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Abstract 

Background:  Salmonella is a major cause of zoonotic illness around the world, arising from direct or indirect contact 
with a range of animal reservoirs. In the Australian state of New South Wales (NSW), salmonellosis is believed to be 
primarily foodborne, but the relative contribution of animal reservoirs is unknown.

Methods:  The analysis included 4543 serotyped isolates from animal reservoirs and 30,073 serotyped isolates from 
domestically acquired human cases in NSW between January 2008 and August 2019. We used a Bayesian source attri-
bution methodology to estimate the proportion of foodborne Salmonella infections attributable to broiler chickens, 
layer chickens, ruminants, pigs, and an unknown or unsampled source. Additional analyses included covariates for 
four time periods and five levels of rurality.

Results:  A single serotype, S. Typhimurium, accounted for 65–75% of included cases during 2008–2014 but < 50% 
during 2017–2019. Attribution to layer chickens was highest during 2008–2010 (48.7%, 95% CrI 24.2–70.3%) but 
halved by 2017–2019 (23.1%, 95% CrI 5.7–38.9%) and was lower in the rural and remote populations than in the 
majority urban population. The proportion of cases attributed to the unsampled source was 11.3% (95% CrI 1.2%–
22.1%) overall, but higher in rural and remote populations. The proportion of cases attributed to pork increased from 
approximately 20% in 2009–2016 to approximately 40% in 2017–2019, coinciding with a rise in cases due to Salmo-
nella ser. 4,5,12:i:-.

Conclusion:  Layer chickens were likely the primary reservoir of domestically acquired Salmonella infections in NSW 
circa 2010, but attribution to the source declined contemporaneously with increased vaccination of layer flocks and 
tighter food safety regulations for the handling of eggs.
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Background
Salmonellosis is a common cause of foodborne illness 
and hospitalisation across Australia. Annual notifica-
tion rates for salmonellosis in Australia’s most populous 
state, New South Wales (NSW), ranged between 38.1 and 
57.9 per 100,000 population during 2009–2019 [1]. How-
ever, for every notified case of salmonellosis, there are an 

estimated seven cases that go unreported [2]. In 2015, 
there were an estimated 64 thousand annual episodes 
of foodborne salmonellosis in Australia that resulted in 
three thousand hospitalisations and thirteen deaths. The 
estimated annual societal cost of this illness was AUD 
105 million [3–5].

Salmonella can be found in all major livestock and 
poultry species and a wide array of wild animals; however, 
the proportion of human Salmonella infections attribut-
able to each of these sources is population- and geogra-
phy-dependant and often unknown. For instance, in the 
Netherlands, the primary sources were layers and pigs 
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[6], in Italy and Denmark the primary sources were pigs 
[7, 8], while in Sweden over 80% of cases were attributed 
to travel [9]. Source attribution analyses in the Australian 
states of South Australia and Queensland both identified 
chickens (broilers and layers) to be the primary sources 
of illness [10, 11], but also highlighted attribution to nuts 
or environmental exposures in sub-tropical Queensland 
[10, 12]. Estimates of the proportion of infections arising 
from each source can highlight areas needing interven-
tion and inform biosecurity and food safety policy across 
the entire food supply chain. For instance, a source attri-
bution study in New Zealand in the 2005 demonstrated 
that > 50% of Campylobacter infections were attribut-
able to poultry, prompting targeted improvements to the 
food safety standards and practices around poultry. Fol-
lowing these interventions, annual campylobacteriosis 
notification rates in 2008 declined by 54% compared to 
2000–2006 [13] and remained stable over the following 
decade [14]. Further source attribution analyses demon-
strated the decline was due primarily to a 74% reduction 
in cases attributed to poultry [13]. In NSW, a broad range 
of interventions were put in place to prevent foodborne 
salmonellosis following the release of the new NSW Food 
Safety Strategy 2015–2021. Though salmonellosis notifi-
cation have declined from approximately 58 per 100,000 
in 2014 to 42 per 100,000 in 2018 [1], the proportion of 
foodborne salmonellosis attributable to different animal 
reservoirs before and after this period was unknown.

Salmonella enterica subsp. enterica, which accounts 
for nearly all human cases of salmonellosis, can be clas-
sified into over 2500 serotypes [15]. Some serotypes are 
adapted to specific host species, such as Salmonella ser. 
Typhi, which has humans as the primary host and Salmo-
nella ser. Gallinarum, which has poultry as the primary 
host [16]. Other serotypes can be found in one or more 
animal hosts and can cause human infections e.g. Salmo-
nella ser. Typhimurium. Salmonella can be further differ-
entiated using a range of typing schemes, including phage 
typing, multi-locus sequence typing (MLST), multiple-
locus variable-number tandem repeat analysis (MLVA), 
whole genome sequencing, and other techniques [15]. 
Although it has become more common to type Salmo-
nella using MLVA or whole genome sequencing for their 
superior ability to differentiate types, serotyping remains 
a standard typing method for Salmonella isolates from 
animals and humans in Australia.

