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Abstract 

Background:  To develop a non-invasive method for the prenatal prediction of neonatal respiratory morbidity (NRM) 
by a novel radiomics method based on imbalanced few-shot fetal lung ultrasound images.

Methods:  A total of 210 fetal lung ultrasound images were enrolled in this study, including 159 normal newborns 
and 51 NRM newborns. Fetal lungs were delineated as the region of interest (ROI), where radiomics features were 
designed and extracted. Integrating radiomics features selected and two clinical features, including gestational age 
and gestational diabetes mellitus, the prediction model was developed and evaluated. The modelling methods 
used were data augmentation, cost-sensitive learning, and ensemble learning. Furthermore, two methods, which 
embed data balancing into ensemble learning, were employed to address the problems of imbalance and few-shot 
simultaneously.

Results:  Our model achieved sensitivity values of 0.82, specificity values of 0.84, balanced accuracy values of 0.83 and 
area under the curve values of 0.87 in the test set. The radiomics features extracted from the ROIs at different locations 
within the lung region achieved similar classification performance outcomes.

Conclusion:  The feature set we designed can efficiently and robustly describe fetal lungs for NRM prediction. RUS-
Boost shows excellent performance compared to state-of-the-art classifiers on the imbalanced few-shot dataset. The 
diagnostic efficacy of the model we developed is similar to that of several previous reports of amniocentesis and can 
serve as a non-invasive, precise evaluation tool for NRM prediction.

Keywords:  Neonatal respiratory distress syndrome, Transient tachypnea, Prenatal ultrasonic diagnosis, Fetal lung 
ultrasound image, Class imbalance, Ensemble learning
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Background
Neonatal respiratory morbidity (NRM), mainly includ-
ing respiratory distress syndrome (RDS) and transient 
tachypnea of the newborn (TTN), is a leading cause of 
morbidity and mortality in the preterm and early term 
[1]. The morbidity of NRM is correlated with fetal lung 
maturity [2]. Newborns with NRM are born with res-
piratory distress and even apnoea, which may lead to 
multiple complications, or even death. Glucocorticoids 
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are used to treat fetuses at high risk of NRM to promote 
fetal lung maturation and can significantly reduce mor-
bidity and mortality. However, recent studies have shown 
that glucocorticoid treatment has some side effects, such 
as short-term fetal heart rate variability (HRV) and fetal 
movements [3]. An accurate prenatal prediction of NRM 
is essential to avoid the overuse of glucocorticoids in nor-
mal fetuses.

Amniocentesis is an effective method for the prenatal 
prediction of NRM by assessing fetal lung maturity [4]. 
However, it is an invasive detection method with com-
plicated and time-consuming operations and no uniform 
threshold for the prediction. Currently, amniocentesis is 
rarely used to make prenatal predictions. Instead, gesta-
tional age (GA) is usually assessed to make the predic-
tion. Fetuses assessed to be born at 28–36.6  weeks are 
regarded as having a high risk of NRM because of fetal 
lung immaturity and will be treated with glucocorticoids. 
There is a high rate of false positives in view of NRM 
morbidity, which will cause side effects in newborns. In 
this context, it is particularly important to develop an 
accurate and non-invasive method for the prenatal pre-
diction of NRM.

Ultrasound is a non-radiation and non-invasive tech-
nology that is widely used in prenatal diagnosis. The 
use of fetal lung ultrasound images to predict NRM as 
alternative to amniocentesis has been considered a use-
ful method in recent studies [5]. In a recent study, quan-
titative texture analysis of fetal lungs (quantusFLM) was 
used to predict NRM [6]. The study was based on the 
European population and no related study for Asian 
populations. Moreover, the feature set used in their study 
only includes textural features and GA. There is sugges-
tive evidence that gestational diabetes mellitus (GDM) in 
pregnant women may have adverse effects on lung devel-
opment [7, 8]. On the other hand, due to low morbid-
ity, NRM newborns, especially preterm and early-term 
newborns, are hard to obtain. The dataset for the study 
is usually imbalanced and few-shot. This phenomenon 
was not mentioned in their study. It is worth noting that 
imbalanced and few-shot datasets are common in clinical 
practice and will bring overfitting and bias, resulting in 
poor generalization for the classification model.

The purpose of this study was to develop a non-inva-
sive method for the prenatal prediction of NRM based 
on the radiomics method with an imbalanced few-shot 
fetal lung ultrasound image dataset collected from Asian 
population. Fetal lungs were delineated as the region of 
interest (ROI), and radiomics features were designed and 
extracted from the ROI. Feature selection was performed 
to select representative radiomics features and combining 
with GA and GDM for modelling. The modelling method 
of data augmentation, cost-sensitive learning, ensemble 

learning, Random Under-Sampling with AdaBoost (RUS-
Boost) [9] and Synthetic Minority Oversampling Tech-
nique (SMOTE) with AdaBoost (SMOTEBoost) [10] 
were used to address the problems of imbalance and 
few-shot. Finally, the diagnostic efficacy of the model 
we developed was found to be similar to that of previous 
reports of amniocentesis.

