Table 4.
Method | Training set (mean ± std) | Test set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
bACC | AUC | SENS | SPEC | PPV | NPV | bACC | AUC | SENS | SPEC | PPV | NPV | |
Original imbalanced training set | ||||||||||||
SVM | 0.66 ± 0.05 | 0.76 ± 0.07 | 0.32 ± 0.11 | 0.99 ± 0.02 | 0.93 ± 0.07 | 0.82 ± . 0.02 | 0.68 | 0.78 | 0.36 | 1.00 | 1.00 | 0.82 |
AdaBoost | 0.76 ± 0.14 | 0.72 ± 0.16 | 0.68 ± 0.18 | 0.84 ± 0.09 | 09 ± . 0.09 | 0.89 ± 0.05 | 0.73 | 0.79 | 0.55 | 0.91 | 0.68 | 0.85 |
Cost-sensitive SVM | 0.66 ± 0.15 | 0.73 ± 0.10 | 0.43 ± 0.21 | 0.89 ± 0.09 | 0.61 ± 0.17 | 0.84 ± 0.04 | 0.65 | 0.75 | 0.45 | 0.84 | 0.49 | 0.82 |
Balanced training set augmented with ADASYN | ||||||||||||
SVM | 0.71 ± 0.17 | 0.79 ± 0.10 | 0.67 ± 0.17 | 0.74 ± 0.11 | 0.45 ± 0.05 | 0.88 ± 0.04 | 0.76 | 0.85 | 0.73 | 0.78 | 0.53 | 0.89 |
AdaBoost | 0.66 ± 0.14 | 0.71 ± 0.08 | 0.55 ± 0.15 | 0.76 ± 0.07 | 0.42 ± 0.11 | 0.85 ± 0.03 | 0.74 | 0.82 | 0.73 | 0.75 | 0.5 | 0.89 |
Original imbalanced training set (combining data balance and ensemble learning) | ||||||||||||
SMOTEBoost | 0.71 ± 0.11 | 0.70 ± 0.09 | 0.52 ± 0.14 | 0.89 ± 0.10 | 0.72 ± 0.18 | 0.85 ± 0.02 | 0.72 | 0.80 | 0.55 | 0.88 | 0.61 | 0.85 |
RUSBoost | 0.77 ± 0.10 | 0.83 ± 0.13 | 0.72 ± 0.15 | 0.82 ± . 0.12 | 0.74 + 0.02 | 0.82 ± 0.12 | 0.83 | 0.87 | 0.82 | 0.84 | 0.64 | 0.93 |
The best results of each metric are shown in bold, and the worst results are shown in italics. Performance evaluation results obtained by bootstrap K-fold cross-validation in the training set