march.” Findings of the ISAAC Phase III study 
reported a rise in the prevalence of atopic dermatitis in the Asia-Pacific region compared to 
the counterparts from Phase I.12 It is conceivable that a subsequent wave of food allergy may 
appear following the increase in eczema. There is also evidence that Asian populations may 
be even more susceptible to allergies when compared to Caucasians. Asian children born in 
Australia was found to be at higher risk of food allergies, atopic dermatitis, and anaphylaxis 
compared to those born to Australian-born parents.7,8 A more recent study directly compared 
the prevalence of food allergy between Asian children living in Singapore from the Growing 
Up in Singapore Towards Healthy Outcomes (GUSTO) cohort and those living in Australia 
from the HealthNuts cohort.9 Despite the ethnic similarities between the 2 cohorts, the 
prevalence rates of food allergy (15.0% vs. 1.1%) and early-onset atopic dermatitis (30.5% 
vs. 8.4%) were substantially higher in Asians living in Australia than in Singapore.9 These 
findings indicate an amplifying effect of genetic propensity induced by a Westernized 
environment; oppositely, protective factors in the Asian environment may leverage the risk of 
exposed children who may be prone to develop allergies.

THE ROLE OF ENVIRONMENTAL FACTORS

Air pollution and childhood asthma
Air pollution remains a major public health concern in Asia, representing one of the 
most important environmental risk factors for allergic diseases. With the rapid process of 
urbanization across the world, there has been a shift of major types of ambient pollutants.41 
Traditionally, sulfur dioxides (SO2) and large particulates derived from burning of sulfur-
containing fuels (such as diesel and coal) and biomass are the predominant pollutants. 
The growing number of automobiles gives rise to traffic-related air pollution (TRAP), 
which is different in chemical and physical nature to that from the classic air pollution. 
The representative pollutants are nitrogen dioxide (NO2) and particulate matter with an 
aerodynamic diameter of 2.5 μm or less (PM2.5). A systematic review and meta-analysis of 
observational studies reported an association between TRAP and childhood asthma, with an 
overall random-effects risk estimate ranging from 1.03 (95% confidence interval [CI], 1.01-
1.05) to 1.08 (95% CI, 1.03-1.14), depending on the types of pollutants.42 Ambient pollutant 
exposure is consistently shown to be a potent trigger for asthma exacerbations in both Asian 
and Western countries.43 Environmental air pollution might not directly contribute to the 
inception of allergic disorders, as the levels of ambient air pollutants are exceptionally high 
in many regions in Asia where asthma prevalence is relatively low. Among all counties in the 
Asia-Pacific region, ambient PM2.5 concentrations were the highest in developing countries, 
such as Bangladesh, India and China, which were about 5 times higher than the World Health 
Organization (WHO) guideline values, followed by Thailand, Korea, and Vietnam at twice 
the WHO recommended cutoff value.41 When the concentration of PM2.5 increased by 10 μg/
m3, the risk of children’s hospital admissions or emergency department visit increased by 
4.8% (relative risk = 1.05; 95% CI, 1.03-1.07).44 According to recent global analysis, the largest 
percentage of pediatric asthma incidence attributable to NO2 exposure was documented 
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in high-income Asia-Pacific countries, with nearly half of the new pediatric asthma cases 
attributable to NO2 exposure in Shanghai, China and about 40% in Seoul, Korea.45

Indoor air pollution is another intractable problem in Asia. Currently, about half of the 
Asian population are living in the rural area where open-fire cooking is quite common. 
Biomass burning for cooking and heating constitutes one of the major sources of indoor 
environmental pollution. ISAAC Phase III data have revealed that exposure to biomass 
burning was associated with an increased risk of wheezing and asthma diagnosis in 
children.46 The Korean Cohort for Childhood Origin of Asthma and allergic diseases 
(COCOA) study was set up to determine the critical time windows of various environmental 
factors on the development of allergic diseases. Recent findings from the COCOA study 
demonstrated that prenatal exposure to PM2.5 and PM10, especially in the first trimester, 
was significantly associated with early-onset atopic dermatitis.47,48 An additive effect was 
further observed in those with lower cord blood vitamin D levels, representing an important 
epigenetic mechanism mediated by placental DNA methylation in physiological response to 
PM2.5 and PM10. Air pollutants can act on the genome inducing epigenetic changes, which 
function as critical effectors of exogenous insults. Asthmatic children from highly polluted 
areas have shown increased DNA methylation at CpG sites of the genetic loci of forkhead 
box P3 (FOXP3) and interleukin (IL)-10, resulting in impaired regulatory T-cell function.49 
Moreover, exposure to TRAP was associated with lower levels of DNA methylation in the 
promoter regions of nitric oxide synthase (NOS3) in children with asthma.50 Given the robust 
evidence for the association between air pollution and childhood asthma, governmental 
policies are required to reduce environmental pollutants for mitigating their effects on 
respiratory health.

