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Abstract

Background: The cartilage segmentation algorithms make it possible to accurately evaluate the morphology and
degeneration of cartilage. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degen-
eration) that may influence the accuracy of segmentation. It is valuable to evaluate and compare the accuracy and
clinical value of volume and mean T2* values generated directly from automatic knee cartilage segmentation with
those from manually corrected results using prototype software.

Method: Thirty-two volunteers were recruited, all of whom underwent right knee magnetic resonance imaging
examinations. Morphological images were obtained using a three-dimensional (3D) high-resolution Double-Echo

in Steady-State (DESS) sequence, and biochemical images were obtained using a two-dimensional T2* mapping
sequence. Cartilage score criteria ranged from 0 to 2 and were obtained using the Whole-Organ Magnetic Resonance
Imaging Score (WORMS). The femoral, patellar, and tibial cartilages were automatically segmented and divided into
subregions using the post-processing prototype software. Afterwards, all the subregions were carefully checked and
manual corrections were done where needed. The dice coefficient correlations for each subregion by the automatic
segmentation were calculated.

Results: Cartilage volume after applying the manual correction was significantly lower than automatic segmentation
(P<0.05). The percentages of the cartilage volume change for each subregion after manual correction were all smaller
than 5%. In all the subregions, the mean T2* relaxation time within manual corrected subregions was significantly
lower than in regions after automatic segmentation (P<0.05). The average time for the automatic segmentation

of the whole knee was around 6 min, while the average time for manual correction of the whole knee was around

27 min.

Conclusions: Automatic segmentation of cartilage volume has a high dice coefficient correlation and it can provide
accurate quantitative information about cartilage efficiently without individual bias.

Advances in knowledge: Magnetic resonance imaging is the most promising method to detect structural changes
in cartilage tissue. Unfortunately, due to the structure and morphology of the cartilages obtaining accurate seg-
mentations can be problematic. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage
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degeneration) that may influence segmentation accuracy. We therefore assessed the factors that influence segmenta-

tions error.

Keywords: MRI, Cartilage segmentation, Automatic segmentation, Manually corrected

Backgroud
Biochemical cartilage information plays an even more
important role than morphology in detecting early carti-
lage change. Developments in magnetic resonance imag-
ing (MRI), such as three-dimensional (3D) quantitative
MR, allow for sensitive analysis of cartilage morphology.
Quantitative parameters derived by MRI, such as T2*
relaxation time, T2 relaxation time and T1rho can reflect
biochemical changes in articular cartilage and can detect
initial stages of cartilage degeneration [1-4]. According
to some recent reports, T2* relaxation demonstrates a
similar response in the assessment of articular cartilage
and cartilage repair tissue [5-7]. Three-dimensional dou-
ble-echo steady-state (3D-DESS) sequence is a common
MRI sequence for morphological imaging of musculo-
skeletal diseases. Its reported sensitivity, specificity and
accuracy for detection of cartilage lesions are 96.7, 75,
and 93.7%, respectively [8]. It is usually used for the diag-
nosis of cartilage lesions [9]. Combining T2* mapping
and 3D morphological imaging, therefore, has potential
to enhance the assessment of articular cartilage.
Cartilage quantitative parameters, including cartilage
volume and thickness, can be obtained noninvasively
and can be derived automatically once a segmentation of
a high-resolution 3D MRI sequences is available. These
tools are valuable in a clinical setting because they can
be used to quantitatively assess cartilage and save time
in post-processing. Unfortunately, automated segmenta-
tion software can result in errors in segmentation of car-
tilage in some subregions [10]. Of the various cartilage
segmentation algorithms, an approach proposed by J.
Fripp et al. has been shown to be comparable or superior
to other published automatic algorithms [11]. The deep
learning algorithms would probably have high accuracy
in cartilage segmentation, but it did not exceed individ-
ual network performance in cartilage thickness accuracy
and voting ensembles [12]. However, there is no report
on the relationship between the accuracy of deep learn-
ing method in cartilage segmentation and articular effu-
sion and cartilage degeneration. This approach relies on a
segmentation hierarchy, using machine learning to train
three-dimensional active shape models to segment bone.
Cartilage is segmented afterwards, by using a deform-
able model including the expected cartilage thickness
and patient-specific tissue estimation. Recently, a study
demonstrated that an approach that combines a deep
convolutional neural network (CNN) and 3D simplex