Methods
Workflow
The workflow for the entire study is summarized in Fig. 1. 
It can be divided into three parts: image acquisition and 
lung segmentation, feature extraction and selection, 
model building. First, for each acquired fetal lung ultra-
sound image, the ROI inside the fetal lung is delineated 
by one physician and confirmed by another physician. 
Then, 308 radiomics features are extracted in the ROI 
of each image. Feature selection is performed on these 
radiomics features to select the most valuable features. 
Finally, the selected radiomics features are combined 
with the clinical features as the input to the classifier. 
With building and comparing classification models with 
different methods, the best model is finally selected to 
predict NRM.

Patients
From July 2018 to August 2019, a total of 261 fetal lung 
ultrasound images from 261 singleton pregnant women 
with GAs ranging from 28.0 to 38.6  weeks were col-
lected from Obstetrics and Gynecology Hospital Affili-
ated to Fudan University, Shanghai, China. The flowchart 
for the study population is shown in Fig.  2. Pregnant 
women who met the following criteria were enrolled in 
the study: (1) singleton pregnancy; (2) those with com-
plete medical information who had undergone maternity 
examination and subsequent delivery in our hospital; (3) 
fetuses with no known congenital malformation or chro-
mosomal abnormality; (4) those with no diabetes before 
pregnancy; and (5) those who had not been prescribed 
steroids before delivery. Finally, a total of 210 singleton 
pregnant women with 210 fetal lung ultrasound images 
were enrolled in our study and randomly divided into the 
training set and test set at a ratio of approximately 8:2. 
It is worth noting that we kept the same proportion of 
NRM and normal in both sets. The training set contains 
167 images, of which 40 are NRM and 127 are normal. 
The test set contains 43 images, of which 11 are NRM 
and 32 are normal.

This study was approved by the Ethics Committee of 
Obstetrics and Gynecology Hospital Affiliated to Fudan 
University, Shanghai, China. All data were collected and 
used with the consent of the pregnant women.
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Image acquisition and lung segmentation
All ultrasound images were obtained during routine pre-
natal ultrasound examinations within 72 h before delivery 
and performed by a radiologist with over 8 years of expe-
rience in obstetrics and gynaecology ultrasound imaging. 
The WS80A ultrasound system (Samsung, Korea) was 
used in this study for imaging. One scanner was used in 
this study: the Samsung CA1-7A curved array probe (fre-
quency range 1.0–7.0 MHz, center frequency: 4.0 MHz).

Fetal lung ultrasound image acquisition was achieved 
using a transverse view of the fetal thorax at the level 
of the four-chamber view of the heart. The probe was 
adjusted to ensure that at least one of the lungs had no 
obvious acoustic shadowing from the fetal ribs. In order 
to obtain optimal image quality, the acquisition parame-
ters, including depth, gain, frequency, time-gain compen-
sation, and harmonics, were adjusted according to the 

relevant features of each pregnant woman and fetus. All 
the images were collected and stored in DICOM format 
(.dcm) for offline analysis.

Figure  3 shows the manual delineation of the lung 
regions in the ultrasound images of a normal fetus and a 
fetus with NRM, respectively. All ROIs were selected in 
the homogeneous area inside the lung, with no vascular 
or rib shadows. It should be noted that the manual delin-
eation of each fetal lung was delineated by one physician, 
which was reviewed and confirmed by another physician, 
both of whom were blinded to the medical histories of 
the pregnant women and neonatal outcomes.

Feature extraction and selection
The feature design is the basis for building a practical and 
generalizable classification model. For ultrasound fetal 
lung images, the feature set should reflect subtle texture 

Fig. 1  The Workflow of the entire study. Stage I: For each acquired fetal lung ultrasound image, the ROI inside the fetal lung is delineated by 
one physician and confirmed by another physician. Stage II: 308 radiomics features are extracted in the ROI of each image. Feature selection is 
performed on these radiomics features to select the most useful features. Stage III: the selected radiomics features are combined with the clinical 
features as the input to the classifier. With building and comparing classification models with different methods, the best model is finally selected to 
predict the risk value of NRM
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information in the ROI of the image and independent of 
the ROI’s size and location to provide a robust descrip-
tion for clinical use. With the requirement for the feature 
set, a series of radiomics features were designed based on 
the image greyscale and texture, including 16 greyscale 
histogram features, 60 texture features, and 304 wavelet 
features.

Before feature extraction, the area inside the ROI 
where the feature extracted was min–max normalized 
into 0–255 to remove bias, scaling factors of the effect of 
different imaging parameters. To avoid the effect of outli-
ers, we refer to Collewet’s work [11] which calculates the 
maximum and minimum values after removing outliers 
for min–max normalization of images.