Lessons from the rural environment
The “hygiene hypothesis” proposed that respiratory infections associated with overcrowding 
and unhygienic conditions confer an element of protection on hay fever and atopy.51 The 
hypothesis has been pushed forward by various comparative studies conducted in different 
regions across the globe showing that children living in a rural/farming environment had 
much lower prevalence of allergies than those in urban areas,52-58 representing one of the 
strongest and most consistent protective factors against development of allergic diseases. 
Two main pillars of the “farm effect” in central Europe are exposure to livestock and 
consumption of raw farm milk. In Asia, however, consumption of unprocessed milk is rather 
rare and manual labor is still the prevalent form of practice over mechanized farming. Our 
previous study has demonstrated that agriculture farming environment in northern China 
conveyed protection against asthma and allergies, similar to dairy or livestock farming 
in central Europe.59 Early-life exposure to diverse microorganisms related to the rural 
environment may cause the immune system to distinguish between harmful and harmless 
microbes, thereby boosting immune maturation and programming the immune system 
toward a more tolerogenic state. Further research in the rural regions of Asia will bring new 
perspectives on the understanding of protective factors in our environment.

The “farm effect” was further elucidated by the 2 United States farming populations, the Amish 
and the Hutterite, who share similar genetic background and lifestyle, but distinct farming 
practice (traditional among the Amish and industrialized among the Hutterite). The prevalence 
of asthma and atopic sensitization, however, was 4- to 5-fold higher in Hutterite children 
(21.3% and 33.3%, respectively) than that of Amish children (5.2% and 7.2%, respectively).55 
Further mechanistic studies revealed that the large disparity in the prevalence rates of asthma 
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and allergy between Amish and Hutterite children could be explained by the difference in 
household endotoxin levels, which were 6.7-fold higher in the Amish home than in the Hutterite 
home.55 Intriguingly, dust extracts from Hutterite barn conferred the protection similar 
as the Amish barn dust, implying the increased asthma risk in Hutterite children is due to 
insufficiency of protective exposure.60 In the absence of microbial instruction, environmental 
risk factors, such as allergens, pollutants (e.g., vehicle exhaust and industrial waste gases), 
and pathogenic microbes, can perturb epithelial barriers located at the surfaces of different 
organs, such as the skin, gut, upper and lower respiratory tract, allowing penetration of 
environmental insults into the tissues (Fig. 2). Disrupted epithelial cells initiate Th2-mediated 
immune responses through the release of alarmin cytokines, such as IL-33, IL-25, and thymic 
stromal lymphopoietin (TSLP), resulting in eosinophilic infiltration, mast cell degranulation, 
and production of IgE as well as pathological changes including activation of fibroblasts and 
endothelium, and smooth muscle hyperplasia. These inflammatory responses lead to the 
manifestation of various allergic disorders such as atopic dermatitis, food allergy, and asthma.
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Fig. 2. The crosstalk between environmental factors and immune responses in allergic inflammation. Microbial compounds and immunomodulatory molecules 
acting directly on the mucosal surfaces of the lungs, gut, and skin can exert biological effects systemically. Environmental risk factors, such as allergens, 
pollutants (e.g., vehicle exhaust and industrial waste gases) and pathogenic microbes, can perturb epithelial barrier functions (left panel). Damaged epithelial 
cells allow the penetration of environmental insults, promoting the proliferation of tissue-resident ILC2s through the release of alarmins such as IL-33, IL-25 
and TSLP. After capturing the antigen, DCs prime the naïve T cells to differentiate into Th2 cells. Cytokines secreted by ILC2s and Th2 cells drive Th2-dominated 
immune responses characterized by IL-4, IL-5, IL-9, IL-13, IL-25, and IL-33. Eosinophilia is induced by IL-5, IL-25, and IL-33. IL-9 and IL-13 contribute to the 
activation of mast cells and mucus production, while IL-4 induces IgE class switching in B cells. Cross-linking of IgE leads to mast cell degranulation and 
release of histamine, tryptase, prostaglandins, leukotrienes, and cytokines. These molecules and immune effectors cells contribute to pathological changes 
including activation of fibroblasts and endothelium, and smooth muscle hyperplasia in the skin, gut, upper and lower respiratory tracts, resulting in various 
inflammatory conditions such as atopic eczema, food allergy, and asthma. In contrast, environmental microbes (rich in traditional rural/farming environment) 
and regulatory signals from the gut (e.g., helminth infection and high fiber diet) can drive immune responses away from allergic inflammation (right panel). For 
example, microbial compounds can be identified by TLRs and up-regulate the expression of TNFAIP3 by the epithelial cells. Regulatory and suppressive effects 
of downstream signaling pathways are characterized by IFN-γ, IL-10, TGF-β, IgG4, and IgA produced by innate-like cell populations, such as DCs, γδT cells, iNKT 
and ILC3, as well as adaptive immune cells including Tregs, Bregs, and B cells. 
ILC2, type 2 innate lymphoid cell; DC, dendritic cell; IL, interleukin; TSLP, thymic stromal lymphopoietin; TLR, innate toll-like receptor; Ig, immunoglobulin; 
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The loss of protective factors associated with the rural environment may therefore 
partially explain the increasing prevalence of allergic diseases in places where the process 
of urbanization is escalating. In support of this, recent findings from the Copenhagen 
Prospective Studies on Asthma in Childhood 2010 (COPSAC2010) have shown that an urban 
living environment during infancy increased the risk of asthma, atopic dermatitis, and 
allergic sensitization in childhood.61 Furthermore, migration may also impact immune 
homeostasis by changing microbial exposure and lifestyle factors. Immigrants from 
Thailand to the United States experienced a shift of gut microbiome diversity, function, and 
strain composition toward a more Westernized state.62 Summing up current evidence, the 
environment plays a complex and dual role in both the development of and the protection 
from allergic disorders.