deformable modeling is useful for performing rapid and
accurate cartilage and bone segmentation within the
knee joint [13]. However, that segmentation algorithm
relies on accurate recognition of the boundary between
tissues, which is easily influenced by hydrarthrosis and by
edge blur caused by cartilage degeneration. The segmen-
tation accuracy of that method remains to be clinically
validated.

There are some factors (location of cartilage subre-
gions, hydrarthrosis and cartilage degeneration) that
may influence the accuracy of segmentation. We there-
fore assessed the influence factors for the error of seg-
mentations using the approach from Fripp et al. (2010),
based on 3D DESS and T2* relaxation time data. Carti-
lage quantitative parameters, including cartilage volume
and thickness, can be obtained noninvasively and derived
automatically once a segmentation of a high resolution
3D MRI sequence is available. Accuracy of automatic car-
tilage segmentation was assessed by comparing results
to those from manually corrected contours of knee car-
tilage. Moreover, mean T2* relaxation time of these carti-
lage subregions were also measured.

Methods

We examined 32 right knees of 32 volunteers, each of
whom underwent MRI examinations. The volunteers
included 13 males and 19 females, aged 21 to 37years
(mean 27.5+5.2years). Their body mass index (BMI)
was between 17 and 28kg/m? (mean 21.9 +2.5kg/m?).
This study was approved by the ethics committee of our
hospital (2019-003-1), and all participants provided
written informed consent. Inclusion criteria were: (1)
age 18-40years; (2) BMI<28kg/m% (3) without knee
infection, trauma, or surgery; and (4) without chronic
diseases. Exclusion criteria were (1) knee injury; (2) mor-
phological damage to articular cartilage; (3) knee pain
or other positive symptoms; and (4) contraindication for
MRI examination.

Scans were performed on a 3T MR scanner (MAG-
NETOM Verio, Siemens Healthcare, Erlangen, Ger-
many) using the 8-channel knee coil. The 3D knee images
were obtained to show the high-resolution morphol-
ogy using a 3D-DESS sequence with selective water
excitation. The imaging parameters were: voxel size
0.63 x 0.63 x 0.68 mm?, TE 5.17ms, TR 14.45ms, flip
angle 25°, matrix: 256 x 256 x 240, FOV: 160 x 160 mm?,
The sagittal T2* maps were obtained utilizing 5
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echoes for the fit: TE=4.36, 11.9, 19.44, 26.98, 34.52 ms,
TR=1340ms, FOV =160.0 x 160.0mm?, flip angle 60°,
matrix: 384 x 384, slice thickness 3.0 mm.

A senior-level radiologist, who was blinded to the vol-
unteers’ clinical information, evaluated the extent of car-
tilage degeneration and hydrarthrosis. Cartilage score
criteria was obtained using the Whole-Organ Magnetic
Resonance Imaging Score (WORMS) and ranged from 0
to 2. Knee cartilage was automatically segmented into 21
subregions [14] using post-processing prototype software
(MR Chondral Health, version 2.1, Siemens Healthcare,
Erlangen, Germany). This software automatically divides
the knee cartilage into three main parts—femoral, patel-
lar, and tibial cartilage—consisting of 21 cartilage subre-
gions. The T2* maps were automatically registered to 3D
DESS images by prototype software. The cartilage volume
and mean T2* relaxation time for each subregion were
also derived automatically by the software. The corrected
slice was the slice that needs to be manually adjusted
after automatic segmentation (Fig. 1). The T2* relaxation
time of cartilage in the knee was measured by the same
doctor twice a week apart to test consistency among
observers. The automatic segmentations were manu-
ally corrected to increase overall segmentation accuracy.
The Dice coefficient was used to quantify the amount of
change performed on the automatic segmentation [5,
11]. The Dice correlation between automatic segmenta-
tion A (fA(x)) and manual correction based on the auto-
matic segmentation B (fB(x)) was defined as in Equation:
Dice (fA(x),fB(x))=2-fA(x)-fB(x)/(fA(x)+fB(x)). Levels
of hydrarthrosis and cartilage scores (by WORMS) were
determined to analyze their influence on the segmenta-
tion accuracy of each cartilage subregion.
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Statistical analysis was performed with SPSS v.17.0
(IBM, Chicago, IL) and was expressed as mean =+ stand-
ard deviation (Tables 1, 2). P values below 0.05 were con-
sidered to be statistically significant. Due to the small
sample size, the paired rank sum test and independent
sample ¢ test were used to compare the regional differ-
ences of T2* relaxation parameter between the automatic
segmentation and manual correction based on automatic
segmentation in different groups by articular effusion
and cartilage degeneration (Table 2).

