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Abstract 

Background:  Circular RNAs (circRNAs) play important roles in many biological processes. However, the detailed 
mechanism underlying the critical roles of circRNAs in cancer remains largely unexplored. We aim to explore the 
molecular mechanisms of circRTN4 with critical roles in pancreatic ductal adenocarcinoma (PDAC).

Methods:  CircRTN4 expression level was examined in PDAC primary tumors. The oncogenic roles of circRTN4 in 
PDAC tumor growth and metastasis were studied in mouse tumor models. Bioinformatics analysis, luciferase assay 
and miRNA pulldown assay were performed to study the novel circRTN4-miRNA-lncRNA pathway. To identify cir‑
cRTN4-interacting proteins, we performed circRNA-pulldown and mass spectrometry in PDAC cells. Protein stability 
assay and 3-Dimensional structure modeling were performed to reveal the role of circRTN4 in stabilizing RAB11FIP1.

Results:  CircRTN4 was significantly upregulated in primary tumors from PDAC patients. In vitro and in vivo functional 
studies revealed that circRTN4 promoted PDAC tumor growth and liver metastasis. Mechanistically, circRTN4 inter‑
acted with tumor suppressor miR-497-5p in PDAC cells. CircRTN4 knockdown upregulated miR-497-5p to inhibit the 
oncogenic lncRNA HOTTIP expression. Furthermore, we identified critical circRTN4-intercting proteins by circRNA-
pulldown in PDAC cells. CircRTN4 interacted with important epithelial-mesenchymal transition (EMT)- driver RAB‑
11FIP1 to block its ubiquitination site. We found that circRTN4 knockdown promoted the degradation of RAB11FIP1 
by increasing its ubiquitination. Also, circRTN4 knockdown inhibited the expression of RAB11FIP1-regulating EMT-
markers Slug, Snai1, Twist, Zeb1 and N-cadherin in PDAC.

Conclusion:  The upregulated circRTN4 promotes tumor growth and liver metastasis in PDAC through the novel 
circRTN4-miR-497-5p-HOTTIP pathway. Also, circRTN4 stabilizes RAB11FIP1 to contribute EMT.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of 
the leading causes of cancer mortality worldwide [1]. 
Delayed diagnosis and ineffective treatment regimen fre-
quently result in poor prognosis with low overall survival 
(9%) in PDAC patients [2–4]. Therefore, understanding 
the mechanism underlying PDAC initiation and progres-
sion is crucial for the development of novel diagnostic 
biomarkers and therapeutic targets.

Circular RNAs (circRNAs) represent a class of non-
coding RNAs with the covalently joining of the 3′ end of 
a transcript to its 5′ end in a circular structure. Emerging 
studies identified important roles of circRNAs dysregula-
tion in cancer progression [5–7]. Although circRNAs are 
frequently reported to regulate gene expression through 
functioning as microRNA (miRNA) sponges [8], many 
circRNAs have much lower abundance than miRNAs. 
This indicates that circRNAs may have additional molec-
ular mechanisms in regulating gene expression. Particu-
larly, the detailed functions and critical mechanisms by 
circRNAs in PDAC are still largely unexplored.

We profiled circRNAs expression in PDAC to iden-
tify circRNAs that played important roles in PDAC [9]. 
One of the upregulated circRNAs was examined in cur-
rent study. circRTN4 (also named as hsa_circ_0001006), 

which was derived from the exon 4 and 5 of Reticulon 4 
(RTN4) mRNA, was frequently upregulated in PDAC 
cells and primary tumors. We found that circRTN4 pro-
moted PDAC cell growth, migration, and invasion. Also, 
in vivo studies demonstrated that circRTN4 promoted 
tumor growth and liver metastasis. Mechanistically, we 
identified a novel circRNA-miRNA-long non-coding 
RNA (lncRNA) pathway in PDAC. CircRTN4 promoted 
the oncogenic lncRNA HOXA Transcript At The Distal 
Tip (HOTTIP) expression by sponging miR-497-5p. In 
additional to regulating lncRNA expression, circRTN4 
interacted with RAB11FIP1 to enhance its stability for 
promoting epithelial-mesenchymal transition (EMT) in 
PDAC. Collectively, our results demonstrated that cir-
cRTN4 played critical roles in PDAC progression through 
promoting the expression of HOTTIP and enhancing the 
stability RAB11FIP1 for EMT. Our results broaden the 
understanding on the roles of circRNAs in regulating 
gene expression in PDAC.

Methods
Clinical samples and mammalian cell lines
88 pairs of PDAC primary tumor and adjacent non-tumor 
tissues were obtained from patients who underwent pan-
creatic resection at the Prince of Wales Hospital, Hong 
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Kong. All specimens were fixed and embedded into paraf-
fin. HEK293 cells and PDAC cell lines PANC-1, CFPAC-
1, SW1990, CAPAN-2, and BxPC-3 were obtained from 
American Type Culture Collection (Manassas, VA, USA). 
Human pancreatic ductal epithelial (HPDE) cell line was 
generously provided by Dr. Tsao (University Health Net-
work, Ontario Cancer Institute and Princess Margaret 
Hospital Site, Toronto) [10]. All cell lines were verified 
by short tandem repeat profiling at the GENEWIZ, Inc. 
within 6 months of use, and were cultured under the con-
dition as described previously [9].