Mechanisms underlying rural protection against allergies
A thorough understanding of protective factors in the rural environment and the underlying 
mechanisms could allow for gaining the necessary insight into allergy prevention. Rural 
exposure may exert the allergy protective effect through microbial translocation and 
colonization, thereby altering the compositional structure and metabolic functions of the 
human microbiome. Part of the immune-regulatory process is achieved via epithelial barrier 
enhancement of mucosal surfaces located in different organs such as the airways, skin, and 
intestinal tract (Fig. 2). For example, stimulation of human primary bronchial epithelial 
cells with farm dust increased barrier resistance and antiviral responses,63 representing 
one common thread linking the protective farm effect in epidemiologic observations. One 
possible mechanism is regulated through the ubiquitin-modifying enzyme TNF-α-induced 
protein 3 (TNFAIP3, or A20). TNFAIP3 can inhibit the downstream signaling pathways of 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), one of the central 
triggers of inflammation activation. The asthma-protective effect of farm dust extracts was 
abolished in mice devoid of myeloid differentiation primary response gene 88 (MyD88) or 
Toll/interleukin-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and epithelial 
signaling pathways led by TNFAIP3.55,64 Previous studies from our team have demonstrated 
that stimulation with microbe-rich farm dust or its main component lipopolysaccharides 
(LPS) restored gene and protein expression of TNFAIP3 along with the negative regulator 
dual-specificity phosphatase-1 (DUSP1) of mitogen-activated protein kinase (MAPK) 
signaling pathway in asthmatic patients to healthy levels and shifted toward an anti-
inflammatory state.65,66 Interestingly, a gene-environment interaction was detected for a 
single nucleotide polymorphism (SNP) in the TNFAIP3-encoding gene showing protection 
against asthma in farm children.64 Of note, in children at risk of asthma characterized 
by carrying the risk alleles at chromosome 17q21, a more than 80% reduction in risk was 
observed in those with exposure to animal sheds.67 Collectively, these findings reflect the 
heterogeneity and complex pathogenesis of asthma and allergies, of which the genetic 
predisposition is also susceptible to environmental influences.