For the greyscale histogram features and texture fea-
tures, we refer to the feature definitions as described by 
the Imaging Biomarker Standardization Initiative (IBSI) 
[12]. The bin-width is set to 1 to maintain detailed texture 

information. The 304 wavelet features were obtained by 
extracting 16 greyscale histogram features and 60 texture 
features separately on four components first-level decom-
position (approximate, horizontal, vertical, and diagonal) 
of the original image’s wavelet transform. We adopted the 
Daubechies wavelets 5 (db5) transform.

The extracted features have different value ranges, 
which will affect feature selection and modelling. In this 
study, we performed the min–max normalization on the 
extracted raw features to ensure effective selection and 
training in the following modelling process. Note that the 
maximum and minimum in the normalization are cal-
culated from the training set and also used for normali-
zation in validation and test sets. It is reasonable as the 
maximum and minimum of test samples are unseen in 
practice.

In addition, we used a priori clinical knowledge to 
improve the feature set’s descriptive ability by adding two 

Fig. 2  The flowchart of the selection process of the study population. Pregnant women who met the following criteria were enrolled in the study: 
(1) singleton pregnancy; (2) those with complete medical information who had undergone maternity examination and subsequent delivery in our 
hospital; (3) fetuses with no known congenital malformation or chromosomal abnormality; (4) those with no diabetes before pregnancy; and (5) 
those who had not been prescribed steroids before delivery. Finally, a total of 210 singleton pregnant women with 210 fetal lung ultrasound images 
were enrolled in our study and randomly divided into the training set and test set at a ratio of approximately 8:2. It is worth noting that we kept 
the same proportion of NRM and normal in both sets. The training set contains 167 images, of which 40 are NRM and 127 are normal. The test set 
contains 43 images, of which 11 are NRM and 32 are normal
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clinical features, GA and GDM, with are readily available 
and strongly correlated with NRM in relevant studies. 
The summary of the feature set is listed in Table 1, and 
the details of the features are as follows.

The feature selection method was used to select the 
most useful radiomics features as inputs of the classifi-
cation model. We ranked feature importance to selected 
features by permuting out-of-bag data feature of random 
forest trees. If a feature is influential, permuting its val-
ues would influence the model error testing with out-of-
bag data. The more important a feature is, the greater its 
influence will be [20].

Model building
The class imbalance and small dataset will lead to over-
fitting and classification bias. In this study, we designed 
and evaluate performance of common methods on our 
imbalanced and few-shot dataset. The motivation of the 
comparison experiment is to compare the effectiveness of 
different modelling approaches on the imbalanced small 
dataset from both data and model perspectives.

To address the imbalance problem, we introduced a 
data balancing method, Adaptive Synthetic (ADASYN) 
[21]. ADASYN generates minority class pseudo-samples 
by linear interpolation to balance the dataset. Classifiers 
can then be trained on the balanced dataset without the 

effect of the class imbalance. This has been shown to be 
effective in some studies, but there is a lack of research 
on the small medical image datasets. We also introduced 
a classifier model cost-sensitive support vector machine 
(SVM) [22], which addresses the class imbalance prob-
lem by increasing the model’s misclassification cost of the 
minority classes.

As for the problem of the low generalizability of model-
ling on small datasets, we introduced the Adaptive boost-
ing (AdaBoost) [23], which improves the generalizability 
by combining weak base learners and bootstrap sampling 
with the AdaBoost algorithm.

Moreover, we introduced the RUSBoost and SMOTE-
Boost, which are ensemble learning methods based on 
AdaBoost with undersampling and oversampling, respec-
tively, addressing both low generalizability and imbalance 
problems simultaneously.

In our comparative experiments, cost-sensitive SVM, 
SMOTEBoost, RUSBoost were applied to the original 
imbalanced dataset. SVM and AdaBoost were applied 
to the original imbalanced dataset and the balanced data 
balanced with ADASYN, respectively, to test the effec-
tiveness of the data balancing method.

All classifier parameters were tuned with bootstrap 
fivefold cross-validation, and the decision tree was 

Fig. 3  Examples of NRM and normal fetal lung ultrasound images and manual delineation. a An NRM fetal lung ultrasound image. b A normal fetal 
lung ultrasound image. c and d are the manual delineations of the ROIs
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employed as the base learner for AdaBoost, RUSBoost 
and SMOTEBoost.

Statistical analysis
Descriptive statistics are summarized as the mean ± 
standard deviation (mean ± std). Univariate analy-
ses were performed on each feature of the training set 
using the t-test for 380 continuous radiomics features 
and the χ2 test for two categorical clinical features. A p 
value < 0.05 indicated a significant difference.