Results

The intra-observer correlation coefficient was 0.99 for
T2* measurement. The manual correction based on the
automatic segmentation was commonly done in FMC,
FEMA, FTM, FTC, FTL, PLC, PMI, PMC, PMS, TLC,
TLP, TMP, TMC, and TMA. Cartilage volume in the
manual corrected group was less than in the automatic
cartilage segmentation group (P<0.05). Table 1 lists car-
tilage volume, P values, and Dice coefficient correlations
for each subregion. In FMC, FMA, FTM, FTC, FTL,
FLA, PLI, PLC, PMI, PMC, PMS, TLC, TMP, TMC and
TMA subregions, the T2* relaxation value of manual cor-
rected cartilage segmentation group was less than that of
automatic cartilage segmentation group (P<0.05). The
Dice correlations between automatic segmentation and
manual correction in different groups by articular effu-
sion and cartilage degeneration are shown in Table 1. The
mean Dice coefficient in FMP, FLP, FLC, TLP and TLA
was close to 1, indicating an already high accuracy of
the automatic segmentation prior to manual refinement.
Cartilage T2* values and regional dissimilarities of all the
subregions in the two groups are shown in Table 2.

Fig. 1 Cartilage segmentation: automated (A) vs automated plus manual correction automated (B): due to joint effusion, automatic segmentation
identifies joint effusion as articular cartilage in the trochlea central and lateral of femur (black arrow)
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Table 2 The cartilage mean T2* value =+ standard deviation (SD) and regional differences between the automatic segmentation and
manual correction based on automatic segmentation in different groups by articular effusion and cartilage degeneration

Subregion ALL(n=32) No hydrarthrosis(n=14) Hydrarthrosis(n=18) WORMS 0 (n=21) WORMS 1-2 (n=11)
Mean+SD (ms) P Mean+SD (ms) P Mean+SD (ms) P Mean+SD (ms) P Mean+SD (ms) P

FMP A 26.58+2.94 27731277 25.68+2.83 26374315 26.97+2.59
M 26584295 2773+277 25.68+2.83 26374315 26974259

FMC A 27.06+3.60 0001 26204255 0008  27.72+4.20 0001 2685+351 0.001 27454393 0.012
M 2658+3.66 25624278 2732414 26.19+354 2731+393

FMA A 2633+4.44 0001 24774446 0.001 27554415 0.001  27.04+383 0001  2498+537 0.005
M 25394397 24.10+433 26394346 2592+3.23 2437+5.13

FTM A 27.89+530 0003 26004245 0028 29354643 0046 25894238 0008 31.71+7.15 0.285
M 2781+531 25954247 29.26+645 25784232 31.68+7.17

FTC A 35.831+14.93 0001  3037+441 0.002 40.07+1865 0.001  31.90+4.04 0001 4333+2374 0.008
M 31.98+6.54 29.094333 34234756 3020+287 35384982

FTL A 32574713 0001  3285+6.79 0002 32354757 0.001  31.50%6.20 0001  3461+859 0.008
M 29.73+338 29.24+1.71 30.10£4.28 28.704+2.40 31.69+£4.17