Murine studies have identified several bacterial strains isolated from cowshed dust with 
immunomodulatory effects in vivo. These include the gram-negative bacteria Acinetobacter 
lwoffii F7868 as well as gram-positive Lactococcus lactis G12169 and Staphylococcus sciuri W620.70 
Despite distinct characteristics, there are several common signaling events that shared among 
different bacteria including activation of dendritic cells, utilization of intracellular receptors, 
i.e., NOD2, and up-regulation of costimulatory molecules including CD40, CD80 and CD86. 
Unique signaling events triggered by individual strains are also depicted in Fig. 3. Not only do 
microbial components related to a traditional lifestyle appear to be allergy-protective, but non-
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microbial signals delivered by rural/farm living also convey an element of protection. Farm 
children have increased levels of circulating antibodies against the mammalian-produced 
sialic acid N-glycolylneuraminic acid Neu5Gc, a molecule capable of blocking allergic airway 
inflammation in murine models.71 These findings suggest that higher exposure to non-
microbe-derived Neu5Gc might also contribute to the lower risk of childhood asthma in the 
rural/farming environment. Recent evidence suggested that communities of microbes, rather 
than single strains or molecules, are more strongly related to protection against allergic 
diseases such as asthma.72 Of note, the indoor dust microbiota composition appears to be a 
definable, reproducible predictor of asthma risk. Children living in German non-farm homes 
with an indoor microbiota more resembling Finnish farm homes had decreased asthma risk.73 
Hence, allergy-protective farm effect can be reproduced in non-farm settings, implying a 
potential target for preventive strategies.

Typically, residents living on family-based farms in the rural area also eat considerable 
amounts of plant-based fibers. The immunomodulatory activity of the microbiome is 
partially accomplished via the production of metabolites, especially short-chain fatty 
acids (SCFAs). High levels of dietary fibers (rich in fruits and vegetables) can change the 
compositional structure of the gut and airway microbiome, and increase the concertation of 
circulating SCFAs. Children with high amounts of SCFAs, especially butyrate and propionate, 
in feces at 1 year of age were less likely to be sensitized and develop asthma by 6 years of age.74 
In mice, SCFAs have been shown to protect mice from allergic lung inflammation through 
alterations in bone marrow hematopoiesis and repopulation of dendritic cells (DCs) with an 
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lactis G121, bacterial uptake is not only necessary to activate dendritic cells, but also endosomal acidification is 
required. Moreover, L. lactis G121 RNA appears to be the major bacterial component mediating protection against 
experimental asthma and signals through TLR13 in mice and probably through TLR8 in human subjects. 
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impaired ability to activate Th2 effector cells through the G-protein-coupled receptor (GPR) 
41-dependent signaling pathway.75,76 More specifically, maturation of the gut microbiome 
during the first year of life may contribute to the asthma-protective farm effect, partially 
through the production of SCFAs, especially butyrate.77 Likewise, helminth infections, which 
are ubiquitous in rural areas and associated with poor socioeconomic status, can activate 
immunomodulatory processes and prevent overshooting of inflammatory responses of the 
host to ensure their long-term survival.78,79 In a murine model of helminth and respiratory 
syncytial virus (RSV) coinfection, attenuated pulmonary inflammation and decreased 
viral load were observed.80 While the pro-inflammatory metabolites, such as the oxylipin 
12,13-diHOME, were enriched in the feces of neonates at high risk of developing allergies.81 
Recent evidence has shown that intra-abdominal treatment of mice with 12,13-diHOME prior 
to airway challenge exacerbated pulmonary inflammation and decreased lung regulatory T 
cells in a cockroach antigen-induced airway inflammation model.82 These findings provide 
a remarkable example of the concept of “the gut-lung axis,”83 where perturbation of the 
microenvironment in the gut can influence the immune homeostasis of the lungs.

INTERVENTIONS FOR ALLERGY PREVENTION

The Benjamin Franklin axiom that “an ounce of prevention is worth a pound of cure” best 
describes the focus for allergy research, given that there is currently no cure for allergic 
diseases. The Finnish Asthma Programme (1994-2004) is a vivid example of how nationwide 
implementation of public health measures can reduce the socioeconomic burden of allergic 
diseases. Through this campaign, the proportion of patients with severe or uncontrolled 
asthma had halved, with overall annual costs per patient decreased by 72%.84,85 The recent 
Finnish Allergy Programme (2008-2018) was launched to transform the strategy from 
avoidance to tolerance with a focus on primary prevention of allergy, especially in children.86 
Nonetheless, the experience in Finland might be different from that in the Asia-Pacific 
region, where burden of allergies is rapidly increasing. On one hand, we should learn from 
Finland success to reinforce allergy management; on the other hand, we still need to explore 
approaches tailored for our populations to prevent the onset of disease in the first place.