Since our data is class imbalanced, the metrics used to 
evaluate the model’s classification performance should be 

sensitive to class imbalance. The metrics we introduced 
in this study are the balanced accuracy (bACC), the area 
under the receiver operating characteristic (ROC) curve 
(AUC), the sensitivity (SENS), the specificity (SPEC), the 
positive predictive value (PPV) and negative predictive 
value (NPV). All methods were performed with MAT-
LAB R2019b (MathWorks, Inc., Natick, MA, USA). The 
image processing toolbox and machine learning toolbox 
were applied in feature extraction and model building.

Table 1  The summary of the feature set we designed for predicting NRM

(1) Clinical information: GA and GDM are strongly correlated with NRM [7, 8]. GA was determined by the last menstrual period and verified by first-trimester dating 
ultrasound (crown-rump length). According to the presence of GDM during pregnancy, these pregnant women were divided into Yes and No groups

(2) Greyscale histogram features: Describe the greyscale and histogram distribution of the ROI in fetal lung ultrasound images [13]

(3) Textural features: Describe detailed, invisible greyscale changes and associations in fetal lung ultrasound images

(a) ROI textural features: Describe the distribution of greyscale inside the ROI [14]

(b) Grey-level co-occurrence matrix (GLCM) textural features: Describe the specified spatial linear relationship between the frequencies of two greyscale intensities 
inside the ROI [15]

(c) Grey-level run-length matrix (GLRLM) textural features: Describe the roughness of the texture by calculating the run-length of the collinear image pixels of the 
same grey-level in a given direction inside the ROI [16, 17]

(d) Grey-level size zone matrix (GLSZM) textural features: Describe the uniformity of the small pixel population of the ROI [15, 18]

(e) Neighbourhood grey-tone difference matrix (NGTDM) textural features: Describe the difference between the greyscale of each image pixel and the greyscale of its 
neighbours inside the ROI [19]

(4) Wavelet features: Describe information that is not directly reflected by the greyscale and textural features of the original image. Every fetal lung ultrasound image 
was decomposed into four components: approximate, horizontal, vertical, and diagonal by wavelet transform (first-level decomposition). Then, the 76 features 
mentioned above were extracted separately on each component. Finally, a total of 304 wavelet features were extracted

Approximate, horizontal, vertical, and diagonal were decomposed from the image by wavelet transform (first-level decomposition)

GA: gestational age, GDM: gestational diabetes mellitus, ROI: region of interest (fetal lung region), SD: standard deviation, GLCM: grey-level co-occurrence matrix, 
GLRLM: grey-level run-length matrix, GLSZM: grey-level size zone matrix, NGTDM: neighbourhood grey-tone difference matrix

Feature type Feature name Feature 
number

Clinical information (1) GA, (2) GDM 2

Greyscale histogram features (3) Energy, (4) Entropy, (5) Kurtosis, (6) Mean, (7) Median absolute deviation, (8) Median, (9) Range, (10) 
Uniformity, (11) Variance, (12) Root mean square, (13) Skewness, (14) Deviation, (15) Histogram kurtosis, (16) 
Histogram mean, (17) Histogram variance, (18) Histogram skewness

16

ROI textural features (19) Mean of contrast, (20) SD of contrast, (21) Mean of covariance, (22) SD of covariance, (23) Mean of non-
similarity, (24) SD of non-similarity

6

GLCM textural features (25) Energy, (26) Entropy, (27) Dissimilarity, (28) Contrast, (29) Inversed difference, (30) Correlation 1, (31) Cor-
relation 2, (32) Homogeneity, (33) Autocorrelation, (34) Cluster shade, (35) Cluster prominence, (36) Maximum 
probability, (37) Sum of squares, (38) Sum average, (39) Sum variance, (40) Sum entropy, (41) Difference 
variance, (42) Difference entropy, (43) Information measures of correlation 1, (44) Information measures of 
correlation 2, (45) Maximal correlation coefficient, (46) Inverse difference normalized, (47) Inverse difference 
moment normalized

23

GLRLM textural features (48) Short-run emphasis, (49) Long-run emphasis, (50) Grey-level non-uniformity, (51) Run length non-uni-
formity, (52) Run percentage, (53) Low grey-level run emphasis, (54) High grey-level run emphasis, (55) Short-
run low grey-level emphasis, (56) Short-run high grey-level emphasis, (57) Long-run low grey-level emphasis, 
(58) Long-run high grey-level emphasis, (59) Grey-level variance, (60) Run-length variance

13

GLSZM textural features (61) Small zone emphasis, (62) Large zone emphasis, (63) Grey-level non-uniformity, (64) Zone size non-
uniformity, (65) Zone percentage, (66) Low grey-level zone emphasis, (67) High grey-level zone emphasis, (68) 
Small zone low grey-level emphasis, (69) Small zone high grey-level emphasis, (70) Large zone low grey-level 
emphasis, (71) Large zone high grey-level emphasis, (72) Grey-level variance, (73) Zone-size variance

