Skip to main content
. 2022 Jan 4;22:2. doi: 10.1186/s12880-021-00731-z

Table 4.

The classification performance of different modelling methods

Method Training set (mean ± std) Test set
bACC AUC SENS SPEC PPV NPV bACC AUC SENS SPEC PPV NPV
Original imbalanced training set
SVM 0.66 ± 0.05 0.76 ± 0.07 0.32 ± 0.11 0.99 ± 0.02 0.93 ± 0.07 0.82 ± . 0.02 0.68 0.78 0.36 1.00 1.00 0.82
AdaBoost 0.76 ± 0.14 0.72 ± 0.16 0.68 ± 0.18 0.84 ± 0.09 09 ± . 0.09 0.89 ± 0.05 0.73 0.79 0.55 0.91 0.68 0.85
Cost-sensitive SVM 0.66 ± 0.15 0.73 ± 0.10 0.43 ± 0.21 0.89 ± 0.09 0.61 ± 0.17 0.84 ± 0.04 0.65 0.75 0.45 0.84 0.49 0.82
Balanced training set augmented with ADASYN
SVM 0.71 ± 0.17 0.79 ± 0.10 0.67 ± 0.17 0.74 ± 0.11 0.45 ± 0.05 0.88 ± 0.04 0.76 0.85 0.73 0.78 0.53 0.89
AdaBoost 0.66 ± 0.14 0.71 ± 0.08 0.55 ± 0.15 0.76 ± 0.07 0.42 ± 0.11 0.85 ± 0.03 0.74 0.82 0.73 0.75 0.5 0.89
Original imbalanced training set (combining data balance and ensemble learning)
SMOTEBoost 0.71 ± 0.11 0.70 ± 0.09 0.52 ± 0.14 0.89 ± 0.10 0.72 ± 0.18 0.85 ± 0.02 0.72 0.80 0.55 0.88 0.61 0.85
RUSBoost 0.77 ± 0.10 0.83 ± 0.13 0.72 ± 0.15 0.82 ± . 0.12 0.74 + 0.02 0.82 ± 0.12 0.83 0.87 0.82 0.84 0.64 0.93

The best results of each metric are shown in bold, and the worst results are shown in italics. Performance evaluation results obtained by bootstrap K-fold cross-validation in the training set