Microbiome-based interventions
With growing evidence that microbial exposure related to rural/farm living can shape an 
individual’s trajectory toward or away from allergic diseases, microbial immunostimulants 
may represent a promising option for prospective prevention strategies. The idea that 
administration of probiotics and prebiotics might positively influence the microbiome 
development and therefore possibly alter the risk of allergic disorders. However, the 
causal relationship has yet to be established. It is still largely unknown whether allergic 
conditions lead to dysbiosis, whether alterations in microbiome occur before development 
of allergies, and whether these changes are associated with environmental exposure. 
Germ-free (GF) mice represent a model system to study the sequential effect of colonized 
microbes on host physiology. Inoculation of GF mice with the bacterial genera Lachnospira, 
Veillonella, Faecalibaterium, and Rothia that depleted in the gut microbiota of infants at risk of 
asthma ameliorated airway inflammation in their adult progeny.87 Intranasal instillation of 
probiotics, such as Lactobacillus rhamnosus GG, significantly decreased bronchoalveolar lavage 
eosinophil counts, levels of IL-13 and IL-5, and airway hyperreactivity in a mouse model of 
birch pollen-induced allergic asthma.88 Oral application of Lactobacillus johnsonii also efficiently 
protected recipient mice from airway inflammation via the reprogramming of circulating 
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metabolic environment, including docosahexanoic acid (DHA) enrichment.89 In addition, 
oral administration of SCFAs to mice during pregnancy and weaning significantly reduced 
allergic airway inflammation in the offspring.74 These results obtained from murine studies 
raise the possibility that early-life patterns of microbial colonization are capable of altering 
immune responses at various mucosal surfaces and therefore influence the subsequent 
development of allergic diseases.

Strategies deployed in early infancy to modulate the microbiota or emulate its 
downstream effects have shown some promise in prevention and treatment. One of the 
immunostimulants is OM-85 (Broncho-Vaxom), a standardized bacterial lysate derived from 
21 respiratory pathogenic strains from 5 genera (Moraxella, Hemophilus, Klebsiella, Staphylococcus, 
and Streptococcus), found in human airways. Oral administration of OM-85 has been shown 
to reduce wheezing episodes triggered by acute respiratory tract infection in children.90 The 
ongoing ORal Bacterial Extract (ORBEX) Trial (NCT02148796) has been set up to investigate 
whether orally applied OM-85 can increase the time to occurrence of the first wheezing 
episode in lower respiratory tract illness in infants at increased risk of asthma.91 Meanwhile, 
we are awaiting the results of Milk Against Respiratory Tract Infections and Asthma 
(MARTHA) trial,92 in which over 3,000 infants (6-12 months old) will be recruited from 
the general population and receive mildly pasteurized milk or commercially available milk 
until the age of 3 years. The primary outcome in this MARTHA trial is to evaluate whether 
consumption of minimally processed milk is effective to prevent development of respiratory 
infections, asthma, and allergies at age 5 years. These prospective interventions will help 
us elucidate the role of immunomodulatory agents on the development of allergies in the 
general population at high risk.