13

NGTDM textural features (74) Coarseness, (75) Contrast, (76) Busyness, (77) Complexity, (78) Strength 5

Wavelet features (79–154) Approximation, (155–230) Horizontal, (231–306) Vertical, (307–382) Diagonal 304

Total feature number 382
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Result
Patient characteristics
A summary of the characteristics of the training set and 
test set is listed in Table 2. The imbalance ratio between 
the number of normal and NRM was close to 3:1. There 
is a significant difference (p value < 0.005) in both GA 
and GDM between NRM and normal controls, which 
is the statistical basis for using GA and GDM as clini-
cal features. Moreover, there is a significant difference (p 
value < 0.0001) in birth weight between the two groups.

Univariate analysis and feature selection
Univariate analysis was performed on the training set. 
The results show that 32 of all 380 radiomics features 
were highly correlated with NRM (p value < 0.05).

The feature selection method was used to select the 
most useful features for modelling. The final 10 fea-
tures with the highest feature’s importance score were 
selected. The feature names and descriptive statistics of 
the 10 radiomics features selected are listed in Table  3. 
Figure 4 shows the box plots of the top 3 features with a 

Table 2  Characteristics of the training set and test set

The  p value < 0.05 is shown in blod

The t test was performed for continuous variables and the χ2 test was performed for categorical variables

GA gestational age, GDM gestational diabetes mellitus

*Data are means ± standard deviations

Characteristics Training set (n = 167) Test set (n = 43)

Normal NRM p value Normal NRM p value

No. of images 127 40 – 32 11

GA* 36.49 ± 0.85 34.37 ± 2.42 < 0.0001 36.78 ± 1.64 34.53 ± 2.37 < 0.0001
Birth weight (g)* 3096 ± 385 2978 ± 490 < 0.0001 3145 ± 423 3024 ± 540 < 0.0001
GDM < 0.005 0.06
Yes 48 (37.80%) 26 (65.00%) – 10 (31.25%) 7 (63.64%) –

No 79 (62.20%) 14 (35.00%) – 22 (68.75%) 4 (36.36%) –

Mode of delivery 0.35 0.94

Spontaneous vaginal delivery 56 (44.09%) 21 (52.50%) – 15 (46.88%) 5 (45.45%) –

Caesarean delivery 71 (55.91%) 19 (47.50%) – 17 (53.12%) 6 (54.55%) –

Sex of newborn 0.87 0.43

Female 59 (46.46%) 18 (45.00%) – 16 (50.00%) 7 (63.64%) –

Male 68 (53.54%) 22 (55.00%) – 16 (50.00%) 4 (36.36%) –

Apgar – –

5 min ≤ 7 0(0.00%) 4 (10.00%) – 0 (0.00%) 0 (0.00%) –

5 min > 7 1 27 (100.00%) 36 (90.00%) – 32 (100.00%) 11 (100.00%) –

Table 3  Feature names and means of the features selected

Approximate, horizontal, vertical, and diagonal were decomposed from the image by wavelet transform (first-level decomposition)

Feature name Mean ± std

Normal NRM

Energy 0.543 ± 0.070 0.551 ± 0.063

Inverse difference moment normalized 0.999 ± 0.0004 0.998 ± 0.0005

High grey-level run emphasis 298 ± 62.5 279 ± 57.0

Run-length variance (2.04 ± 0.996) × 10−5 (2.30 ± 0.844) × 10−5

Inverse difference moment normalized of approximation 0.801 ± 0.113 0.773 ± 0.114

Information measure of correlation 1 of approximation 0.989 ± 0.002 0.990 ± 0.002

Energy of horizontal 0.362 ± 0.036 0.374 ± 0.042

Sum entropy of vertical (4.81 ± 2.87) × 104

Long-run high grey-level emphasis of vertical 432 ± 78.4 462 ± 95.3

Energy of diagonal (1.40 ± 0.724) × 103 (1.20 ± 0.841) × 103
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high correlation between the normal and NRM fetal lung 
ultrasound images of the 10 selected features. Although 
there are significant differences in the means, the stand-
ard deviations overlap, making the classification task 
difficult and requires a more powerful multivariate clas-
sification method.

Model construction and evaluation
The classification performance of different modelling 
methods is illustrated in Table 4. The inputs to the model 
were 2 clinical features and 10 radiomics features, as 
shown in Table 3.

On the original imbalanced dataset, the SVM has a 
severe class bias, testing with a SPEC of 1.00 but a SENS 
of only 0.36. The cost-sensitive SVM model obtains a 
small increase in SENS of 0.36–0.45 but is accompanied 
by a large decrease in SPEC of 1.00–0.84. The AdaBoost 
shows a better performance than the cost-sensitive SVM, 
while SPEC decreased by only 0.09.