Plasmid and oligonucleotide transfection
CircRNA overexpression plasmid was constructed by 
cloning the RTN4 exon 4 and 5 into pcDNA3.1 (+) cir-
cRNA mini vector, which was a gift from Jeremy Wilusz 
(Addgene plasmid # 60648) [9, 11]. pmiR-circRTN4 
reporter plasmid for luciferase assay was constructed by 
cloning circRTN4 sequence into region directly down-
stream of the firefly luciferase gene in the pmiR-Reporter 
(Promega, Madison, WI, USA). Mutation in the miRNA 
binding site of the pmiR-circRTN4 reporter plasmid and 
the RAB11FIP1 binding site of the pcDNA3.1 (+)-cir-
cRTN4 plasmid were generated using KAPA HiFi DNA 
Polymerase (KapaBiosystem, St. Louis, MO, USA) and 
primers with the mutation site. SiRNAs and miRNAs 
mimics were purchased from GenePharma (Shanghai, 
China). The sequences were presented in the Supplemen-
tary Table  1. Plasmids, siRNAs and miRNAs transfec-
tion were performed by Lipofectamine 3000 (Invitrogen, 
Waltham, MA, USA), according to the manufacturer’s 
protocol.

Lentiviral production and infection
Construction of the lentiviral vector for shRNA knock-
down and the establishment of stable knockdown 
CFPAC-1 cell lines were described previously [12]. 
Briefly, shRNA sequence targeting circRTN4 was cloned 
into lentiviral transfer vector. The VSV-G-pseudotyped 
lentivirus was produced by co-transfecting packaging 
vectors: pCMV-VSVG, pRSV-REV and pMDLg/pRRE 
with transfer vectors in HEK293T cells. CFAPC-1 cells 
were infected with sh-circRTN4 lentivirus with hex-
adimethrine bromide (Polybrene) (Sigma, St. Louis, MO, 
USA) for 72 h. Selection with 800 μg/ml geneticin for 
2 weeks was performed for establishing the stable sh-
circRTN4 clone. The efficiency of knockdown was con-
firmed by qRT-PCR.

In vivo PDAC mouse model
For tumor growth assay, 6 × 105 CFPAC-1 cells with sh-
circRTN4 or scramble control (shSCR) were resuspended 
in 1× PBS with 20% matrigel (Corning, New York, NY, 

USA) and were injected subcutaneously into the right 
flank of the randomized male BALB/c nude mice aged 4 
to 6 weeks (seven mice per group) [9]. After tumor for-
mation, tumor growth was monitored every 3–4 days, 
and the tumor volume was measured and calculated by 
the equation: volume = (Length x width2) / 2. Finally, 
mice were sacrificed, and tumors were excised. Tumor 
weight was measured. Tumor tissues were collected for 
analysis.

For tumor metastasis assay, 5 × 105 CFPAC-1 cells 
with sh-circRTN4 or shSCR were resuspended in 1× 
PBS with 20% matrigel and were injected orthotopically 
to the head of the pancreas of randomized male BALB/c 
nude mice aged 4 to 6 weeks (four mice per group) [9]. 
The establishment and growth of tumor were monitored 
every 3–4 days. When the experiment reached the end-
point, mice were sacrificed. Tumors and organs were col-
lected and examined for metastasis.

Protein stability assay
Analysis of protein stability was performed using 
cycloheximide (CHX) (Sigma) [13]. After circRTN4 
knockdown in PANC-1 cells for 72 h, cells were treated 
with 100 μg/ml CHX for 2, 4 and 8 h. The level of RAB-
11FIP1 and GAPDH at each time-point were analyzed by 
immunoblotting.

Immunoblotting
The whole cell extract was prepared by lysing cells in 
RIPA lysis buffer with proteinase inhibitors (Roche, 
Basel, Switzerland) and phosphatase inhibitor (Thermo 
Fisher Scientific, Waltham, MA, USA). Proteins were 
resolved by SDS-PAGE at different percentages, trans-
ferred to PVDF membrane and immunoblotted over-
night at 4 °C with antibodies against HOXA13 (rabbit; 
ab106503 Abcam, Cambridge, UK; 1:1000); RAB11FIP1 
(rabbit; 16,778–1-AP Proteintech, Rosemont, IL, USA; 
1:1000); N-cadherin (mouse; 14–3259 eBioscience, 
Waltham, MA, USA; 1:1000); PARP (rabbit; #9542 Cell 
Signaling Technology, Danvers, MA, USA; 1:1000); Bcl-2 
(rabbit; 04–436 Millipore, Burlington, MA, USA; 1:1000); 
and GAPDH (rabbit; #5174 Cell Signaling Technology; 
1:1000). Chemiluminescent signals were developed using 
Clarity™ Western ECL Substrate (Bio-Rad, Hercules, CA, 
USA).