Oral tolerance induction approaches
Promising data from epidemiological observations and murine studies have founded the 
basis for randomized controlled trials (RCT). The developmental atopic march generally 
starts with atopic dermatitis and food allergy. Therefore, there has been a growing body 
of RCTs targeted at food allergy to induce immune tolerance in early childhood. Although 
peanut allergy is not common in Asia, the Learning Early about Peanut Allergy (LEAP) study 
has provided an encouraging example for a preventative approach for allergies. The LEAP 
study demonstrated that early introduction of peanut resulted in a substantial reduction in 
risk of developing peanut allergy at 60 months of age among high-risk infants.93 A similar 
finding has been repeated in the Japanese prevention of egg allergy in high-risk infants with 
atopic dermatitis (PETIT) study, where introduction of heated egg in a stepwise manner 
along with aggressive eczema treatment proved to be safe and favorable to prevent hen’s egg 
allergy in high-risk infants.94 These findings emphasize the significance of active tolerance 
induction and immune resilience, rather than passive avoidance, of potentially allergenic 
foods to prevent allergic immune responses. Whereas early introduction of allergenic foods 
has been shown to be an efficacious allergy prevention strategy in a high-risk population, the 
evidence in the general population is less compelling. The Enquiring about Tolerance (EAT) 
Study enrolled children from the general population in the United Kingdom found a trend 
toward reduction in allergy, but the difference did not reach statistical significance intention-
to-treat (ITT) analyses.95 In contrast, the Hen’s Egg Allergy Prevention (HEAP) study that 
included infants from the general population found increased risk of allergic reactions, 
including anaphylaxis, in the egg consuming group.96 In addition, differences in the form of 
allergenic food (pasteurized raw egg white powder in the HEAP study) may account for the 
discrepancies between studies. For tolerance induction, there may be a therapeutic window 
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of opportunity between 4 to 6 months of age, typically before multiple allergic sensitizations 
occur.97 There is still a paucity of clinical trials on food triggers specific for the Asian 
population, considering distinct dietary preferences.

FUTURE PERSPECTIVES

We need to interpret with caution that the environmental factors discussed above are 
explicit representatives of myriads of potentially relevant elements. The precise protective 
mechanisms of these factors require in-depth mechanistic studies. The asthma-protective 
mechanisms related to a rural/farming lifestyle are emerging as a potential target for 
precision medicine, including treatments specifically stratified for the preexisting 
immunological and genetic background, already identified host-environment interactions, 
or a combination of these. Large-scale cohort studies recruiting pregnant women from 
areas where the traditional rural lifestyle still retains and following up their offspring for 
longitudinal sampling for immune maturation, microbial development and exposome 
evaluation would help fill current research gaps.

Management of allergies can be rather challenging in Asia for several reasons. For example, 
Asia is renowned for its unique dietary practice with a wide variety of food ingredients. 
Asian delicacies, such as edible bird’s nests, insects (silkworm pupa, locusts, and cicadas), 
bullfrogs, and turtles, can be the causes of anaphylaxis,98,99 rendering the diagnosis difficult. 
To comprehensively evaluate the trends, triggers, and management of anaphylaxis across 
Asian countries, the APAPARI Anaphylaxis Registry was established in 2018, and initially 
participated countries were Hong Kong, Japan, Singapore, South Korea, and Thailand. Data 
from the APAPARI Anaphylaxis Registry collected by standardized methodology will form 
the basis for further exploration of factors influencing anaphylaxis prevalence and preventive 
strategies. In addition, the problem of under-recognition and under-reporting still exists in 
some developing or underdeveloped countries in Asia.100 Structured training of specialists 
in the field of pediatric allergy and clinical immunology is therefore required to improve the 
level of clinical care and research in areas with underdeveloped diagnostic expertise.

CONCLUDING REMARKS

Given the large childhood population, wide variations in economic development across 
countries and regions, along with the pronounced differences in dietary practice and 
environmental exposure, the Asia-Pacific region provides ample opportunities for allergy 
research ranging from large-scaled epidemiological observational studies and prospective 
interventions to in-depth mechanistic investigations. As urbanization, westernization, 
and industrialization will inevitably continue in the region, we can anticipate a major rise 
in allergic diseases in this densely populated region. Abating potentially modifiable risk 
exposure, such as air pollution, should be prioritized in both developing and developed 
countries in the Asian region. In this regard, the government must implement adequate 
legislations to reduce the detrimental components of the exposome and minimize their 
effects on human health. Meanwhile, re-introduction of protective factors that were once 
part of the traditional farming lifestyle might provide new insight into allergy prevention. 
Current cumulating evidence is derived from epidemiological observations as well as murine 
studies and requires translation into prospective interventions and clinical applications. A 
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single “magic bullet” seems unlikely to account for allergy protection, but rather it will be 
a combined effect derived from complex interactions among various environmental and 
genetic factors as well as epigenetic adaptation promoting balanced immune homeostasis. 
Birth cohort studies with long-term follow-ups and multi-omics approaches are needed to 
address when, why, and how environmental drivers alter each individual’s immunological 
maturation profile and genetic predisposition in allergy development. Better understanding 
of the phenotypes, endotypes, genotypes and environmental determinants of allergic 
disorders and the interplay among these factors is critical for the implementation of 
precision medicine and development of novel primary preventive strategies.
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