Training the SVM and AdaBoost models on the bal-
anced dataset resulted in a substantial increase in SENS 
compared to the results from the original imbalanced 
dataset, both reaching 0.73, but correspondingly, a sub-
stantial decrease in SPEC, from 1.00 to 0.78 and from 
0.91 to 0.75, respectively.

The SMOTEBoost’s SENS is equal to that of the Ada-
Boost trained on the original imbalanced dataset, but its 
SPEC is only 0.88, lower than AdaBoost’s 0.91. RUSBoost 

shows better classification performance than other meth-
ods, with a SENS of 0.72, a SPEC of 0.82, a bACC of 0.77, 
and an AUC of 0.83 by bootstrap validation in the train-
ing set. Moreover, the model has excellent classifica-
tion performance with a SENS of 0.82, a SPEC of 0.84, a 
bACC of 0.83, and an AUC of 0.87, in the test set.

The effect of our feature set
The verification result of feature set effectiveness is illus-
trated in Table 5. In the test set, the model built with the 
feature of GA alone has a high SPEC of 0.97 and a low 
SENS of 0.45. For the combination of GA and GDM, 
there is an increase in SENS from 0.45 to 0.69, but SPEC 
decreases by 0.34. The best classification performance 
can be achieved with our designed feature set, including 
radiomics features, GA, and GDM.

Since most areas inside the fetal lung are homogene-
ous, the greyscale histogram features and texture features 
have the stability for small changes of the location or 
shape of the ROI in the homogeneous region. As a valida-
tion measure of the stability of the feature set, each image 
is additionally delineated with a square ROI in addition 
to the irregular ROI. The square ROI was outlined within 
the fetal lung region, as shown in Fig. 5. As illustrated in 
Table 5, the irregular ROI and square ROI achieved simi-
lar performance outcomes. There is only a difference of 
0.04 in bACC, 0.02 in AUC, 0.09 in SENS, 0.02 in SPEC, 
0.01 in PPV, and 0.03 in NPV on the test set. These results 

Fig. 4  Box plots of the top 3 features of the 10 selected features. a–c are the box plots of the high grey-level run emphasis, energy of horizontal and 
long-run high grey-level emphasis of vertical features extracted from the ROIs of the normal and NRM samples. The normal fetal lung has higher 
mean values for the features of high grey-level run emphasis (298 ± 62.5) and energy of diagonal (1400 ± 724) than the NRM. For the long-run high 
grey-level emphasis of vertical feature, the mean value of the normal fetal lung is 432, which is smaller than that of the NRM of 462
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demonstrate our texture feature-based model has the sta-
bility for the shape and location of the ROI.

As shown in Fig. 6a and b, clinical models have severe 
class bias, leading to low sensitivity. In the model using 
GA, only 45% of the NRM samples were correctly diag-
nosed. In the model using GA and GDM, only 64% of 
the NRM samples were correctly diagnosed. Model 
using both clinical data and radiomics features achieves 
the best diagnostic performance, as illustrated in Fig. 6c 
and d. There are 82% and 91% of NRM samples correctly 
diagnosed, respectively, while less than 20% of Normal 
samples were misdiagnosed as NRM. Furthermore, in 
Fig.  6e, tests using different ROIs achieved similar clas-
sification performance and ROC curves. It is worth to 
be noted that the classifier using GA only or GA and 
GDM is biased towards the normal class, while its AUC 
is higher due to the imbalance of the dataset, which is the 
limitation of AUC in the classification performance eval-
uation of imbalanced datasets.

Discussion
Prenatal prediction and therapy for NRM are an effective 
way to improve the life quality of NRM newborns. There 
is a consensus to study non-invasive methods to predict 

NRM using fetal lung ultrasound images. However, there 
is no unified feature set for the prenatal prediction of 
NRM, and the dataset collected in medical practice is 
often imbalanced and few-shot. To tackle these chal-
lenges, our study focuses on the design of feature sets 
with a strong representation of fetal lung ultrasound 
images and effective classification modelling methods.