Several methods have been developed to attribute ill-
ness to specific sources [17, 18]. Some rely on linking 
individual cases or outbreak cases to putative sources 
through epidemiological investigations, including 
case–control studies. However, these approaches are 
labour-intensive and often inconclusive due to small 
sample sizes. A suitable approach for sporadic cases 

that does not require food questionnaires is to compare 
the distribution of Salmonella types in isolates from 
cases to the distribution of types in putative sources. 
This approach estimates the overall proportion of cases 
attributable to each source. Hald et al. adopted a Bayes-
ian source attribution framework [7] and their model 
and its variants have since been applied widely [10–12, 
19–21]. A related approach accounts for genetic relat-
edness of strains using the asymmetric island model 
[21, 22]. Recent advances allow these models to be 
adjusted for covariates to identify trends or differ-
ences by subgroup [21]. For instance, recent studies of 
campylobacteriosis in New Zealand have demonstrated 
that attribution proportions to different sources vary 
between rural and urban areas [21]. In Australia, the 
spatial distribution of salmonellosis varies by serotype 
(e.g. Salmonella ser. Wangata is associated with prox-
imity to wetlands [23]), suggesting that the proportion 
of cases attributable to different animal sources may 
also vary spatially.

We conducted a source attribution analysis for Sal-
monella infections acquired in New South Wales, Aus-
tralia between January 2008 and August 2019 using 
variants of the Hald approach. We adjusted these mod-
els to account for trends over time and considered dif-
ferences by age-group, gender, and rurality.

Methods
Human data
In NSW, treating pathology laboratories are required 
under public health legislation to report all Salmonella 
infections to the health department. We used deiden-
tified data for 40,837 human cases notified between 
January 2008 and August 2019. The available case data 
included: typing information for the Salmonella iso-
lates, patient gender, 5-year age group, location, and 
travel history. While nearly all isolates were charac-
terised by serotype, only a minority of these isolates 
were further characterised with MLVA or phage typing. 
Location was encoded at the Statistical Area 2 (SA2) 
level as defined in the Australian Statistical Geog-
raphy Standard. As we were primarily interested in 
cases acquired in NSW, we removed all cases recorded 
as being acquired outside NSW. However, travel his-
tory was known only for a small minority of cases, and 
before May 2010, cases that were known not to have 
travelled and cases with unknown travel history were 
recorded identically. Therefore, we also excluded all 
cases due to serotypes deemed to be travel-associated. 
A serotype was deemed to be travel-associated if more 
than half of cases after May 2010 with a known travel 
history were believed to be acquired outside NSW.
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Non‑human data
Data for non-human sources were collated from 
the National Enteric Pathogens Surveillance System 
(NEPSS) and the New South Wales Food Authority 
(NSWFA). The two datasets included non-human Sal-
monella isolates sampled from animals, animal prod-
ucts, farm environments (e.g. animal pens and barns), 
food, and the natural environment. Isolates considered 
as from potential animal sources were those derived 
from the faeces, carcass, or enclosures of an animal 
or from an animal product. As with human isolates, 
nearly all isolates were characterised by serotype, but 
only a minority of these isolates were further charac-
terised with MLVA or phage typing. Isolates that were 
not serotyped or were from a travel-associated sero-
type were excluded. We also excluded isolates without a 
recorded date or with a date before 2008.

Non-human animal isolates were categorised by res-
ervoir animal source where possible from the recorded 
details. For example, all isolates from pig carcasses; pig 
faeces; cooked, cured, or raw pig meats; pig offal; pig 
intestinal contents; and pig farm environments (e.g. 
bedding) were categorised as porcine. Broiler and layer 
chickens were treated as separate reservoirs. Chicken 
meat products for human consumption and environ-
mental samples from broiler farm premises and chicken 
meat processors were categorised as broiler, while iso-
lates from eggs, egg products (e.g. mayonnaise), and egg 
farm premises were categorised as layer. Isolates that 
could not be definitively assigned to an animal reservoir 
were excluded, e.g. feather meal which might have been 
derived from broilers or layers and fresh produce which 
might have been contaminated directly or indirectly by 
any wild or domestic animal. We excluded isolates from 
food products with multiple animal origins (e.g. ‘egg 
and bacon roll’) and isolates with ambiguous descrip-
tions (e.g. ‘meat’). Where possible, putative sources were 
combined to form categories with at least 100 isolates. 
Putative sources that could not be reasonably combined 
into broader categories with at least 100 isolates were 
excluded.

As source attribution analysis requires the same typ-
ing scheme to applied to both source and human data 
and serotyping was the most consistently and completely 
applied method, analyses were conducted using sero-
typed data and isolates without serotyping information 
were removed from both the human and non-human 
datasets.

Source attribution modelling framework
We generalised existing Bayesian source attribution 
methods [20, 21] to estimate changing attribution 

proportions over time, include covariates for the cases, 
and adjust for differences between types.

The proportion ( θijst ) of cases in subpopulation s during 
period t that were due to type i from source j was mod-
elled as:

with constraints 
∑

i,jθijst = 1 and 
∑

irijt = 1 and where 
ajst was the ability of source j during period t to act as 
a reservoir of infection for group s , wj was a weight for 
the relative exposure of humans to contamination from 
source j , rijt was the relative prevalence of type i in source 
j during period t , and qi was the relative ability of subtype 
i to lead to human infection. In each group s and period 
t the proportion of infections of all types attributed to a 
source, ξjst , was:

while the proportion of cases due to each type, µist , was:

The estimation of these parameters occurred in two 
steps. The distribution of types in each source and period 
( rijt ) were estimated first, and all other parameters were 
then estimated repeatedly with draws from the poste-
rior distribution of rijt . In the first step, the number of 
isolates of each type observed in each source ( Xijt ) were 
modelled with multinomial distributions in one of two 
ways. For sources with many isolates in every period, the 
relative frequency of types were modelled independently 
for each period based only on the data collected in that 
period, i.e. Xjt ∼ Multinomial

(

rjt
)

 . With a unit Dirichlet 
prior this resulted in a Dirichlet posterior distribution: 
p
(

rjt |X
)

∼ Dirichlet
(

1+ Xjt

)

. For sources with too few 
samples in each period, the data across the whole study 
was used for every time period resulting in posterior esti-
mates: p

(

rjt |X
)

∼ Dirichlet
(

1+
∑

τXjτ

)

.