Immunohistochemical staining
Immunohistochemical staining was performed using 
Histostain-Plus IHC Kit, HRP, broad spectrum (Life 
Technologies, Carlsbad, CA, USA) [14]. The sections 
were probed with antibodies against Ki67 (rabbit; 
NB500–170 Novus Biologicals, Centennial, CO, USA; 
1:100); Bcl-2 (rabbit; 04–436 millipore; 1:100); HOXA13 
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(rabbit; ab106503 Abcam; 1:100); N-cadherin (mouse; 
14–3259 eBioscience; 1:100), were counter-stained with 
hematoxylin, and were mounted. A scoring system, based 
on the percentage of positive cells and staining intensity 
under the microscope with 100X magnification, was used 
to quantify the staining. 4 categories (0, 1, 2, and 3) were 
demoted as 0%, 1–10%, 10–50, and > 50% respectively.

Identification of circRTN4‑interacting proteins
CircRTN4-interacting proteins in PANC-1 cells were 
identified as described previously [9]. Briefly, in vitro 
transcribed circRTN4 and two negative controls (RTN4 
and circGreen Fluorescent Protein (circGFP)) were used 
incubated with PANC-1 cell lysate at 4 °C overnight 
with rotation. The pulled-down proteins were identified 
by Dionex Ultimate3000 nanoRSLC system coupled to 
Thermo Fisher Orbitrap Fusion Tribid Lumos.

RNA immunoprecipitation
RNA immunoprecipitation was performed by Magna 
RIP™ RNA-Binding Protein Immunoprecipitation Kit 
(Millipore) according to the manufacturer’s protocol. 
Briefly, cells were incubated magnetic beads labelled 
with antibody against RAB11FIP1 (rabbit; 16,778–1-AP 
Proteintech) or TWF1 (mouse; sc-376,539 Santa Cruz 
Biotechnology, TX, USA) overnight at 4 °C. RNA was 
purified by phenol:chloroform:isoamylalcohol (Invitro-
gen). qRT-PCR was used to analyze the enrichment of 
RNAs with target proteins.

Modelling of the circRTN4‑RAB11FIP1 interaction
The 3-Dimensional structure of circRTN4 and RAB-
11FIP1 were modelled by the computational methods 
3dRNA [15] and I-TASSER [16] respectively. Then, PRId-
ictor [17] and HDOCK [18] with the default settings were 
used to model the circRTN4-RAB11FIP1.

Analysis of publicly available datasets
Publicly available circRTN4 expression datasets in colo-
rectal cancer (CRC) (GSE126095) and laryngeal squa-
mous cell carcinoma (GSE142083) were obtained from 
Gene Expression Omnibus (GEO) [19, 20]. CircRTN4 
expression data in different cancer types were obtained 
from MiOncoCirc [21].

Statistical analysis
Statistical analysis was performed by GraphPad Prism 7. 
Two-tailed student’s t-test, chi square t-test and Pearson’s 
correlation were used as appropriate. Data were shown in 
mean ± SD. P-value of less than 0.05 was considered as 
statistically significant.

Full methods were described in Supplementary 
information.

Results
CircRTN4 was upregulated in PDAC
CircRNAs profiling in non-tumor HPDE cell and PDAC 
PANC-1, SW1990 cells was performed to identify circR-
NAs that play critical roles in PDAC [9]. Among these 
dysregulated circRNAs, circRTN4 was significantly 
upregulated in PDAC cells (Fig. 1A). Also, we found that 
circRTN4 was significantly upregulated in 60% of the 
PDAC primary tumors (53 out of 88), while 18% of PDAC 
patients showed downregulated circRTN4 (16 out of 88), 
and 22% of PDAC patients showed unchanged circRTN4 
(19 out of 88) (Fig. 1B). Furthermore, we correlated cir-
cRTN4 expression level with clinical characteristics. We 
found that PDAC patients with liver metastasis had sig-
nificantly upregulated circRTN4 expression level in their 
primary tumors (Fig.  1C), suggesting that the upregu-
lated circRTN4 in PDAC primary tumors may involve 
in liver metastasis. Moreover, male PDAC patients and 
patients aged 60 or above had further upregulated cir-
cRTN4 expression level (Table 1). In addition to PDAC, 
we found that circRTN4 was frequently upregulated 
in multiple cancers, including colorectal cancer, laryn-
geal squamous cell carcinoma, head-neck squamous cell 
carcinoma, ovarian cancer, and kidney cancer (Supple-
mentary Fig.  1A-C) [19–21]. Collectively, these results 
suggested that the upregulated circRTN4 play important 
roles in PDAC.