The feature set for predicting NRM
Considering that the fetal lung in the ultrasound image 
is homogeneous, we designed radiomics features based 
on the image greyscale and texture, which can avoid 
the influence of the ROI’s size and location on feature 
extraction. For each fetus, 380 radiomics features were 
extracted from the fetal lung region of ultrasound images, 
and 10 of them were selected for modelling. The energy 
of horizontal, which characterizes the brightness in the 
horizontal direction of the wavelet transform, has a mean 
value of 1400 in normal fetal lungs, which is higher than 
1200 in NRM fetal lungs. The high grey-level run empha-
sis of the normal fetal lung has a higher mean value of 
298 than the NRM fetal lungs of 279, which means that 
the fetal lung region is more homogeneous in normal 
fetal lungs than NRM fetal lungs. For the long-run high 
grey-level emphasis of vertical feature, the mean value of 

Fig. 5  Examples of the lung region delineations in the lung ultrasound images of a normal fetus and a fetus with NRM. a and b are the irregular and 
square ROI selection in the ultrasound image of a normal fetus. c and d are the irregular and square ROI selection in the ultrasound image of a fetus 
with NRM
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the normal fetal lungs is 432, which is smaller than that of 
the NRM fetal lung of 462, which suggests that the fetal 
lung region is more delicate in normal fetal lungs than 
NRM fetal lungs. It can be concluded that the lung region 
of normal fetuses has a more delicate and homogeneous 
texture on the ultrasound image and is brighter than that 
of NRM fetuses. The features we selected were also sta-
ble. The radiomics features extracted from the irregular 
ROI and the square ROI achieved similar performance 
outcomes with the same modelling method (the differ-
ence was less than 0.09 for each measure), as shown in 
Table 5.

In addition to radiomics features, GA and GDM, two 
clinical features identified to be strongly correlated with 
NRM, were also added to the feature set. Newborns with 
a low GA have a significantly increased risk of NRM due 
to immature lungs, and GDM in pregnant women leads 
to delayed lung development in the fetus, increasing the 
risk of NRM. As shown in Table 5, with the addition of 
radiomics features, the SPEC and SENS were both signif-
icantly improved. In conclusion, the feature set designed 
in this study that includes radiomics features, GA, and 
GDM is more effective for NRM prediction and is not 
affected by the size or location of the ROI.

Model development
Imbalance and few-shot are inevitable in medical data-
sets, which pose many challenges for modelling. As 

shown in Table  4, there is a large class bias and poor 
classification performance on small imbalanced datasets 
using the conventional SVM. The methods of data aug-
mentation, cost-sensitive learning, and ensemble learn-
ing are commonly used on imbalanced few-shot datasets. 
Here, these methods were performed and analysed to 
find the most effective modelling method.

The cost-sensitive SVM and AdaBoost show an 
improvement of 0.21 and 0.36 in SENS compared with 
the SVM in Table 4, but there is a decrease of 0.10 and 
0.15 in SPEC in the training set. As for the cost-sensitive 
SVM, since there are few NRM samples, a higher cost 
is needed, which makes the compression of boundaries 
more severe, and the classifier tends to sacrifice multi-
ple normal samples to ensure that one NRM sample is 
correct with a sharp decline in the generalization per-
formance. The AdaBoost has a better performance than 
cost-sensitive SVM, with a SENS of 0.68 and a SPEC of 
0.84. The ensemble learning method’s lower overfitting 
allows it to exhibit a better generalization performance 
than the individual learner SVM or the cost-sensitive 
SVM.

Training on the balanced training set augmented with 
ADASYN, the SVM and AdaBoost does not show a sig-
nificant improvement compared to training on the origi-
nal imbalanced dataset, with an increase of 0.35 and 0.23 
in SENS and a decrease of 0.25 and 0.26 in SPEC. For bet-
ter illustration, we used t-SNE [24] to visualize the sam-
ple distribution of the original dataset and the balanced 

Fig. 6  The confusion matrix and ROC curves tested in the test set with different combinations of features. a and b are confusion matrices of the 
model using only clinical data. c is confusion matrices of the model using clinical data combined with delineated ROI. d is confusion matrices of the 
model using clinical data combined with square ROIs. e shows ROC curves and AUC values for different combinations of features
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dataset augmented by ADASYN. As shown in Fig.  7, 
there is aliasing between normal and NRM samples, mak-
ing it difficult to classify. By generating pseudo-samples 
around the minority class, ADASYN leads the classifier 
to draw more attention to the NRM samples. However, it 
also exacerbates aliasing and results in poor classification 
performance. The generated pseudo-samples also tend to 
introduce plenty of noise, especially when the aliasing of 
samples is terrible. The data augmentation method is not 
appropriate in our application.

The SENS of SMOTEBoost is still low because aliasing 
in the dataset makes SMOTE introducing considerable 
noise. RUSBoost shows better classification performance 
than other methods. It reaches a SENS of 0.72, a SPEC 
of 0.82, a bACC of 0.77, and an AUC of 0.83 in the train-
ing set and a SENS of 0.82, a SPEC of 0.84, a bACC of 
0.83, and an AUC of 0.87 in the test set. RUSBoost can 
reduce overfitting and improve the classification model’s 
generalization ability by combining weak base learners 
and bootstrap sampling with the AdaBoost algorithm. 
The input dataset of each learner is obtained by bootstrap 
undersampling, which enriches the sample distribution 
that the base learners have learned and reduce the effects 
of imbalance. The drawback of massive sample loss of 
undersampling in a small dataset is compensated by 
ensemble learning, while random undersampling ensures 
that the samples are real and avoids the noise that caused 
by data augmentation.