In estimating the remaining parameters, the efficiency 
of each type ( qi ) and the exposure weights ( wj ) were 
assumed to remain constant over time but source effi-
ciencies ( ajst ) were allowed to vary over time and by sub-
group of cases. This was modelled as:

where F  was a matrix defining a linear predictor based 
on categorical, ordinal, or continuous covariates for each 
subgroup (i.e. category of a covariate) s of the cases; β was 
a matrix of parameters for each source j ; and τ defined 

θijst ∝ ajstwjrijtqi

ξjst =
∑

i

θijst ∝ ajstwj

∑

i

rijtqi,

µist =
∑

j

θijst ∝ qi
∑

j

ajstwjrijt .

ajst = exp

(

τtj +
∑

n

Fsnβnj

)

.
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temporal differences in source efficiency by time t and 
source j . A reference group was assigned to each covari-
ate, and the associated parameters fixed to 0, while the 
remaining parameters are given unit normal priors.

The number of human cases in subpopulation s during 
period t that were due to pathogen type i , were modelled 
as independent multinomial variables for each period t 
and subgroup s , i.e. Yst ∼ Multinomial(µst) . The qi were 
constrained with a hierarchical log-normal prior:

For predominantly foodborne infections the exposure 
weights wj , can be approximated by the relative level of 
exposure to contaminated food products derived from 
each source. However, as this is not measured directly, 
we modelled this as wj = Mjkj , where Mj was the per 
capita consumption of food derived from source j , and 
kj was the prevalence of the pathogen in food derived 
from source j , which was estimated from surveys of 
animal food products. For each source j , we modelled 
the number of total tests ( Nj ) and positive tests ( Pj ) 
Pj ∼ Binomial

(

Nj , kj
)

, with an uninformative uniform 
prior on prevalence, i.e. p(kj) ∼ Beta(1, 1).

Our model framework was extended to include an 
‘unsampled source’ by including an additional source j∗ 
with no observed samples, i.e. Xij∗t = Pj∗ = Nj∗ = 0.

Source attribution models
As a base case we considered a model with no covari-
ates and no temporal variation, which was equivalent 
to the Modified Hald model applied to the whole study 
period [20]. As a sensitivity analysis we compared this to 
a model where all the type efficiency terms qi were fixed 
at one, which was equivalent to the Dirichlet model of 
Liao et al. [21] with the addition of exposure weights. We 
considered each model with and without an ‘unsampled 
source’.

We then considered models with combinations of 
covariates (age, rurality, and gender) with and without 
temporal variation. In models adjusting for age, we used 

p(qi|σ) ∼ lognormal
(

0, σ 2
)

p(σ ) ∼ Uniform(0, 5).

age categories: 0–4, 5–19, 20–34, 35–64, and 65 and over. 
The rurality of each case was determined by matching 
the Australian Bureau of Statistics 2011 Statistical Area 2 
(SA2) code provided for the case to one of the five rural-
ity zones (Major Cities, Inner Regional, Outer Regional, 
Remote, and Very Remote) defined in the 2011 Austral-
ian Statistical Geography Remoteness Structure. How-
ever, as rurality was defined at the more granular SA1 
level and each SA2 is built from SA1s, a few SA2s con-
tained regions with different categories of rurality. Cases 
associated with these SA2s were assigned the rurality 
zone closest to the average rurality of the constituent 
SA1s. In our main analyses, rurality was modelled as an 
ordinal variable. In a sensitivity analysis we modelled 
rurality as a nominal categorical variable, combining the 
five categories down to three categories (‘Major Cities’, 
‘Regional’ and ‘Remote’) to increase the number of cases 
in each category. The small number of cases that had a 
missing value for gender, age, or location were excluded 
only from analyses involving the missing covariate.

In models with temporal variation, we considered four 
three-year periods: 2008–2010, 2011–2013, 2014–2016, 
and 2017–2019. As there were > 200 isolates per period 
from broilers and > 450 isolates per period from layers, 
the relative frequency of serotypes was estimated inde-
pendently for each period for broilers and layers. As 
there were relatively few isolates for ruminants and pigs 
in at least one period (< 30 for pigs and < 20 for rumi-
nants), data across all study years was used to estimate 
the relative frequency of serotypes in ruminants and pigs 
in every period.

To improve model convergence, we excluded serotypes 
that rarely caused disease in humans (i.e. < 10 human 
cases across the study period) from the analysis.

Exposure by source
Table  1 provides a summary of prevalence assumptions 
with references, while Table  2 summarises assump-
tions on food consumption per capita. The datasets used 
to determine the number of samples positive for each 
pathogen type (Xijt) did not include data on the num-
ber of total tests, so the prevalence of Salmonella in food 
products was estimated from separate surveys, with an 

Table 1  Salmonella prevalence assumptions by source with references

a E. coli and Salmonella monitoring program

Prevalence (95% CI) Prevalence adjusted for types rare in 
cases (95% CI)

References

Chicken meat 48.4% (42.0–54.8) 38.6% (32.5–45.0) NSW-specific data in Table 4  [50]

Chicken eggs 1.76% (0.70–3.59) 1.44% (0.66–2.72) Following prior assumptions [11]

Pigs 1.88% (1.57–2.22) 1.14% (0.90–1.41) National ESAMa data [24]