We next characterized circRTN4 as a novel circRNA by 
examining its physical circular structure. CircRTN4 was 
formed by the back-splicing of exon 4 and exon 5 of RTN4 
(Fig. 1D). Outward-facing divergent primers and inward-
facing convergent primers were designed to examine the 
circular structure of circRTN4 (Supplementary Fig. 2A). 
Both the divergent and convergent primers amplified a 
product of expected size using cDNA from PDAC cells, 
whereas only the convergent primers amplified a prod-
uct using genomic DNA from PDAC cells (Supplemen-
tary Fig. 2B). The presence of back-splicing junction was 
further confirmed by Sanger sequencing (Supplementary 
Fig. 2C). Moreover, we found that circRTN4 was resistant 
to the digestion by RNase R which specifically degraded 
linear RNAs but not the circRNAs (Supplementary 
Fig. 2D). The reduced efficiency of reverse-transcription 
by oligo-dT primers due to the lack of poly(A) tail also 
demonstrated the circularity of circRTN4 (Supplemen-
tary Fig. 2E). These results confirmed the actual existence 
of circRTN4 and differentiated it from genomic rear-
rangement. In addition, the circular structure provided 
enhanced stability to circRTN4 compared to its paren-
tal RTN4 mRNA. (Supplementary Fig. 2F). Also, coding 
potential analysis suggested that circRTN4 was lack of 
protein coding ability (Supplementary Table 3). Further-
more, cellular distribution of circRTN4 was examined 
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by measuring its expression in different cellular com-
partments. We found that the majority of circRTN4 was 
present in the cytoplasm of PDAC cells (Supplementary 
Fig.  2G). Collectively, we characterized the upregulated 
circRTN4 as a novel non-coding circRNA in PDAC.

CircRTN4 promoted PDAC cell growth, migration 
and invasion in vitro
To examine the functional roles of circRTN4 in PDAC, 
we used small interfering RNA (siRNA) which specifically 

targeted the back-splicing junction of circRTN4 without 
altering the expression of its parental RTN4 mRNA (Sup-
plementary Fig. 3A and B). CircRTN4 knockdown signifi-
cantly inhibited PDAC cell growth and clonogenic ability 
(Fig. 2A and B). The suppression in cell growth was due 
to cell cycle arrest in G0-G1 phase and the induction of 
apoptosis (Fig. 2C-E). PDAC cell migration and invasion 
were also restrained after circRTN4 knockdown (Fig. 2F 
and G). In addition, circRTN4 knockdown by the lentivi-
ral sh-circRTN4 vector inhibited cell growth, migration, 

Fig. 1  circRTN4 is upregulated in PDAC cells and primary tumors and associates with liver metastasis. A CircRTN4 was upregulated in a panel 
of PDAC cells, compared to non-tumor HPDE cells. B CircRTN4 was significantly upregulated in PDAC primary tumors, compared to respective 
adjacent non-tumor tissues (n = 88). CircRTN4 was upregulated in 60% of the PDAC primary tumors (53 out of 88), while 18% of PDAC patients 
showed downregulated circRTN4 (16 out of 88), and 22% of PDAC patients showed unchanged circRTN4 (19 out of 88). C CircRTN4 was 
upregulated in PDAC primary tumors from patients with liver metastasis. D CircRTN4 was formed by back-splicing of exon 4 and 5 of RTN4 mRNA. 
Data represent mean ± SD from at least three independent experiments (*p < 0.05; **p < 0.01***p < 0.001)
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and invasion in PDAC cells (Supplementary Fig.  3C-G). 
On the other hand, circRTN4 overexpression in non-
tumor HPDE cells significantly promoted cell growth, 
clonogenic ability and cell invasion (Supplementary 
Fig.  4A-D). Collectively, our results demonstrated the 
importance of circRTN4 in promoting PDAC cell growth 
and invasion.

CircRTN4 promoted PDAC tumor growth and liver 
metastasis in vivo
To investigate the functional roles of circRTN4 in PDAC 
in vivo, mice xenograft model was generated by subcu-
taneous injection of CFPAC-1 sh-circRTN4 cells. Cir-
cRTN4 knockdown by shRNA significantly suppressed 
tumor growth (Fig. 3A-C). The decrease in cell prolifera-
tion marker Ki67 and anti-apoptotic protein Bcl-2 also 
indicated the inhibition of tumor growth by circRTN4 
knockdown (Fig. 3D). Since in vitro studies revealed that 
circRTN4 promoted PDAC migration and invasion, we 
constructed a metastatic mice model through orthotopic 
injection of CFPAC-1 sh-circRTN4 cells to the pancreas. 
We found that circRTN4 knockdown inhibited PDAC 
metastasis to the liver (Fig. 3E). Collectively, our results 
suggested the functional importance of circRTN4 in pro-
moting PDAC tumor growth and liver metastasis.