NRM prediction model
In this study, the non-invasive approach we proposed 
based on the Asian population utilizes a much smaller 
data set to establish similar prediction performance to 
previously reported methods. It makes it possible to 
safely and widely perform the NRM prenatal screen-
ing and intervention, which has an excellent prediction 
performance with a bACC of 0.83, an AUC of 0.87, a 
SENS of 0.82, a SPEC of 0.84, a PPV of 0.64, and an NPV 
of 0.93. A comparison of our method with some of the 
existing reported methods is illustrated in Table 6, which 
shows that our diagnostic performance approximates to 
that of invasive amniocentesis tests. Compared our study 
to Bonet’ work [5], in which only fetal lung ultrasound 
images were used for NRM prediction, our method uti-
lizes less than 1/2 of the training set size. There is 0.02 
higher in bACC, 0.07 higher in SENS, 0.02 higher in 
NPV, the same PPV and only 0.04 lower in SPEC, with 
square ROI. Compared to quantusFLM [5] reported in 
a multicenter study, our study uses less than 1/4 of the 
training set size and is 0.05 higher in bACC, 0.17 higher 
in SENS, 0.12 higher in PPV, the same NPV and only 
0.07 lower in SPEC, with square ROI. Our model based 
on the Asian population utilizes a much smaller data set 
to establish better prediction performance to previously 
reported methods.

Our model was built and tested in female and male 
fetuses with GAs ranging from 28.0 to 38.6  weeks. The 
experimental results show that our model has effective 
predictive performance in this scope. Moreover, our 

Fig. 7  The distribution of the samples. a The sample distribution of the original dataset with terrible class aliasing. b The sample distribution of the 
balanced dataset augmented by ADASYN
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method has a degree of stability for the ROI’s location 
and shape, allowing the model to be widely used.

Strengths and limitation
Our study has three strengths. First, to the best of our 
knowledge, this is the first study to incorporate GDM, 
GA, and radiomics features for NRM prenatal prediction. 
The diagnostic efficacy of the model we developed based 
on fetal lung ultrasound images in this study reached 
which are similar to those of many previous reports of 
amniocentesis [26–28]. Second, we developed a practical 
modelling approach to address the problems of imbal-
ance and few-shot. RUSBoost shows excellent perfor-
mance and generalization capabilities compared with the 
other methods used for comparison in this study. Third, 
we used radiomics features based on the image greyscale 
and texture for the prenatal prediction of NRM, whose 
performance is efficient and robust, without the influ-
ences of ROI selection results.

As a retrospective study, this study has some limita-
tions that should be acknowledged. Clinical outcome of 
the fetuses depends on several clinical factors. In addi-
tion to GA and GDM, more clinical information could 
be studied for its correlation with fetal lung develop-
ment and used for NRM prediction. A comparative study 
on the right and left lungs to verify the generalizability 
of the method between the right and left lungs is also 
needed. Furthermore, for applying the proposed method 
to a clinical application, a robust validation technique is 
required to demonstrate the stability of our model on the 
multicenter dataset from different machines and different 
operators. The applicable fetal population (different ges-
tational week groups or sexes) is also needed to be inves-
tigated in our upcoming multicenter experiment.

In order to answer these questions and overcome these 
limitations, a multicenter study is underway. Additional 
fetal ultrasound images from multicenter will be included 
in our study for robust validation.

Conclusion
In conclusion, our results show that the radiomics fea-
tures of the fetal lung can be used as an efficient and 
robust biomarker for NRM prediction. The diagnos-
tic efficacy of the model based on fetal lung ultrasound 
images, which incorporates routinely available clinical 
characteristics GA and GDM and radiomics features, 
achieves a better clinical outcome, which might afford 
a non-invasive tool that is easy to implement in NRM 
prediction.
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Table 6  Comparison of our method with previously reported methods

The best results of each metric are shown in bold, and the worst results are shown in italics

TDxII, surfactant/albumin ratio, the best index in the report of amniocentesis results

In Bonet’s work, SENS, SPEC, PPV, and NPV were calculated at different gestational week groups, and the table shows the mean values

Method Size of training set Test set

bACC​ SENS SPEC PPV NPV

TDxII [5] - 0.82 0.86 0.78 0.29 0.99
Bonet [25] N = 390 (NRM: -) 0.85 0.84 0.86 0.63 0.94

quantusFLM [5] N = 730 (NRM: 13.8%) 0.82 0.74 0.89 0.51 0.96

Our method (irregular ROI) N = 167 (NRM: 24.0%) 0.83 0.82 0.84 0.64 0.93

Our method (square ROI) N = 167 (NRM: 24.0%) 0.87 0.91 0.82 0.63 0.96
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