Ruminants 0.38% (0.33–0.43) 0.37% (0.32–0.42) National ESAMa data [25]
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adjustment to reduce the number of positive samples by 
the fraction of cases from excluded serotypes from each 
source. As age, sex, location, and time-specific consump-
tion and prevalence data were not available for all food 
sources, exposure weights and prevalence on animal 
products were assumed fixed across all time periods and 
the whole population. We used published national data 
on Salmonella from the E. coli and Salmonella moni-
toring (ESAM) program from the early 2000s to inform 
prevalence in ruminants and pork [24, 25], as publicly 
available contemporary surveys in NSW had insufficient 
samples to determine prevalence. The relative exposure 
of the human population to ruminants, pigs, and broil-
ers were based on the apparent consumption of meats 
from these sources published by the Australian Bureau 
of Agricultural and Resource Economics and Sciences 
(ABARES) [26]. For eggs, we assumed consumption of 
one egg was equivalent to 200 g of meat (as in our pre-
vious work [11]) and used consumption estimates from 
a 2018 Australian Eggs annual report [27]. In models 
with an ‘unsampled’ source we adopted the conservative 
assumption that exposure to the unsampled source was 
equal to the source or group of sources with the highest 
consumption.

Software
All analyses were conducted in the R programming envi-
ronment [28]. Bayesian inference was performed using 
the No U-turn Algorithm with the Stan programming 
language [29] and the rstan R package [30]. Data clean-
ing and manipulation was done using the plyr [31], dplyr 
[32], and tidyr [33] R packages. Data visualisations were 
made with the ggplot2 R package [34].

Ethical approval and consent to participate
All methods were carried out in accordance with a pro-
tocol approved by the Australian National University 

(ANU) Human Research Ethics Committee (Protocol: 
2019/470) and in accordance with all ANU guidelines. 
The data on human infections were collected under the 
NSW Public Health Act 2010 and provided to us in a de-
identified format by NSW Health. Under the Act, medi-
cal practitioners and laboratories were required to notify 
or report cases of Salmonella infections to NSW public 
health units.

Results
Data
After excluding isolates from humans with no serotype 
information (3807 isolates, 9.3%), isolates from cases 
recorded as having travelled outside NSW (2381 isolates, 
5.8%), isolates of Salmonella ser. Paratyphi B bv Java and 
from serotypes that were commonly travel associated 

Table 2  Relative exposure to potential sources of Salmonella, 
measured by mean consumption of meat and animal products 
per person per year in Australia

a Australian Bureau of Agricultural and Resource Economics and Sciences
b Mean consumption was approximately 245 eggs per person per year in the 
2017–2018 financial year. The relative exposure was calculated assuming that 
one egg is equivalent to 200 g of meat

Relative Exposure (kg/
person/year
or equivalent)

References

Chicken meat 47 ABARESa [26]

Chicken eggs 49b Australian eggs [27]

Pork 28 ABARESa [26]

Ruminants 34 ABARESa [26]

Table 3  Characteristics of Salmonella cases reported between 
January 2008 and August 2019 in New South Wales after 
excluding cases without known serotype (N = 3807) travel 
associated cases (N = 6470) and rare serotypes (N = 487)

S. 
Typhimurium 
(N = 18,802)

Other 
serotypes 
(N = 11,271)

All 
serotypes 
(N = 30,073)

p value

Gender 0.010

 Missing 47 22 69

 Female 9680 (51.6%) 5633 (50.1%) 15,313 
(51.0%)

 Male 9075 (48.4%) 5616 (49.9%) 14,691 
(49.0%)

Rurality  < 0.001

 Missing 142 48 190

 Major cities 14,106 (75.6%) 7521 (67.0%) 21,627 
(72.4%)

 Inner 
regional

3434 (18.4%) 2784 (24.8%) 6218 (20.8%)

 Outer 
regional

1070 (5.7%) 844 (7.5%) 1914 (6.4%)

 Remote 30 (0.2%) 48 (0.4%) 78 (0.3%)

 Very 
remote

20 (0.1%) 26 (0.2%) 46 (0.2%)

Age group  < 0.001

 Missing 17 6 23

 00–04 4191 (22.3%) 3045 (27.0%) 7236 (24.1%)

 05–19 4186 (22.3%) 1563 (13.9%) 5749 (19.1%)

 20–39 4986 (26.5%) 2287 (20.3%) 7273 (24.2%)

 40–64 3434 (18.3%) 2445 (21.7%) 5879 (19.6%)

 65 +  1988 (10.6%) 1925 (17.1%) 3913 (13.0%)

Year group  < 0.001

 2008–2010 4780 (25.4%) 2059 (18.3%) 6839 (22.7%)

 2011–2013 5441 (28.9%) 2407 (21.4%) 7848 (26.1%)

 2014–2016 5861 (31.2%) 3457 (30.7%) 9318 (31.0%)

 2017–2019 2720 (14.5%) 3348 (29.7%) 6068 (20.2%)
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(4089 isolates, 10.0%), and isolates of serotypes that were 
rare in humans (487 isolates, 1.2%), a total of 30,073 
human isolates remained for source attribution analysis 
(Table 3). Most of the cases associated with these isolates 
were reported in major cities, with 51% of cases in females. 
After isolates from some animals were grouped and oth-
ers were omitted (e.g. wildlife, horses, ducks, quail, and 
turkeys), the final source groups were broilers (N = 1396), 
layers (N = 2321), pigs (391), and ruminants (cattle, sheep, 
and goats; N = 435) (Table 4). The number of non-human 
isolates in our dataset was lowest in 2017–2019.