CircRTN4 promoted lncRNA HOTTIP expression 
by sponging miR‑497‑5p
We next investigated the detailed mechanism of cir-
cRTN4-mediated PDAC progression. CircRNAs fre-
quently function as miRNA sponges in regulating gene 

expression, we investigated whether circRTN4 also 
functioned as a miRNA sponge in promoting PDAC 
progression. Bioinformatics analysis by TargetScan 
revealed the potential miRNA binding sites on circRTN4 
(Fig.  4A) [22]. To prove the circRTN4-miRNA interac-
tion, luciferase assay using pmiR-circRTN4 reporter was 
performed after transfecting the miRNA mimics. Trans-
fection of miR-497-5p mimics resulted in a reduction 
in luciferase activity (Fig.  4B). Conversely, mutating the 
miR-497-5p binding site of the pmiR-circRTN4 reporter 
could restore the luciferase activity (Fig.  4C). Cir-
cRTN4-miR-497-5p interaction was further validated by 
miRNA pull-down. Biotin-labelled miR-497-5p remark-
ably enriched circRTN4 in PANC-1 cells (Fig. 4D). These 
results suggested that circRTN4 interacted with miR-
497-5p in PDAC cells. We next studied the functional 
roles of circRTN4-miR-497-5p interaction in PDAC. We 
demonstrated that circRTN4 knockdown increased the 
expression of miR-497-5p, whereas transfecting miR-
497-5p mimics did not alter the expression of circRTN4 
(Fig.  4E and F). Collectively, our results suggested that 
circRTN4 functioned as a sponge of miR-497-5p in 
PDAC cells.

MiR-497-5p functions as a tumor suppressor in PDAC 
through targeting the oncogenic HOTTIP-HOXA13 
pathway [23, 24]. Since circRTN4 acts as a sponge for 
miR-497-5p, we hypothesized that circRTN4 regulates 
HOTTIP-HOXA13 pathway via sponging miR-497-5p 
in PDAC. CircRTN4 knockdown significantly inhibited 
the expression of HOTTIP and HOXA13 (Fig. 4G-I, Sup-
plementary Fig. 5A). Moreover, circRTN4 overexpression 

Table 1  Correlations Between circRTN4 and Clinicopathologic Features in PDAC

Clinicopathological Characteristics Downregulated circRTN4 
level

Unchanged circRTN4 Upregulated circRTN4 P-value

Gender
  Female 12 (34%) 6 (17%) 17 (49%) 0.0085
  Male 4 (7%) 13 (25%) 36 (68%)

Age, years
   < 60 6 (24%) 9 (36%) 10 (40%) 0.044
   ≥ 60 10 (16%) 10 (16%) 43 (68%)

Tumor size, cm
   ≤ 4 6 (12%) 14 (27%) 32 (61%) 0.095

   > 4 10 (28%) 5 (14%) 21 (58%)

Histological grade
  Poorly differentiated 2 (50%) 1 (25%) 1 (25%) 0.053

  Moderately differentiated 8 (12%) 15 (22%) 44 (66%)

  Well differentiated 4 (40%) 1 (10%) 5 (50%)

Tumor stage
  I-II 13 (18%) 18 (25%) 42 (57%) 0.393

  III-IV 3 (21%) 1 (7%) 10 (72%)
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promoted the expression of HOTTIP and HOXA13 in 
HPDE cells (Supplementary Fig.  5B). In addition, trans-
fection of miR-497-5p mimics rescued the effects of 
circRTN4 on the expression of HOTTIP and HOXA13 
(Fig.  4J). Importantly, circRTN4 level was positively 
correlated to the upregulated HOTTIP level in PDAC 
primary tumors (Fig.  4K). These results suggested that 
circRTN4 functioned as a sponge of miR-497-5p to pro-
mote the expression of HOTTIP in PDAC.

CircRTN4 stabilized RAB11FIP1 to promote EMT
Although circRNAs-miRNAs interaction is the most 
reported roles of circRNAs in PDAC, many circRNAs are 
found to have much lower abundance than miRNAs. This 
suggests that circRNAs may have additional mechanisms 
in PDAC. Therefore, to further investigate the roles of cir-
cRTN4 in PDAC progression, we performed circRTN4-
pull down to identify circRTN4-interacting proteins in 
PDAC cells. In vitro-transcribed circRTN4 functioned 
as a probe to pull down circRTN4-interacting proteins 
in PDAC cells. Mass-spectrometry analysis identified 99 
proteins significantly enriched by circRTN4 (Fig.  5A). 
In addition, analysis using the STRING database [25] 
revealed 90 protein-protein interactions (PPI) for the 
circRTN4-interacting proteins (Supplemental Fig.  6A). 
Gene ontology analysis also suggested the critical roles 
of circRTN4-interacting proteins in multiple biological 
processes, including cadherin binding, cell adhesion and 
translation initiation (Supplementary Fig. 6B).