FLP A 24794288 24724319 24.84+2.70 24.86+2.98 24.65+2.79
M 24794288 24734+3.19 24.84+2.70 24.8642.98 24.65+2.79

FLC A 28.65+4.02 0109 27.77+444 0109 29344363 27.70+3.29 0.109 30474478
M 2864+4.01 2774+44 29344363 27694327 3047+£478

FLA A 26.67 £5.56 0018 26.15+6.28 0109  27.07+5.09 0068 26554553 0.043 26894588 0.180
M 26574557 26.09+6.30 26.954+5.09 26444554 26.84+591

PLI A 29.56+19.81 0001 22924569 0049 347242502 0008 2397+439 0.008 402343141 0.049
M 2386+5.22 2240+5.64 25.00+4.71 23424448 24.70+643

PLC A 2552+547 0001 24474521 0002 26344567 0.001  2530+435 0001 27.85%+6.77 0.008
M 23974431 22.87+393 24824451 22974351 25.88+5.18

PLS A 23.11+4.13 0317 22304322 2374471 0317 22614424 0317 2405391
M 23.10+£4.12 22304322 23.72+4.70 2260+4.23 24.05+391

PMI A 30.15+6.90 0001  28.06+6.26 0001 31.7747.10 0.001 29.86+6.34 0001  30.68+8.17 0.005
M 2721+4.66 25.74+4.21 2835+4.79 26.95+4.78 27.70+4.61

PMC A 3267+7.02 0001  3059+6.19 0.001 3428736 0001 3230+7.26 0001 33374681 0.008
M 30131494 29.68+6.24 30484381 29.11+£3.80 3207+6.38

PMS A 2668+6.17 0001 27574546 0028 2598+6.74 0001 2635+6.16 0002 2730+644 0018
M 25544480 2661+5.66 24714+3.99 24.87+3.84 26.83+6.27

TLP A 23.10£2.50 2233+£202 2369+£273 2237+£2.29 2449+£2.39
M 23.10£250 22334202 23694273 22374229 24494239

TLC A 20.84+3.05 0046  21.96+2.86 0285 19.98+2.98 0109 20654324 0043 21204276 0317
M 20774296 21904276 19.88+2.87 20.544+3.09 2120276

TLA A 24751727 0180 24.09+598 2526+8.28 018  23.04+488 0317 28014993 0317
M 2432+6.14 24.09+5.98 24494642 22.84+4.68 27.14+772

TMP A 18.77+2.34 0001 17884203 0013 19474239 0009 18.13+1.88 0.001  20.00£272 0.18
M 18634234 17.80+1.97 1928 +244 1794+ 1.85 19.94£2.68

T™MC A 19.51+£3.74 0.001  20.28+4.01 0.001  1891£351 0001 1865+3.06 0001  21.16£449 0.011
M 18631234 19.20+£1.90 18.58+3.34 1825+2.76 19.99+2.55

TMA A 23.93+6.56 0001  25.10+8.07 0002 23014517 0002 23504736 0001 24.73+491 0.012
M 21.86+532 22.28+6.80 21.53+3.99 21354550 22.82+5.05

T A 21.82+5.13 0001 2194%5.16 0001 21724513 0001 21.06+4.63 0001  2326+5.73 0.001
M 21254443 21274451 21.24+439 20.55+4.01 22.60+4.90