Type distribution in sources and humans
S. Typhimurium was the most common serotype in 
cases and every major source group except for broil-
ers (Additional file  1: Fig. S1, Table  S1). In broilers, S. 
Typhimurium was only the third most common sero-
type (10.1%, 141/1396) after Salmonella ser. Infantis 
(30.4%, 425/1396) and Salmonella ser. Sofia (20.6%, 
287/1396) (Additional file  1: Fig. S1). The proportion 
of human cases due to S. Typhimurium was largest 
in major cities (65.2%), but this proportion declined 
with increasing rurality (Inner Regional 55.2%; Outer 
Regional 55.9%; Remote 38.5%; Very Remote 43%) 
(Table  3). Conversely, cases due to serotypes such as 
Salmonella ser. Chester and Salmonella ser. Saintpaul 
were less common in major cities than in regional and 
remote NSW. The proportion of human cases due to S. 

Typhimurium declined from 65 to 75% during 2008–
2013 to < 50% during 2017–2019. The proportion of 
cases due to some serotypes rose over the same period, 
e.g. S. Wangata (2008–2010: 1.0%; 2017–2019: 9.2%), 
and S. enterica ser. 4,5,12:i:- (2008–2010: 0.0%; 2017–
2019: 5.5%). The proportion of layer isolates that were 
serotyped as S. Typhimurium also declined over the 
same period (2008–2010: 41.6%, 251/603; 2017–2019: 
17.4%, 87/501).

Subtyping
After restricting the analysis to serotyped isolates, only 
a small minority of non-S. Typhimurium isolates were 
also typed using phage or MLVA typing (human: 12.6%; 
reservoirs: 4.5%). While a larger proportion of S. Typh-
imurium isolates were typed using a least one additional 
method (human: 95.4%; reservoirs: 73.1%), this additional 
typing method was not consistent over time or between 
cases and reservoirs. Nearly all S. Typhimurium isolates 
from humans were phage typed prior to 2010, but < 7% 
were phage typed after 2010 (Additional file 1: Table S1). 
Overall, fewer S. Typhimurium isolates from humans 
were phage typed (25.1%) than in the major source 
groups (58.2–84.4%). In contrast, while 93% of S. Typh-
imurium isolates from cases were MLVA-typed, less than 
35% of S. Typhimurium isolates in each major source 
group were MLVA-typed and coverage varied by year and 

Table 4  The number of serotyped Salmonella isolates from humans  and selected non-human sources sampled in NSW between 
January 2008 and June 2019

These counts exclude S. Paratyphi B bv Java, types that were rare in humans (less than 10 cases over the period), and travel-associated types (types where more than 
half of cases with known travel history were acquired outside NSW). A selection of the most common excluded sources are displayed here to illustrate the sparsity of 
data over time
a  Ruminant-other includes sheep and goats
b Other isolates from poultry that could not be linked to either broilers or layers are not included in this table
c The included sources are  ruminants, broilers, layers, and pigs
d Wildlife consists of a diverse group of non-captive non-domesticated animalsTyphimurium
e Poultry-other consists of ducks, turkey and quail

Source Year Total

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Human cases 1759 2101 2979 2864 2275 2709 3416 2818 3084 2489 2063 1516 30,073

Ruminants 58 60 49 87 60 33 25 42 10 6 2 3 435

 Cattle 50 53 40 70 53 31 22 38 9 6 2 3 377

 Ruminants—Othera 8 7 9 17 7 2 3 4 1 – – – 58

Broilersb 152 99 98 76 117 37 61 360 185 84 56 71 1396

Layersb 288 160 155 270 204 251 225 158 109 136 128 237 2321

Pigs 20 13 42 47 45 79 23 48 51 5 14 4 391

Total Included Non-Humanc 518 332 344 480 426 400 334 608 355 231 200 315 4543

Wildlifed 12 16 1 3 22 13 5 5 3 3 – – 83

Poultry—Othere 13 7 1 9 1 4 11 1 1 – – – 48

Horses 2 3 4 7 1 0 4 8 3 – – – 32
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source. We were therefore unable to use phage typing or 
MLVA data in our source attribution analyses.

Source attribution without covariates
Table  5 summarises the attribution proportion for 
models without covariates or temporal variation. All 
models indicated layers as the leading source of ill-
ness. If we assumed all serotypes to be equally effi-
cient at causing disease in humans, very few human 
cases were attributed to either broilers or pigs: 0.02% 
and 1.8% respectively. When allowing for differences 
between serotypes, a greater proportion of cases were 
attributed to broilers and pigs: 13.1% and 17.8% respec-
tively. Equal-q and variable-q models with adjustments 
for unsampled sources attributed 5.8% and 11.3% to the 
unsampled source respectively and attributed fewer 
cases to ruminants and pigs than the models with-
out adjustment for an unsampled source. The HaldDP 
model of Miller et  al. [19] failed to converge with our 
dataset and is not shown.

Source attribution with covariates
In a temporal model without covariates, the propor-
tion attributed to layers declined significantly from 
55% (95% CrI 23–71%) in 2008–2010 to 34% (95% CrI 
16–51%) in 2014–2016 and 30% (95% CrI 18–42%) in 
2017–2019, with a significant increase in the propor-
tion attributed to pigs in 2017–2019 and a significant 
increase in attribution to ruminants in 2014–2016 
(Fig.  1). When rurality was included in the model, a 
significantly higher proportion of cases were attributed 
to layers in major cities, with this proportion declin-
ing with increasing rurality (Fig.  2). A similar rural–
urban gradient was observed in a non-temporal model, 
although the proportion attributed to broiler chickens 
in that model (Additional file  1: Figure S2) was sub-
stantially higher than all other models, potentially due 
to confounding with year (p < 0.001 for association 
between year and rurality).