Particularly, we found that circRTN4 interacted with 
RAB11FIP1, which plays important roles in promot-
ing cell migration and invasion in cancers [26–29]. Cir-
cRTN4-RAB11FIP1 interaction was further validated by 
RNA immunoprecipitation assay in PDAC cells (Fig. 5B). 
Bioinformatics analysis by PRIdictor also revealed the 
RAB11FIP1-binding site on circRTN4 (Supplementary 
Fig. 7) [17]. Mutating the RAB11FIP1-binding site on cir-
cRTN4 significantly inhibited the circRTN4-RAB11FIP1 
interaction in PANC-1 cells (Fig.  5C). These confirmed 
that circRTN4 interacted with RAB11FIP1 in PDAC cells. 
We then investigated the functions of this interaction in 
PDAC. We found that knockdown of circRTN4 down-
regulated the RAB11FIP1 expression, without affecting 
its mRNA level (Fig.  5D and E). Importantly, circRTN4 
knockdown decreased the stability of RAB11FIP1 in 

PDAC cells (Fig.  5F). We then further investigated the 
detailed mechanism on how circRTN4 regulated the sta-
bility of RAB11FIP1. Previous study showed that ubiqui-
tination at the Lysine578 (Lys578) residue of RAB11FIP1 
is required for its degradation [30]. Notably, we revealed 
the 3-Dimensional structure of circRTN4-RAB11FIP1 
interaction by HDOCK [18], and found that circRTN4 
blocked the ubiquitination site Lys578 on RAB11FIP1 
(Fig.  5G). Also, circRTN4 knockdown in PDAC cells 
promoted the ubiquitination of RAB11FIP1 (Fig.  5H). 
Importantly, circRTN4 level was positively correlated to 
the RAB11FIP1 level in PDAC primary tumors (Fig. 5I). 
These suggested that circRTN4 interacted with RAB-
11FIP1 and enhanced the stability of RAB11FIP1 through 
inhibiting its ubiquitination in PDAC.

RAB11FIP1 plays important roles in promoting cancer 
migration and invasion through regulating the expres-
sion of EMT-related proteins (Supplementary Fig.  8A 
-C) [31, 32]. Therefore, we hypothesized that circRTN4 
stabilizes RAB11FIP1 in regulating EMT in PDAC. 
We demonstrated that circRTN4 knockdown inhib-
ited the expression of N-cadherin in PDAC cells and 
mice tumors (Fig. 6A and B). Also, we found the differ-
ential expression of EMT-related transcription factors 
in circRTN4-depleted PDAC cells. CircRTN4 knock-
down inhibited expression of transcription factors Snail 
Family Transcriptional Repressor 2 (Slug), Snail Fam-
ily Transcriptional Repressor 1 (Snai1), Twist Family 
BHLH Transcription Factor 1 (Twist) and Zinc Finger 
E-Box Binding Homeobox 1 (Zeb1) (Fig. 6C). In addition, 
knockdown of RAB11FIP1 rescued the effects of cir-
cRTN4 on the expression of Slug, Snai1, Twist and Zeb1 
(Fig. 6D). Accordingly, we demonstrated that Slug, Snai1, 
Twist and Zeb1 were upregulated in PDAC primary 
tumors (Fig.  6E). A positive correlation was also found 
between Slug, Snai1, Twist, Zeb1 and circRTN4 expres-
sion (Fig. 6E). Taken together, our results suggested that 
circRTN4 stabilized RAB11FIP1 by blocking its ubiqui-
tination to promote the expression of N-cadherin, Slug, 
Snai1, Twist and Zeb1 for EMT in PDAC.

Discussion
CircRNAs, as the novel member of non-coding RNA 
family, play vital roles in multiple cancers [6–8, 33]. With 
limited knowledge on the roles of circRNAs in PDAC, we 

(See figure on next page.)
Fig. 2  circRTN4 promotes PDAC cell growth, migration, and invasion. A CircRTN4 knockdown inhibited PDAC cell growth. B CircRTN4 knockdown 
inhibited PDAC clonogenic ability. C Cell cycle was arrested at G0-G1 phase after circRTN4 knockdown in PANC-1 cells. D CircRTN4 knockdown 
resulted in the increase in Annexin V staining (red) in PDAC cells. Nuclei were stained by DAPI (blue). E Apoptosis markers PARP was cleaved, and 
Bcl-2 was reduced after circRTN4 knockdown in PANC-1 cells. F, G CircRTN4 knockdown inhibited (F) cell migration and (G) cell invasion in PDAC 
cells. Cells in invasion assay were stained by crystal violet. Data represent mean ± SD from at least three independent experiments (*p < 0.05; 
**p < 0.01; ***p < 0.001)
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Fig. 2  (See legend on previous page.)
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previously performed circRNA sequencing to identify 
differentially expressed circRNAs in PDAC cells [9]. One 
of the upregulated circRNAs, circRTN4, was examined in 
detail in the current study. RTN4 (also named as Nogo), 
which is a myelin-associated endoplasmic reticulum pro-
tein, is well-known for its function in the nervous system 
as an inhibitor of axon regeneration [34–36]. Moreo-
ver, differential expression of RTN4 is found in multiple 
cancers, which may function as a potential prognostic 

marker for gastric cancer [37–40]. Also, RTN4 promotes 
cancer progression by facilitating tumor proliferation 
and drug resistance [38, 39]. Notably, the exon 2 and 3 of 
RTN4 mRNA can be circularized to form a protein-cod-
ing circRNA: hsa_circ_0054598 in brain [41, 42]. Also, 
exosomal hsa_circ_0054598 may be used to treat osteo-
porosis [43]. In the current study, we demonstrated that 
another circRTN4, which is formed by the back-splicing 
of exon 4 and exon 5 of RTN4 mRNA, is significantly 