A Automatic cartilage segmentation group, M Manual correction based on automatic segmentation group, T Total cartilage, FMP Femoral medial posterior, FMC
Femoral medial central, FMA Femoral medial anterior, FTM Femoral trochlea medial, FTC Femoral trochlea central, FTL Femoral trochlea lateral, FLP Femoral lateral
posterior, FLC Femoral lateral central, FLA Femoral lateral anterior, PLI Patellar lateral inferior, PLC Patellar lateral central, PLS Patellar lateral superior, PMI Patellar medial
inferior, PMC Patellar medial central, PMS Patellar medial superior, TLP Tibial lateral posterior, TLC Tibial lateral central, TLA Tibial lateral anterior, TMP Tibial medial
posterior, TMC Tibial medial central, TMA Tibial medial anterior
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Fig. 2 Cartilage score influence on Dice coefficient of the automatic cartilage segmentation software in the control and hydrarthrosis groups.
Hydrarthrosis significantly decreased the Dice coefficient of moderate degenerated patellar cartilage and distal femoral cartilage but increased the
Dice coefficient of mild degenerated proximal tibia cartilage. (WORMS 0 =normal; 1 =mild; 2 =moderate)
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With the increase in joint effusion, the Dice coefficient
in the patella increased somewhat, but the difference
was not statistically significant. The femoral condyle and
patella had lower Dice coefficient (0.9969 and 0.9922,
respectively) than the other regions of the knee cartilage
when the cartilage score was 0 in the control group. The
femoral condyle and patella had the lowest Dice coeffi-
cient (0.9900 and 0.9889, respectively) when the cartilage
score was 2 in the hydrarthrosis group (Fig. 2).

The average time for the automatic segmentation soft-
ware to complete cartilage segmentation of a knee was
around 6 min (for a processor model), while the average
time for manual correction of a knee was around 27 min.

Discussion

These results suggest that use of the automated seg-
mentation software results in a Dice coefficient of each
subregion of higher than 0.9. The location of subre-
gions, extent of hydrarthrosis, and level of cartilage
degeneration are the most important factors affecting
the accuracy of automatic segmentation. Automatic
segmentation software can mistake some of the fluid
accumulation at the edges of subregions, resulting in an
overestimate of cartilage volume. These areas deserve
greater attention during manual correction to increase
segmentation accuracy in these parts. In all 21 subre-
gions, the subregions with the most corrected slices
were located in the medial anterior, central trochlea
and lateral trochlea of the femoral condyle, medial infe-
rior, and medial central of the patellar, and the medial

anterior of the tibia condyle. These subregions were
likely influenced by hydrarthrosis. Under the influence
of hydrarthrosis, the Dice coefficient for automatic seg-
mentation of the femoral condyle and patellar cartilage
decreased when the cartilage score was 2.

The evaluation of T2* has been shown to be capable
of characterizing different degrees of cartilage degen-
eration [15]. It had been proposed as a robust bio-
marker of articular cartilage degeneration in several
joints [16, 17]. The advantages compared to T2 map-
ping include shorter scan times and higher SNR [5]. In
this study, the presence of hydrarthrosis and a higher
cartilage degeneration score decreased T2*. According
to the literature, T2* may be susceptible to the spatial
macromolecule architecture and its influence on water
molecule mobility [5, 18]. In this study, failure of the
automatic segmentation software to distinguish the
contour of the cartilage occurred mainly in articular
cartilage near the fluid accumulation. A segmentation
algorithm with increased robustness against synovial
fluid is currently being integrated, but was not avail-
able for testing at the time of this study. The boundary
between articular effusion and articular cartilage was
not clearly visible. The T2* relaxation times of cartilage
subregions extracted with manually corrected segmen-
tation was decreased compared to those extracted with
automatic segmentation. Articular effusion was recog-
nized as articular cartilage by the automatic segmen-
tation, resulting in the increase of the T2* relaxation
times in the uncorrected subregions.
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There some limitations in this study. Although only
normal volunteers were included, some undiagnosed
cartilage degeneration was present. The accuracy of the
segmentation of degenerated cartilage needs further
evaluation. In addition, a larger sample size is required to
increase reliability of results. A further limitation of this
study was lack of inter-observer variability assessment for
manually corrected faulty segmentations.

Conclusions
In general, automatic cartilage segmentation software
had a high Dice coefficient and it can accurately evalu-
ate the volume of cartilage. It provides quantitative infor-
mation about cartilage morphology within an acceptable
time range usually less than 10 min even on a laptop.
Manual correction can be used to improve the accuracy
of the segmentation. The location of cartilage subregions
and extent of hydrarthrosis and cartilage degeneration
may influence segmentation accuracy. To derive exact
results of T2* relaxation times of cartilage, manual cor-
rection of automatic segmentation is necessary, but even
then using the software saves considerable time.
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