There was weaker evidence of a rural–urban gradient 
in attribution to ruminants, with a higher proportion of 
infections attributed to ruminants in rural areas (Figs. 2 
and Additional file 1: S2), which disappeared in models 
with an unsampled source (Figures S3 and S4). In a sen-
sitivity analysis where rurality was modelled as categor-
ical variable with three levels (‘Major Cities’, ‘Regional’ 
and ‘Remote’) all findings remained qualitatively similar 
(results not shown).

A non-temporal univariable regression analysis found 
a significant association between attribution proportion 
and sex, with 5.7% (95% CrI 1.3%-10.1%) fewer male cases 
attributed to layer chickens. Though a qualitatively simi-
lar sex difference was also observed in a model including 
time and sex, and a model with age and sex, the sex dif-
ferences were not statistically significant within any time 
period or age group. There were no consistent associa-
tions between age group and attribution proportions.

Estimates of the type-specific parameters, q , varied 
1000-fold between the most efficient and least efficient 
serotypes. For instance, in the model including rurality, 
year-group, and an unsampled source, S. Typhimurium 
and Salmonella ser. Abortusovis were estimated to be 
22.3 (95% CrI 14.0–38.0) and 0.19 (95% CrI 0.07–0.46) 
times as efficient as S. Infantis, while S. Sofia was esti-
mated about as efficient as S. Infantis ( q ratio 0.5; 95% 
CrI: 0.2–1.7) (Additional file 1: Fig. S5).

Discussion
We estimate that approximately half of all notified cases 
of non-typhoidal salmonellosis acquired in New South 
Wales during 2008–2019 were due to direct or indirect 
transmission from layer chickens. However, the propor-
tion of cases attributed to layers declined from approxi-
mately 50% in 2009–2011 to approximately 25% in 
2017–2019. The proportion of cases attributed to pork 
increased from approximately 20% in 2009–2016 to 
approximately 40% in 2017–2019, coinciding with a rise 
in cases due to S. enterica ser. 4,5,12:i:-, which has been 

Table 5  The percentage of human isolates attributed to ruminants, broilers, layers, pigs, and other unsampled sources with 95% 
credible intervals for models without covariates or temporal variation

In the equal-q model all Salmonella serotypes are assumed to be equally efficient in their ability to cause infection in humans, while in the variable-q model 
(equivalent to the modified Hald model [20]) serotypes are allowed to differ in their efficiency

Ruminants Broilers Layers Pigs Unsampled

Equal-q

without unsampled source 41.3 (21.0–58.7) 0.02 (0.0–0.05) 56.9 (39.1–74.2) 1.8 (0.0–8.3) –

with unsampled source 36.0 (16.9–55.5) 0.01 (0.0–0.03) 57.7 (39.7–74.0) 0.4 (0.0–3.1) 5.8 (0.0–10.7)

Variable-q

without unsampled source 24.7 (0.0–55.8) 13.1 (0.0–44.9) 44.3 (9.8–76.7) 17.8 (0.0–39.1) –

with unsampled source 10.5 (0.0–34.8) 18.2 (0.0–66.1) 48.4 (5.4–79.6) 12.1 (0.0–31.8) 11.3 (1.2–22.1)



Page 8 of 13McLure et al. BMC Infectious Diseases           (2022) 22:14 

found to be a persistent coloniser of pigs in Australia 
[35]. The proportion of cases attributed to layers was 
lower amongst rural-dwelling than urban-dwelling pop-
ulations, similar to the rural–urban gradient found in a 
source attribution analysis of Campylobacter infections 
in New Zealand [21, 36].

The potential of zoonotic organism to lead to a noti-
fied case of foodborne disease depends on many factors 
including the organism’s ability to survive transport, stor-
age, and food preparation and its virulence in humans. 
Some source attribution modelling approaches (e.g. 
those applied to Campylobacter infections [21, 22]) have 

Fig. 1  A Attribution proportion with 95% credible intervals for each of the major source groups for three-year periods and B change over time in 
the attribution proportion (in percentage points) with 2008–2010 as the reference. Dots indicate posterior mean, while dark and faint lines indicate 
80% and 95% credible intervals respectively. The dashed horizontal line indicates no difference
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assumed that all types are equally able to lead to notified 
human cases. However, this assumption is inappropri-
ate for Salmonella, which is known to have both virulent 
(e.g. S. Typhimurium) and avirulent (e.g. S. Sofia [37]) 
serotypes. In our study, S. Typhimurium was more prev-
alent in cases (63%) than in broilers (10%), layers (32%), 

pigs (23%), or ruminants (35%), while S. Infantis was 
less prevalent in cases (3%) than in broilers (30%), lay-
ers, (19%) or pigs (7%), indicating that S. Typhimurium 
is a more efficient foodborne pathogen than S. Infantis. 
Consequently, models that assumed all serotypes were 
equally efficient attributed < 0.1% of cases to broilers (in 

Fig. 2  A Attribution proportion for each of the major source groups for cases residing in different rurality zones over time. B The difference in 
attribution proportion by rurality with residents of major cities as the reference. Dots indicate posterior mean, while dark and faint lines indicate 80% 
and 95% credible intervals respectively. The dashed horizontal line indicates no difference



Page 10 of 13McLure et al. BMC Infectious Diseases           (2022) 22:14 

which S. Sofia and S. Infantis were most common). How-
ever, this is inconsistent with the common implication of 
chicken meat in outbreak investigations and case control 
studies (e.g. [38]). Although models that account for dif-
ferences between serotypes led to source attribution esti-
mates with much wider confidence intervals, we believe 
they are more appropriate for modelling source attribu-
tion of Salmonella.