Fig. 3  circRTN4 promotes PDAC tumor growth and liver metastasis. A-C CircRTN4 knockdown in CFPAC-1 cells inhibited tumor growth. (A) 
tumor volume and (B) mass of mice subcutaneous xenograft after knockdown of circRTN4 at day 34. (C) Hematoxylin and eosin staining of 
the subcutaneous xenograft tumors. D CircRTN4 knockdown in mice subcutaneous tumors decreased the cell proliferation marker Ki67 and 
anti-apoptotic protein Bcl-2 level, revealed by immunohistochemical staining. E CircRTN4 knockdown in mice orthotopic tumors inhibited liver 
metastasis. Representative images of liver metastasis were shown. Data represent mean ± SD from at least three independent experiments 
(*p < 0.05; **p < 0.01; ***p < 0.001)

(See figure on next page.)
Fig. 4  circRTN4 promotes HOTTIP expression by sponging miR-497-5p in PDAC. A Schematic diagram showing the putative binding sites of 
circRTN4 on miR-497-5p. B Reduction of luciferase activity of circRTN4-reporter in HEK293 cells co-transfected with miR-497-5p mimics with 
potential binding sites on circRTN4. C Mutating the miR-497-5p binding site on circRTN4-reporter restored the luciferase activity in HEK293 
cells co-transfected with miR-497-5p mimics. D CircRTN4 was enriched by biotin-labelled miR-497-5p mimics in PANC-1 cells. E CircRTN4 
knockdown increased the expression of miR-497-5p in PANC-1 cells. F Transfecting miR-497-5p mimics did not alter the expression of circRTN4 
in PANC-1 cells. G-H (G) HOTTIP and (H) HOAX13 level were reduced after circRTN4 knockdown in PDAC cells. I CircRTN4 knockdown in mice 
subcutaneous tumors inhibited HOXA13 expression, revealed by immunohistochemical staining. J HOTTIP and HOXA13 expression were rescued in 
circRTN4-overexpressing HPDE cells after transfecting miR-497-5p mimics. K The upregulated HOTTIP were positively correlated with circRTN4 level 
in PDAC primary tumors. Data represent mean ± SD from at least three independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001)
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Fig. 4  (See legend on previous page.)
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Fig. 5  circRTN4 stabilizes RAB11FIP1 by preventing its ubiquitination and degradation. A Heat-map showing 99 circRTN4-interacting proteins 
in PDAC. Biotin-labelled circRTN4, RTN4 mRNA, circGFP were used to pull down circRTN4-interacting proteins. Mass spectrometry analysis was 
performed to identify the interacting proteins. B CircRTN4 interacted with RAB11FIP1 in PDAC cells, as revealed by RIP assay. C Bioinformatics 
analysis by PRIdictor revealed the RAB11FIP1-binding site (The seed region of interaction was in red) on circRTN4. Mutating RAB11FIP1-binding site 
on circRTN4 (The mutated seed region of interaction was in green) inhibited circRTN4-RAB11FIP1 interaction in PANC-1 cells, as revealed by circRNA 
pulldown assay. D CircRTN4 knockdown inhibited RAB11FIP1 expression in mice xenograft. E CircRTN4 knockdown did not affect RAB11FIP1 mRNA 
level in PDAC cells. F CircRTN4 knockdown decreased the stability of RAB11FIP1 after inhibition of protein synthesis by cycloheximide in PANC-1 
cells. G 3-Dimensional structure of the circRTN4-RAB11FIP1 interaction revealed that circRTN4 blocked the ubiquitination site Lys578 of RAB11FIP1. 
H Immunoprecipitation with anti-RAB11FIP1 antibody in PANC-1 cells after circRTN4 knockdown, followed by immunoblotting analysis with 
anti-ubiquitin or anti-RAB11FIP1 antibody. CircRTN4 knockdown increased ubiquitination of RAB11FIP1. I RAB11FIP1 expression were upregulated 
in PDAC primary tumors and was positively correlated with circRTN4 level. Data represent mean ± SD from at least three independent experiments 
(*p < 0.05; **p < 0.01; ***p < 0.001)
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upregulated in PDAC cells and primary tumors. Also, 
PDAC patients with liver metastasis have high circRTN4 
level in their primary tumors. Furthermore, the biological 
roles of circRTN4 in promoting PDAC cell growth and 
liver metastasis are explored in knockdown and overex-
pression experiments.