The decline in attribution to layers from 2014 onwards 
may be the result of interventions including vaccina-
tion of layers against S. Typhimurium. The NSW Food 
Safety Strategy 2015–2021, released in 2014, included a 
specified 30% reduction target for foodborne salmonel-
losis [39]. Prior to 2014, many reported foodborne out-
breaks in NSW were linked to poor handling of eggs and 
hygiene at retail food service (e.g. [40, 41]). Several meas-
ures were implemented to address this, including man-
datory education and food safety training on the risks of 
raw egg use, improved cleaning and sanitising for retail 
businesses, guidelines for the safe use of eggs which made 
it an offence in NSW to prepare raw egg foods without 
adequate processing, and training and guidance for local 
council Environmental Health Officers to focus on areas 
of highest food safety risk during inspections. Since 2014, 
large egg producers across NSW have begun largescale 
vaccination of layer flocks against S. Typhimurium; esti-
mates based on sales of vaccines indicate approximately 
75% of commercial layer flocks were vaccinated in 2017–
2019 (Dr. Christopher Morrow, personal communication, 
April 2021). The introduction of all these measures coin-
cided with a marked decline in S. Typhimurium and total 
Salmonella incidence in NSW [42].

The models that included an ‘unsampled’ source 
attempted to quantify the plausible proportion of cases 
that could be attributed to any animal reservoirs other 
than domestic chickens, ruminants, and pigs. Since this 
approach necessarily drew inferences without infor-
mation about of the relative abundance of different 
serotypes in the ‘unsampled’ animal reservoirs, these 
models need to be interpreted cautiously. In our study, 
the increasing trend in attribution to ‘unsampled’ sources 
is associated with the increasing incidence of sero-
types that were absent or rare in the major food animals 
included in our analyses, e.g. S. Wangata, Salmonella ser. 
Birkenhead, Salmonella ser. Waycross, and Salmonella  
ser. hvittingfoss. S. Wangata was not found in ruminants 
or pigs in our dataset and was very rare in broilers and 
layers (< 0.6%) but accounted for 9.0% of cases in 2017–
2019 up from only 1.0% in 2008–2010. Similarly, though 
S. Birkenhead was only represented by a single isolate 
from layer chickens in 2019, the serotype accounted for 
5.7% of cases in 2017–2019, up from 3.3% in 2008–2010. 
While S. Wangata is associated with contact with a range 

of wild animals in NSW [23, 43, 44], the animal reser-
voirs of S.  Birkenhead, S. Waycross, and S. Hvittingfoss 
are unclear. A source attribution analysis of Salmonella 
infections in the neighbouring state of Queensland linked 
S. Birkenhead, S. Waycross, and S. Hvittingfoss to nuts 
(primarily locally grown macadamias) [10] suggesting 
environmental reservoirs of exposure. In north-eastern 
NSW, S. Birkenhead infection has been associated with 
not usually washing or peeling fruit and vegetables before 
eating raw. S. Hvittingfoss has caused outbreaks linked 
to contaminated cantaloupes in Australia with closely 
related isolates identified in bar-tailed godwits in north-
western Australia, suggesting a common exposure to 
an unidentified animal or environmental reservoir [45]. 
S. Hvittingfoss has also been found in reptiles [46, 47], 
migratory ducks [48], and feral pigs [49] elsewhere in 
Australia. Consequently, a substantial part of the attribu-
tion to ‘unsampled’ sources in our model may be due to 
transmission from wild or feral animals through direct 
contact or indirect contamination of water, food, or the 
environment.

The present study has a number of strengths. The large 
dataset of Salmonella cases and a substantial dataset of 
isolates from major food animals, collected from across 
the state and over a long time period, have allowed us 
to identify the leading source of Salmonella infections, 
attribute separately to egg-laying and meat chickens, and 
identify temporal and rural–urban gradients in attribu-
tion. Furthermore, these key model outcomes were quali-
tatively robust across multiple model comparisons. In 
the source attribution framework we adopted attribution 
is to animal reservoirs rather than routes or vehicles of 
transmission. For instance, our estimate of the propor-
tion of cases attributed to layers includes infections that 
may have been acquired through direct contact with layer 
chickens, consumption of contaminated eggs, contact 
with manure, or consumption of water or food contami-
nated by layer chicken faeces at any point between farm 
and table. Attribution to animal reservoirs is simultane-
ously a strength—since all possible transmission routes 
are captured—and a limitation—since the relative contri-
bution of different routes cannot be quantified.