CircRNAs can reportedly interact with and sponge 
miRNAs in regulating gene expression in PDAC. cir-
cRNA_100782 promotes PDAC tumor growth by sponging 
tumor suppressor miR-124 [44]. hsa_circRNA_0007334 

inhibits miR-144-3p and miR-577 to upregulate collagen 
type I alpha 1 chain and matrix metallopeptidase 7 [45]. 
ciRS-7 and circPDE8A promote PDAC cell growth and 
invasion by targeting miR-7 and miR-338 respectively [46, 
47]. CircRHOT1 promotes PDAC cell invasion by sponging 
miR-26b, miR-125a, miR-330 and miR-382 [48]. Consist-
ently, we demonstrated that circRTN4 sponged tumor-
suppressive miR-497-5p in PDAC. Notably, we previously 
reported that miR-497-5p inhibited PDAC progression 
through suppressing the oncogenic HOTTIP-HOXA13 

Fig. 6  circRTN4 stabilizes RAB11FIP1 to promote EMT in PDAC. A N-cadherin expression was inhibited after circRTN4 knockdown in PANC-1 cells. B 
CircRTN4 knockdown in mice subcutaneous tumors inhibited N-cadherin expression. C Expression of EMT markers Slug, Snai1, Twist and Zeb1 were 
reduced after circRTN4 knockdown in PDAC cells. D Expression of Slug, Snai1, Twist and Zeb1 in circRTN4-overexpressing HPDE cells were rescued 
after RAB11FIP1 knockdown. E Slug, Snai1, Twist and Zeb1 expression were upregulated in PDAC primary tumors and were positively correlated 
with circRTN4 level. Data represent mean ± SD from at least three independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001)
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pathway [24]. In current study, we demonstrated that cir-
cRTN4 is the regulator of HOTTIP, which is one of the 
well-characterized lncRNA. HOTTIP complexed with 
MLL1 and WDR5 to promote gene-activating H3K4 tri-
methylation at the gene promoter [49, 50]. In many cancer 
types, HOTTIP is frequently upregulated and plays critical 
roles in promoting cancer progression [51–54]. Upregu-
lation of HOTTIP promotes cancer growth and invasion 
in colorectal cancer [51]. Also, HOTTIP promotes tumor 
growth and metastasis through regulating HOXA genes 
in hepatocellular carcinoma [54]. We demonstrated that 
the upregulated HOTTIP promoted PDAC cell growth 
and invasion under the negative regulation by miR-497-5p 
[24]. In current study, we identified a novel circRTN4-miR-
497-5p-HOTTIP pathway in PDAC. We demonstrated 
that circRTN4 promotes HOTTIP expression through 
inhibiting miR-497-5p. This demonstrated a novel role of 
circRNA in regulating the expression of lncRNA through 
circRNA-miRNA-lncRNA pathway in cancer.

Functioning as miRNAs sponges is the first identified 
role of circRNAs [55]. Many studies have also demon-
strated the importance of miRNAs sponges in cancer 
development. Notably, there is growing evidence to 
show that circRNAs regulate gene expression through 
circRNA-protein interactions, suggesting circRNAs may 
have more than one mode of action. circADD3 complexes 
with CDK1 to protect EZH2 from degradation [31]. circ-
CTNNB1 interacts with DDX3 and YY1 to promote 
gene expression [56]. circFOXK3 binds and inhibits the 
activities of CDK2 and p21 [57]. We also demonstrated 
that circFOXK2 complexes with YBX1 and hnRNPK in 
promoting the expression of oncogenic proteins NUF2 
and PDXK in PDAC [9]. Herein, circRNA pull-down and 
mass spectrometry were performed to identify circRTN4 
binding proteins. We identified 99 circRTN4-interacting 
proteins that are involved in several biological processes, 
including cell adhesion and cadherin binding. We dem-
onstrated that circRTN4 interacts with RAB11FIP1 in 
PDAC cells. Most importantly, our data showed that cir-
cRTN4 stabilizes RAB11FIP1 by preventing its ubiqui-
tination. RAB11FIP, as a member of GTP-bound Rab11 
effectors, regulated cell polarity through participating 
in the vesicle trafficking system [58–60]. Several studies 
reported that the upregulation of RAB11FIP1 and RAB-
11FIP2 and their interacting partner RAB11a promotes 
cancer migration and invasion [26–29]. RAB11FIP1 
protects integrins from degradation, regulates cadherin 
recycling and promotes the expression of EMT-related 
transcription factors [27, 29, 31, 32, 61, 62]. In this study, 
we found that circRTN4 promotes EMT via RAB11FIP1-
mediated upregulation of N-cadherin, Slug, Snai1, Twist 
and Zeb1 in PDAC. These may suggest the importance 

of circRTN4 in promoting cancer metastasis by EMT in 
PDAC.

Conclusion
In summary, our study emphasizes the significance of 
circRTN4 in PDAC progression. CircRTN4 is ectopi-
cally expressed in many cancers, including PDAC. 
Overexpression and knockdown studies indicated the 
upregulated circRTN4 promotes PDAC cell growth and 
liver metastasis. Mechanistically, circRTN4 promotes 
expression of oncogenic HOTTIP by sponging miR-
497-5p. This reveals a novel circRNA-miRNA-lncRNA 
pathway in promoting PDAC progression. Further-
more, we provide a new perspective on the tumorigenic 
ability of circRTN4 through stabilizing RAB11FIP1 by 
blocking its ubiquitination to enhance the expression of 
EMT markers in PDAC. This highlights the potential of 
circRTN4 as a novel biomarker and a potential thera-
peutic target for PDAC.
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