Our study has a number of limitations. No high-res-
olution molecular subtyping scheme was consistently 
applied to Salmonella isolates from humans and animals 
over the whole study period, forcing us to restrict our 
analyses to the level of serotype. Because the majority of 
human cases were due to a single serotype, S. Typhimu-
rium, this restriction substantially weakened inferences, 
leading to wide confidence intervals for many attribution 
estimates. Though the dataset of reported human cases 
provided more than adequate sample size, it is estimated 
that as few as one in eight Salmonella cases are reported 
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[2]. As unreported cases are likely to have milder symp-
toms than reported cases, more virulent serotypes of 
Salmonella are likely to be over-represented in our data-
set and the attribution proportions are therefore likely 
indicative of moderate and severe cases. Similarly, rates 
of healthcare utilisation vary by rurality and other socio-
economic factors that may be associated with exposure 
to different animal sources, so attribution estimates may 
be biased towards those sources to which people with 
high healthcare utilisation rates are most exposed. Travel 
history was not available for all cases in our dataset, 
and though we took steps to remove cases not acquired 
in NSW from the study, we may have removed some 
locally acquired cases in doing so. The isolates from ani-
mal reservoirs were not collected in a single sampling 
frame. The majority of non-human Salmonella sampling 
by the NSW Food Authority occurred through inves-
tigation of foodborne disease outbreaks and was often 
sporadic in nature. Some targeted survey work was also 
undertaken, but this was biased towards testing of layer 
flocks, or opportunistic Salmonella testing through poul-
try meat verification work focused on Campylobacter. 
To date, NSWFA have not conducted comparable ongo-
ing surveys or studies focused on ruminants, pigs, or 
other potential reservoirs. The remaining isolates from 
non-human sources collected by the NEPSS included 
any isolate submitted to Salmonella typing laboratories 
in Australia and included public, private, and academic 
sampling efforts. For isolates from non-human sources, 
we only considered those collected in NSW; however, 
NSW residents consume food produced across Australia. 
Though lamb and mutton account for approximately 8% 
of meat consumption in Australia [26], very few Salmo-
nella isolates from sheep isolates were available, forc-
ing us to combine sheep, cattle, and goats into a single 
category for source attribution purposes. However, the 
relatively low consumption of sheep meat and the low 
prevalence of Salmonella in sheep [25] suggest that sheep 
are unlikely to be a major source of Salmonella infec-
tions in NSW. We only had sufficient samples to estimate 
the relative frequency of serotypes over time in poultry 
which may have influenced the estimated trend in source 
attribution. Finally, we had only limited samples from 
wild, feral, and companion animals, which may have 
been especially important for the accurate attribution of 
rural cases. Though attribution to ‘unsampled’ sources 
includes these reservoirs, we are unable to estimate the 
contribution different species or groups of species.

Conclusions
Layer chickens were the primary reservoir for human 
salmonellosis in NSW during 2009–2019; however, the 
importance of layers was less in rural populations and 

declined after 2015, concurrent with changes to food 
safety regulations and egg industry practices. The appar-
ent increase in attribution to pigs and unsampled sources 
in 2017–2019 warrants further investigation. Our study 
highlights the need for a high-resolution typing method 
to be consistently applied to Salmonella isolates col-
lected from humans, food, animals, and the environment. 
Using a consistent approach would allow for more pre-
cise estimates for source attribution analyses and assist 
in identifying specific sources in outbreak investiga-
tions. Moreover, the mobility of people and food prod-
ucts between Australian states and territories calls for 
a nationally unified approach to the surveillance of Sal-
monella. Furthermore, ongoing routine surveillance of 
Salmonella in food and food animals collected in a con-
sistent sampling frame would improve the sample size 
and data quality for prevalence and source attribution 
estimates and allow these estimates to be updated regu-
larly to monitor trends. Source attribution can inform 
and direct efforts to prevent foodborne disease. Source 
attribution analyses of data before and after interven-
tions, public health responses, or changes to industry 
practices can help assess the effects of these changes. 
Regularly updated source attribution estimates would 
provide timely guidance for food safety authorities as 
novel Salmonella types or other epidemiological factors 
change the risk associated with specific animal reservoirs.
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Additional file 1: Figure S1. The observed distribution of common1 sero-
types in human cases and the major food animal groups in NSW between 
2008 and 2019. Each row shows the proportion of isolates due to each 
serotype in that source (number isolates from the source in parentheses). 
1Serotypes within the twenty most common serotypes in one of the 
sources or in human cases. Figure S2. Source attribution proportions for 
a model ignoring differences over time, but adjusting for differences by 
rurality. (A) Attribution proportion for each of the major source groups for 
cases residing in different rurality zones. (B) The difference in attribution 
proportion by rurality with residents of major cities as the reference. Dots 
indicate posterior mean values, while dark and faint lines indicate 80% 
and 95% credible intervals, respectively. See Figure 2 in main text for 
model adjusting for rurality and changes over time. Figure S3. Attribu-
tion proportion for each of the major source groups for cases residing in 
different rurality zones over time. Dots and crosses indicate mean and 
median values, while dark and faint lines indicate 80% and 95% credible 
intervals, respectively. (Compare Figure 2A). Figure S4. The difference in 

https://doi.org/10.1186/s12879-021-06950-7
https://doi.org/10.1186/s12879-021-06950-7


Page 12 of 13McLure et al. BMC Infectious Diseases           (2022) 22:14 

attribution proportion by rurality with residents of major cities as the refer-
ence. Dots and crosses indicate mean and median values, while dark and 
faint lines indicate 80% and 95% credible intervals, respectively. (Compare 
Figure 2B). Figure S5. Posterior estimates of the relative efficiency (q) 
of included serotypes in a model including rurality, year-group, and an 
unsampled source (see Figures S4 and S5), with S. infantis used as a refer-
ence. High relative efficiency indicates a serotype more likely to lead to 
human disease (e.g. due to high virulence or high survivability) while low 
relative efficiency indicates serotypes that are common in source animals 
but rarely cause disease. Dots indicate median values, while thick and 
thin lines indicate 80% and 95% credible intervals, respectively. Table S1. 
The percentage of Salmonella isolates of serotype Typhimurium and the 
percentage of S. typhimurium isolates that were subtyped using phage-
typing or MLVA typing. NA indicates that there were no S. typhimurium for 
the combination of source and year.
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